001     16210
005     20210129210643.0
024 7 _ |2 DOI
|a 10.3934/nhm.2011.6.545
024 7 _ |2 WOS
|a WOS:000294891900010
037 _ _ |a PreJuSER-16210
041 _ _ |a eng
082 _ _ |a 510
084 _ _ |2 WoS
|a Mathematics, Interdisciplinary Applications
100 1 _ |0 P:(DE-HGF)0
|a Schadschneider, A.
|b 0
245 _ _ |a Empirical results for pedestrian dynamics and their implications for modeling
260 _ _ |a Springfield, Mo.
|b AIMS
|c 2011
300 _ _ |a 545 - 560
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 24401
|a Networks and Heterogeneous Media
|v 6
|y 3
500 _ _ |a Part of this work has been performed within the research program HERMES supported by the Federal Ministry of Education and Research - BMBF (FKZ 13N9952 and 13N9960).
520 _ _ |a The current status of empirical results for pedestrian dynamics is reviewd. Suprisingly even for basic quantities like the flow-density relation there is currently no consensus since the results obtained in various empirical and experimental studies deviate substantially. We report results from recent large-scale experiments for pedestrian flow in simple scenarios like long corridors and bottlenecks which have been performed under controlled laboratory conditions that are easily reproducible. Finally the implications of the unsatisfactory empirical situation for the modeling of pedestrian dynamics is discussed.
536 _ _ |0 G:(DE-Juel1)FUEK411
|2 G:(DE-HGF)
|x 0
|c FUEK411
|a Scientific Computing (FUEK411)
536 _ _ |0 G:(DE-HGF)POF2-411
|a 411 - Computational Science and Mathematical Methods (POF2-411)
|c POF2-411
|f POF II
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Pedestrian dynamics
653 2 0 |2 Author
|a fundamental diagram
653 2 0 |2 Author
|a bottleneck
653 2 0 |2 Author
|a statistical analysis
700 1 _ |0 P:(DE-Juel1)132266
|a Seyfried, A.
|b 1
|u FZJ
773 _ _ |0 PERI:(DE-600)2387587-2
|a 10.3934/nhm.2011.6.545
|g Vol. 6, p. 545 - 560
|p 545 - 560
|q 6<545 - 560
|t Networks and heterogeneous media
|v 6
|x 1556-1801
|y 2011
856 7 _ |u http://dx.doi.org/10.3934/nhm.2011.6.545
909 C O |o oai:juser.fz-juelich.de:16210
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0040
|2 StatID
|a Peer review unknown
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|g JSC
|k JSC
|l Jülich Supercomputing Centre
|x 0
970 _ _ |a VDB:(DE-Juel1)129963
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21