000016240 001__ 16240
000016240 005__ 20240708132902.0
000016240 0247_ $$2DOI$$a10.1016/j.ssi.2011.06.010
000016240 0247_ $$2WOS$$aWOS:000295572000004
000016240 037__ $$aPreJuSER-16240
000016240 041__ $$aeng
000016240 082__ $$a530
000016240 084__ $$2WoS$$aChemistry, Physical
000016240 084__ $$2WoS$$aPhysics, Condensed Matter
000016240 1001_ $$0P:(DE-HGF)0$$aNiedrig, C.$$b0
000016240 245__ $$aThermal Stability of the Cubic Phase in Ba0.5Sr0.5Co0.8Fe0.2O3- (BSCF)
000016240 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2011
000016240 300__ $$a25 - 31
000016240 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000016240 3367_ $$2DataCite$$aOutput Types/Journal article
000016240 3367_ $$00$$2EndNote$$aJournal Article
000016240 3367_ $$2BibTeX$$aARTICLE
000016240 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000016240 3367_ $$2DRIVER$$aarticle
000016240 440_0 $$05565$$aSolid State Ionics$$v197$$x0167-2738$$y1
000016240 500__ $$aFinancial support from the Helmholtz Association of German Research Centres (Initiative and Networking Fund) through the MEM-BRAIN Helmholtz Alliance (www.mem-brain-allianz.eu) is gratefully acknowledged. The authors also thank the German Federal Ministry of Economics and Technology (BMWi grant no. 0327803F) and the DFG-Research Center for Functional Nanostructures (CFN, project F2.1) for funding.
000016240 520__ $$aBa0.5Sr0.5Co0.8Fe0.2O0-delta (BSCF) is a material with excellent oxygen ionic and electronic transport properties reported by many research groups. In its cubic phase, this mixed ionic-electronic conducting (MIEC) perovskite is a promising candidate for oxygen permeation membranes. For this application, its long-term stability under operating conditions (especially temperature and oxygen partial pressure) is of crucial importance.The present work is focused on the thermal stability of the BSCF cubic phase in the targeted temperature range for applications (700 ... 900 degrees C) in light of previous studies in literature reporting a reversible transition to a hexagonal phase somewhere below 900 degrees C.To this end, single phase cubic BSCF powders were annealed at different temperatures over varying periods of time. Phase composition was subsequently analysed by X-ray diffractometry (XRD) in order to determine both the temperature limit and the time-scale for the formation of the hexagonal phase. Additionally, the long-term behaviour of the electrical conductivity was examined on bulk samples at 700 degrees C, 800 degrees C and 900 degrees C over several hundreds of hours, showing a prolonged decrease at 800 degrees C. The decrease in electrical conductivity at this temperature was also examined on bulk samples with different grain sizes, showing a more pronounced decrease the smaller the average grain size. Coexistence of both phases (cubic and hexagonal) could also be shown for 700 degrees C, however with a different phase equilibrium than at 800 degrees C. (C) 2011 Elsevier B.V. All rights reserved.
000016240 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000016240 588__ $$aDataset connected to Web of Science
000016240 65320 $$2Author$$aBSCF
000016240 65320 $$2Author$$aElectrical conductivity
000016240 65320 $$2Author$$aPhase stability
000016240 65320 $$2Author$$aHexagonal phase
000016240 650_7 $$2WoSType$$aJ
000016240 7001_ $$0P:(DE-HGF)0$$aTaufall, S.$$b1
000016240 7001_ $$0P:(DE-HGF)0$$aBurriel, M.$$b2
000016240 7001_ $$0P:(DE-HGF)0$$aMenesklou, W.$$b3
000016240 7001_ $$0P:(DE-Juel1)VDB92808$$aWagner, S.F.$$b4$$uFZJ
000016240 7001_ $$0P:(DE-HGF)0$$aBaumann, S.$$b5
000016240 7001_ $$0P:(DE-HGF)0$$aIvers-Tiffée, E.$$b6
000016240 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2011.06.010$$gVol. 197, p. 25 - 31$$p25 - 31$$q197<25 - 31$$tSolid state ionics$$v197$$x0167-2738$$y2011
000016240 8567_ $$uhttp://dx.doi.org/10.1016/j.ssi.2011.06.010
000016240 909CO $$ooai:juser.fz-juelich.de:16240$$pVDB
000016240 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000016240 9141_ $$y2011
000016240 9131_ $$0G:(DE-Juel1)FUEK402$$aDE-HGF$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000016240 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000016240 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$gIEK$$kIEK-1$$lWerkstoffsynthese und Herstellverfahren$$x0
000016240 970__ $$aVDB:(DE-Juel1)130050
000016240 980__ $$aVDB
000016240 980__ $$aConvertedRecord
000016240 980__ $$ajournal
000016240 980__ $$aI:(DE-Juel1)IEK-1-20101013
000016240 980__ $$aUNRESTRICTED
000016240 981__ $$aI:(DE-Juel1)IMD-2-20101013