000016252 001__ 16252
000016252 005__ 20210129210644.0
000016252 0247_ $$2ISSN$$a1868-8489
000016252 0247_ $$2Handle$$a2128/4480
000016252 020__ $$a978-3-89336-733-7
000016252 037__ $$aPreJuSER-16252
000016252 041__ $$aEnglish
000016252 082__ $$a500
000016252 082__ $$a600
000016252 1001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b0$$eCorresponding author$$gmale$$uFZJ
000016252 245__ $$aGeneralized Algebraic Kernels and Multipole Expansions for Massively Parallel Vortex Particle Methods
000016252 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2011
000016252 300__ $$aIV, 115 S.
000016252 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis
000016252 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook
000016252 3367_ $$02$$2EndNote$$aThesis
000016252 3367_ $$2DRIVER$$adoctoralThesis
000016252 3367_ $$2BibTeX$$aPHDTHESIS
000016252 3367_ $$2DataCite$$aOutput Types/Dissertation
000016252 3367_ $$2ORCID$$aDISSERTATION
000016252 4900_ $$0PERI:(DE-600)2525100-4$$aSchriften des Forschungszentrums Jülich. IAS Series$$v7
000016252 502__ $$aUniversität Wuppertal, Diss., 2011$$bDr. (Univ.)$$cUniversität Wuppertal$$d2011
000016252 500__ $$aRecord converted from JUWEL: 18.07.2013
000016252 500__ $$aRecord converted from VDB: 12.11.2012
000016252 500__ $$aPersistent Identifier: urn:nbn:de:0001-2011083003
000016252 520__ $$aRegularized vortex particle methods offer an appealing alternative to common mesh-based numerical methods for simulating vortex-driven fluid flows. While inherently mesh-free and adaptive, a stable implementation using particles for discretizing the vorticity field must provide a scheme for treating the overlap condition, which is required for convergent regularized vortex particle methods. Moreover, the use of particles leads to an $\textit{N}$ -body problem. By the means of fast, multipole-based summation techniques, the unfavorable yet intrinsic $\mathcal{O}$($\textit{N}$ $^{2}$)-complexity of these problems can be reduced to at least $\mathcal{O}$($\textit{N}$ log $\textit{N}$). However, this approach requires a thorough and challenging analysis of the underlying regularized smoothing kernels. We introduce a novel class of algebraic kernels, analyze its properties and formulate a decomposition theorem, which radically simplifies the theory of multipole expansions for this case. This decomposition is of great help for the convergence analysis of the multipole series and an in-depth error estimation of the remainder. We use these results to implement a massively parallel Barnes-Hut tree code with $\mathcal{O}$($\textit{N}$ log $\textit{N}$)-complexity, which can perform complex simulations with up to 10$^{8}$ particles routinely. A thorough investigation shows excellent scalability up to 8192 cores on the IBM Blue Gene/P system JUGENE at Jülich Supercomputing Centre. We demonstrate the code’s capabilities along different numerical examples, including the dynamics of two merging vortex rings. In addition, we extend the tree code to account for the overlap condition using the concept of remeshing, thus providing a promising and mathematically well-grounded alternative to standard mesh-based algorithms.
000016252 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000016252 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000016252 655_7 $$aHochschulschrift$$xDissertation (Univ.)
000016252 8564_ $$uhttps://juser.fz-juelich.de/record/16252/files/IAS_Series_07.pdf$$yOpenAccess
000016252 8564_ $$uhttps://juser.fz-juelich.de/record/16252/files/IAS_Series_07.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000016252 8564_ $$uhttps://juser.fz-juelich.de/record/16252/files/IAS_Series_07.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000016252 8564_ $$uhttps://juser.fz-juelich.de/record/16252/files/IAS_Series_07.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000016252 909CO $$ooai:juser.fz-juelich.de:16252$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000016252 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000016252 9141_ $$y2011
000016252 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000016252 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000016252 920__ $$lyes
000016252 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000016252 970__ $$aVDB:(DE-Juel1)130065
000016252 980__ $$aVDB
000016252 980__ $$aConvertedRecord
000016252 980__ $$aphd
000016252 980__ $$aI:(DE-Juel1)JSC-20090406
000016252 980__ $$aUNRESTRICTED
000016252 980__ $$aJUWEL
000016252 980__ $$aFullTexts
000016252 9801_ $$aFullTexts