001     16184
005     20210129210643.0
024 7 _ |2 DOI
|a 10.1016/j.patcog.2011.04.019
024 7 _ |2 WOS
|a WOS:000292947000011
037 _ _ |a PreJuSER-16184
041 _ _ |a eng
082 _ _ |a 000
084 _ _ |2 WoS
|a Computer Science, Artificial Intelligence
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
100 1 _ |a Kolev, K.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a A variational approach to vesicle membrane reconstruction from fluorescence imaging
260 _ _ |a Amsterdam
|b Elsevier
|c 2011
300 _ _ |a 2944 - 2958
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Pattern Recognition
|x 0031-3203
|0 16501
|y 12
|v 44
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Biological applications like vesicle membrane analysis involve the precise segmentation of 3D structures in noisy volumetric data, obtained by techniques like magnetic resonance imaging (MRI) or laser scanning microscopy (LSM). Dealing with such data is a challenging task and requires robust and accurate segmentation methods. In this article, we propose a novel energy model for 3D segmentation fusing various cues like regional intensity subdivision, edge alignment and orientation information. The uniqueness of the approach consists in the definition of a new anisotropic regularizer, which accounts for the unbalanced slicing of the measured volume data, and the generalization of an efficient numerical scheme for solving the arising minimization problem, based on linearization and fixed-point iteration. We show how the proposed energy model can be optimized globally by making use of recent continuous convex relaxation techniques. The accuracy and robustness of the presented approach are demonstrated by evaluating it on multiple real data sets and comparing it to alternative segmentation methods based on level sets. Although the proposed model is designed with focus on the particular application at hand, it is general enough to be applied to a variety of different segmentation tasks. (C) 2011 Elsevier Ltd. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|x 0
|c FUEK505
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung (FUEK505)
536 _ _ |a 89572 - (Dys-)function and Plasticity (POF2-89572)
|0 G:(DE-HGF)POF2-89572
|c POF2-89572
|x 1
|f POF II T
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a 3D segmentation
653 2 0 |2 Author
|a Convex optimization
653 2 0 |2 Author
|a Vesicle membrane analysis
653 2 0 |2 Author
|a Fluorescence imaging
700 1 _ |a Kirchgeßner, N.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB8902
700 1 _ |a Houben, S.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB87855
700 1 _ |a Csiszar, A.
|b 3
|u FZJ
|0 P:(DE-Juel1)128805
700 1 _ |a Rubner, W.
|b 4
|u FZJ
|0 P:(DE-Juel1)128837
700 1 _ |a Palm, Ch.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Eiben, B.
|b 6
|u FZJ
|0 P:(DE-Juel1)VDB62239
700 1 _ |a Merkel, R.
|b 7
|u FZJ
|0 P:(DE-Juel1)128833
700 1 _ |a Cremers, D.
|b 8
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/j.patcog.2011.04.019
|g Vol. 44, p. 2944 - 2958
|p 2944 - 2958
|q 44<2944 - 2958
|0 PERI:(DE-600)1466343-0
|t Pattern recognition
|v 44
|y 2011
|x 0031-3203
856 7 _ |u http://dx.doi.org/10.1016/j.patcog.2011.04.019
909 C O |o oai:juser.fz-juelich.de:16184
|p VDB
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89572
|v (Dys-)function and Plasticity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2012
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
920 1 _ |k ICS-7
|l Biomechanik
|g ICS
|0 I:(DE-Juel1)ICS-7-20110106
|x 0
970 _ _ |a VDB:(DE-Juel1)129915
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21