001     16335
005     20210129210644.0
024 7 _ |2 pmid
|a pmid:21893592
024 7 _ |2 DOI
|a 10.1093/brain/awr202
024 7 _ |2 WOS
|a WOS:000295681400013
037 _ _ |a PreJuSER-16335
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Clinical Neurology
084 _ _ |2 WoS
|a Neurosciences
100 1 _ |0 P:(DE-HGF)0
|a Graebenitz, S.
|b 0
245 _ _ |a Interictal-like network activity and receptor expression in the epileptic human lateral amygdala
260 _ _ |a Oxford
|b Oxford Univ. Press
|c 2011
300 _ _ |a 2929 - 2947
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 935
|a Brain
|v 134
|x 0006-8950
|y 10
500 _ _ |a Deutsche Forschungsgemeinschaft (DFG; SFB-TR3, TP C3; to H. C. P. and E.J.S.); a research award (Max-Planck-Research Award 2007; to H. C. P.); the Helmholtz Alliances HelMA (Health in an Aging Society, to K.Z.); Systems Biology (to K.Z.).
520 _ _ |a While the amygdala is considered to play a critical role in temporal lobe epilepsy, conclusions on underlying pathophysiological mechanisms have been derived largely from experimental animal studies. Therefore, the present study aimed to characterize synaptic network interactions, focusing on spontaneous interictal-like activity, and the expression profile of transmitter receptors in the human lateral amygdala in relation to temporal lobe epilepsy. Electrophysiological recordings, obtained intra-operatively in vivo in patients with medically intractable temporal lobe epilepsy, revealed the existence of interictal activity in amygdala and hippocampus. For in vitro analyses, slices were prepared from surgically resected specimens, and sections from individual specimens were used for electrophysiological recordings, receptor autoradiographic analyses and histological visualization of major amygdaloid nuclei for verification of recording sites. In the lateral amygdala, interictal-like activity appeared as spontaneous slow rhythmic field potentials at an average frequency of 0.39 Hz, which occurred at different sites with various degrees of synchronization in 33.3% of the tested slices. Pharmacological blockade of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, but not N-methyl-D-aspartate receptors, abolished interictal-like activity, while the γ-aminobutyric acid A-type receptor antagonist bicuculline resulted in a dampening of activity, followed by highly synchronous patterns of slow rhythmic activity during washout. Receptor autoradiographic analysis revealed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, metabotropic glutamate type 2/3, muscarinic type 2 and adrenoceptor α(1) densities, whereas muscarinergic type 3 and serotonergic type 1A receptor densities were lower in the lateral amygdala from epileptic patients in comparison to autopsy controls. Concerning γ-aminobutyric acid A-type receptors, agonist binding was unaltered whereas antagonist binding sites were downregulated in the epileptic lateral amygdala, suggesting an altered high/low-affinity state ratio and concomitant reduced pool of total γ-aminobutyric acid A-type receptors. Together these data indicate an abnormal pattern of receptor densities and synaptic function in the lateral nucleus of the amygdala in epileptic patients, involving critical alterations in glutamate and γ-aminobutyric acid receptors, which may give rise to domains of spontaneous interictal discharges contributing to seizure activity in the amygdala.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89571
|a 89571 - Connectivity and Activity (POF2-89571)
|c POF2-89571
|f POF II T
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adolescent
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Aged
650 _ 2 |2 MeSH
|a Amygdala: metabolism
650 _ 2 |2 MeSH
|a Amygdala: physiopathology
650 _ 2 |2 MeSH
|a Child
650 _ 2 |2 MeSH
|a Epilepsy: metabolism
650 _ 2 |2 MeSH
|a Epilepsy: physiopathology
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Middle Aged
650 _ 2 |2 MeSH
|a Nerve Net: metabolism
650 _ 2 |2 MeSH
|a Nerve Net: physiopathology
650 _ 2 |2 MeSH
|a Neurons: metabolism
650 _ 2 |2 MeSH
|a Receptor, Muscarinic M2: metabolism
650 _ 2 |2 MeSH
|a Receptor, Serotonin, 5-HT1A: metabolism
650 _ 2 |2 MeSH
|a Receptors, AMPA: metabolism
650 _ 2 |2 MeSH
|a Receptors, Adrenergic, alpha-1: metabolism
650 _ 2 |2 MeSH
|a Receptors, Metabotropic Glutamate: metabolism
650 _ 2 |2 MeSH
|a Synapses: metabolism
650 _ 2 |2 MeSH
|a Synapses: physiology
650 _ 7 |0 0
|2 NLM Chemicals
|a Receptor, Muscarinic M2
650 _ 7 |0 0
|2 NLM Chemicals
|a Receptors, AMPA
650 _ 7 |0 0
|2 NLM Chemicals
|a Receptors, Adrenergic, alpha-1
650 _ 7 |0 0
|2 NLM Chemicals
|a Receptors, Metabotropic Glutamate
650 _ 7 |0 112692-38-3
|2 NLM Chemicals
|a Receptor, Serotonin, 5-HT1A
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a lateral amygdala
653 2 0 |2 Author
|a human temporal lobe epilepsy
653 2 0 |2 Author
|a field potentials
653 2 0 |2 Author
|a transmitter receptors
653 2 0 |2 Author
|a intra-operative recording
700 1 _ |0 P:(DE-Juel1)VDB20460
|a Kedo, O.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Speckmann, E.J.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Gorji, A.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Panneck, H.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Hans, V.
|b 5
700 1 _ |0 P:(DE-Juel1)VDB1208
|a Palomero-Gallagher, N.
|b 6
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Schleicher, A.
|b 7
700 1 _ |0 P:(DE-Juel1)131714
|a Zilles, K.
|b 8
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Pape, H.C.
|b 9
773 _ _ |0 PERI:(DE-600)1474117-9
|a 10.1093/brain/awr202
|g Vol. 134, p. 2929 - 2947
|p 2929 - 2947
|q 134<2929 - 2947
|t Brain
|v 134
|x 0006-8950
|y 2011
856 7 _ |u http://dx.doi.org/10.1093/brain/awr202
909 C O |o oai:juser.fz-juelich.de:16335
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89571
|a DE-HGF
|v Connectivity and Activity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
970 _ _ |a VDB:(DE-Juel1)130181
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21