000016184 001__ 16184
000016184 005__ 20210129210643.0
000016184 0247_ $$2DOI$$a10.1016/j.patcog.2011.04.019
000016184 0247_ $$2WOS$$aWOS:000292947000011
000016184 037__ $$aPreJuSER-16184
000016184 041__ $$aeng
000016184 082__ $$a000
000016184 084__ $$2WoS$$aComputer Science, Artificial Intelligence
000016184 084__ $$2WoS$$aEngineering, Electrical & Electronic
000016184 1001_ $$0P:(DE-HGF)0$$aKolev, K.$$b0
000016184 245__ $$aA variational approach to vesicle membrane reconstruction from fluorescence imaging
000016184 260__ $$aAmsterdam$$bElsevier$$c2011
000016184 300__ $$a2944 - 2958
000016184 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000016184 3367_ $$2DataCite$$aOutput Types/Journal article
000016184 3367_ $$00$$2EndNote$$aJournal Article
000016184 3367_ $$2BibTeX$$aARTICLE
000016184 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000016184 3367_ $$2DRIVER$$aarticle
000016184 440_0 $$016501$$aPattern Recognition$$v44$$x0031-3203$$y12
000016184 500__ $$aRecord converted from VDB: 12.11.2012
000016184 520__ $$aBiological applications like vesicle membrane analysis involve the precise segmentation of 3D structures in noisy volumetric data, obtained by techniques like magnetic resonance imaging (MRI) or laser scanning microscopy (LSM). Dealing with such data is a challenging task and requires robust and accurate segmentation methods. In this article, we propose a novel energy model for 3D segmentation fusing various cues like regional intensity subdivision, edge alignment and orientation information. The uniqueness of the approach consists in the definition of a new anisotropic regularizer, which accounts for the unbalanced slicing of the measured volume data, and the generalization of an efficient numerical scheme for solving the arising minimization problem, based on linearization and fixed-point iteration. We show how the proposed energy model can be optimized globally by making use of recent continuous convex relaxation techniques. The accuracy and robustness of the presented approach are demonstrated by evaluating it on multiple real data sets and comparing it to alternative segmentation methods based on level sets. Although the proposed model is designed with focus on the particular application at hand, it is general enough to be applied to a variety of different segmentation tasks. (C) 2011 Elsevier Ltd. All rights reserved.
000016184 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung (FUEK505)$$cFUEK505$$x0
000016184 536__ $$0G:(DE-HGF)POF2-89572$$a89572 - (Dys-)function and Plasticity (POF2-89572)$$cPOF2-89572$$fPOF II T$$x1
000016184 588__ $$aDataset connected to Web of Science
000016184 650_7 $$2WoSType$$aJ
000016184 65320 $$2Author$$a3D segmentation
000016184 65320 $$2Author$$aConvex optimization
000016184 65320 $$2Author$$aVesicle membrane analysis
000016184 65320 $$2Author$$aFluorescence imaging
000016184 7001_ $$0P:(DE-Juel1)VDB8902$$aKirchgeßner, N.$$b1$$uFZJ
000016184 7001_ $$0P:(DE-Juel1)VDB87855$$aHouben, S.$$b2$$uFZJ
000016184 7001_ $$0P:(DE-Juel1)128805$$aCsiszar, A.$$b3$$uFZJ
000016184 7001_ $$0P:(DE-Juel1)128837$$aRubner, W.$$b4$$uFZJ
000016184 7001_ $$0P:(DE-HGF)0$$aPalm, Ch.$$b5
000016184 7001_ $$0P:(DE-Juel1)VDB62239$$aEiben, B.$$b6$$uFZJ
000016184 7001_ $$0P:(DE-Juel1)128833$$aMerkel, R.$$b7$$uFZJ
000016184 7001_ $$0P:(DE-HGF)0$$aCremers, D.$$b8
000016184 773__ $$0PERI:(DE-600)1466343-0$$a10.1016/j.patcog.2011.04.019$$gVol. 44, p. 2944 - 2958$$p2944 - 2958$$q44<2944 - 2958$$tPattern recognition$$v44$$x0031-3203$$y2011
000016184 8567_ $$uhttp://dx.doi.org/10.1016/j.patcog.2011.04.019
000016184 909CO $$ooai:juser.fz-juelich.de:16184$$pVDB
000016184 9132_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000016184 9131_ $$0G:(DE-HGF)POF2-89572$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$v(Dys-)function and Plasticity$$x1
000016184 9141_ $$y2012
000016184 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000016184 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000016184 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000016184 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000016184 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000016184 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000016184 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000016184 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000016184 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000016184 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000016184 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000016184 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$gICS$$kICS-7$$lBiomechanik$$x0
000016184 970__ $$aVDB:(DE-Juel1)129915
000016184 980__ $$aVDB
000016184 980__ $$aConvertedRecord
000016184 980__ $$ajournal
000016184 980__ $$aI:(DE-Juel1)ICS-7-20110106
000016184 980__ $$aUNRESTRICTED
000016184 981__ $$aI:(DE-Juel1)IBI-2-20200312