000016355 001__ 16355
000016355 005__ 20200702121602.0
000016355 0247_ $$2pmid$$apmid:21678900
000016355 0247_ $$2DOI$$a10.1021/es1036578
000016355 0247_ $$2WOS$$aWOS:000292850200022
000016355 0247_ $$2ISSN$$a0013-936X
000016355 0247_ $$2ISSN$$a1520-5851
000016355 037__ $$aPreJuSER-16355
000016355 041__ $$aeng
000016355 082__ $$a050
000016355 084__ $$2WoS$$aEngineering, Environmental
000016355 084__ $$2WoS$$aEnvironmental Sciences
000016355 1001_ $$0P:(DE-HGF)0$$aWang, R.$$b0
000016355 245__ $$aMeasurement of N2, N2O, NO and CO2 emissions from soil with the gas-flow-soil-core technique
000016355 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2011
000016355 300__ $$a6066 - 6072
000016355 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000016355 3367_ $$2DataCite$$aOutput Types/Journal article
000016355 3367_ $$00$$2EndNote$$aJournal Article
000016355 3367_ $$2BibTeX$$aARTICLE
000016355 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000016355 3367_ $$2DRIVER$$aarticle
000016355 440_0 $$01865$$aEnvironmental Science and Technology$$v45$$x0013-936X$$y14
000016355 500__ $$3POF3_Assignment on 2016-02-29
000016355 500__ $$aThis work was funded by the German Research Foundation (DFG, FG536, MAGIM), the National Natural Science Foundation of China (40805061, 41021004), and the NitroEurope project. Technical assistance from Meike Sauerwein, Guangren Liu, Yinghong Wang, Yang Sun, and Dongsheng Ji is acknowledged.
000016355 520__ $$aHere we describe a newly designed system with three stand-alone working incubation vessels for simultaneous measurements of N(2), N(2)O, NO, and CO(2) emissions from soil. Due to the use of a new micro thermal conductivity detector and the redesign of vessels and gas sampling a so-far unmatched sensitivity (0.23 μg N(2)-N h(-1) kg(-1) ds or 8.1 μg N(2)-N m(-2) h(-1)) for detecting N(2) gas emissions and repeatability of experiments could be achieved. We further tested different incubation methods to improve the quantification of N(2) emission via denitrification following the initialization of soil anaerobiosis. The best results with regard to the establishment of a full N balance (i.e., the changes in mineral N content being offset by simultaneous emission of N gases) were obtained when the anaerobic soil incubation at 25 °C was preceded by soil gas exchange under aerobic conditions at a lower incubation temperature. The ratios of N and C gas emission changed very dynamically following the initialization of anaerobiosis. For soil NO(3)(-) contents of 50 mg N kg(-1) dry soil (ds) and dissolved organic carbon (DOC) concentrations of approximately 300 mg C kg(-1) ds, the cumulative emissions of N(2), N(2)O, and NO were 24.3 ± 0.1, 12.6 ± 0.4, and 10.1 ± 0.3 mg N kg(-1) ds, respectively. Thus, N gas emissions accounted (on average) for 46.2% (N(2)), 24.0% (N(2)O), and 19.2% (NO) of the observed changes in soil NO(3)(-). The maximum N(2) emission reached 1200 μg N h(-1) kg(-1) ds, whereas the peak emissions of N(2)O and NO were lower by a factor of 2-3. The overall N(2):N(2)O and NO:N(2)O molar ratios were 1.6-10.0 and 1.6-2.3, respectively. The measurement system provides a reliable tool for studying denitrification in soil because it offers insights into the dynamics and magnitude of gaseous N emissions due to denitrification under various incubation conditions.
000016355 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000016355 588__ $$aDataset connected to Web of Science, Pubmed
000016355 650_2 $$2MeSH$$aAnaerobiosis
000016355 650_2 $$2MeSH$$aAtmosphere: chemistry
000016355 650_2 $$2MeSH$$aCarbon Dioxide: analysis
000016355 650_2 $$2MeSH$$aChemistry Techniques, Analytical
000016355 650_2 $$2MeSH$$aModels, Chemical
000016355 650_2 $$2MeSH$$aNitrogen: analysis
000016355 650_2 $$2MeSH$$aNitrogen Oxides: analysis
000016355 650_2 $$2MeSH$$aSoil: chemistry
000016355 650_7 $$00$$2NLM Chemicals$$aNitrogen Oxides
000016355 650_7 $$00$$2NLM Chemicals$$aSoil
000016355 650_7 $$0124-38-9$$2NLM Chemicals$$aCarbon Dioxide
000016355 650_7 $$07727-37-9$$2NLM Chemicals$$aNitrogen
000016355 650_7 $$2WoSType$$aJ
000016355 7001_ $$0P:(DE-HGF)0$$aWillibald, G.$$b1
000016355 7001_ $$0P:(DE-HGF)0$$aFeng, Q.$$b2
000016355 7001_ $$0P:(DE-HGF)0$$aZheng, X.$$b3
000016355 7001_ $$0P:(DE-HGF)0$$aLiao, T.$$b4
000016355 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, N.$$b5$$uFZJ
000016355 7001_ $$0P:(DE-HGF)0$$aButterbach-Bahl, K.$$b6
000016355 773__ $$0PERI:(DE-600)1465132-4$$a10.1021/es1036578$$gVol. 45, p. 6066 - 6072$$p6066 - 6072$$q45<6066 - 6072$$tEnvironmental Science & Technology$$v45$$x0013-936X$$y2011
000016355 8567_ $$uhttp://dx.doi.org/10.1021/es1036578
000016355 909CO $$ooai:juser.fz-juelich.de:16355$$pVDB$$pVDB:Earth_Environment
000016355 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000016355 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000016355 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000016355 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000016355 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000016355 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000016355 9141_ $$y2011
000016355 9131_ $$0G:(DE-Juel1)FUEK407$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000016355 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000016355 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x0
000016355 970__ $$aVDB:(DE-Juel1)130270
000016355 980__ $$aVDB
000016355 980__ $$aConvertedRecord
000016355 980__ $$ajournal
000016355 980__ $$aI:(DE-Juel1)IBG-3-20101118
000016355 980__ $$aUNRESTRICTED