001     16366
005     20230426083026.0
024 7 _ |a 10.1103/PhysRevB.82.085449
|2 DOI
024 7 _ |a WOS:000281406100004
|2 WOS
024 7 _ |a 2128/10921
|2 Handle
037 _ _ |a PreJuSER-16366
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Deiter, C.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Structural transitions and relaxation processes during the epitaxial growth of ultrathin CaF2 films on Si(111)
260 _ _ |a College Park, Md.
|b APS
|c 2010
300 _ _ |a 085449
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review B
|x 1098-0121
|0 4919
|y 8
|v 82
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The structure and morphology of ultrathin lattice matched CaF2 films of very few monolayers thickness, which were deposited on Si(111) substrates by molecular-beam epitaxy, have been studied in situ by synchrotron based grazing incidence x-ray diffraction. Even for the thinnest investigated film of three monolayers thickness, the in-plane structure of the CaF2 film is determined by a lateral separation in two domains: a pseudomorphic phase assuming the lateral lattice constant of the Si(111) substrate and a completely relaxed phase. Analysis of the crystal truncation rods verifies that both phases adopt the entire homogeneous CaF2 film thickness. Therefore, we propose that atomic steps of the substrate bypass the nucleation barrier for the formation of (Shockley partial) dislocations so that the film starts to relax below the classical critical film thickness. While the relaxed phase assumes also the CaF2 bulk lattice constant for the vertical direction, the vertical lattice constant of the pseudomorphic phase increases due to the compressive lateral strain at the interface. This vertical expansion of the pseudomorphic phase, however, is larger than expected from the elastic constants of the CaF2 bulk. The fraction of the pseudomorphic CaF2 phase decreases with increasing film thickness. The interface between the pseudomorphic CaF2 phase and the Si(111) substrate is characterized by Ca on T-4 sites, a smaller distance between the Si(111) substrate and the CaF interface layer and an expanded layer distance between CaF interface layer and the completely stoichiometric CaF2 film.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
542 _ _ |i 2010-08-31
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Bierkandt, M.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Klust, A.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Kumpf, C.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB77884
700 1 _ |a Su, Y.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Bunk, O.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Feidenhans'l, R.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Wollschläger, J.
|b 7
|0 P:(DE-HGF)0
773 1 8 |a 10.1103/physrevb.82.085449
|b American Physical Society (APS)
|d 2010-08-31
|n 8
|p 085449
|3 journal-article
|2 Crossref
|t Physical Review B
|v 82
|y 2010
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.82.085449
|g Vol. 82, p. 085449
|p 085449
|n 8
|q 82<085449
|0 PERI:(DE-600)2844160-6
|t Physical review / B
|v 82
|y 2010
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.82.085449
856 4 _ |u https://juser.fz-juelich.de/record/16366/files/PhysRevB.82.085449.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/16366/files/PhysRevB.82.085449.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/16366/files/PhysRevB.82.085449.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/16366/files/PhysRevB.82.085449.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/16366/files/PhysRevB.82.085449.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:16366
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2010
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|g PGI
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)130286
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)VDB881
999 C 5 |a 10.1080/10408438908243740
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 W. Pies
|y 1973
|2 Crossref
|t Crystal and Solid State Physics
|o W. Pies Crystal and Solid State Physics 1973
999 C 5 |1 M. A. Olmstead
|y 1999
|2 Crossref
|t Thin Films: Heteroepitaxial Systems
|o M. A. Olmstead Thin Films: Heteroepitaxial Systems 1999
999 C 5 |1 J. Wollschläger
|y 2002
|2 Crossref
|t Recent Research Developments in Applied Physics
|o J. Wollschläger Recent Research Developments in Applied Physics 2002
999 C 5 |a 10.1049/el:19920911
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.108997
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.38.L920
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.39.L964
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0957-4484/14/11/006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1853522
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.39.L716
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.45.3656
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0022-2313(99)00276-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.46.L904
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.tsf.2007.02.057
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2719610
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.41.L876
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0268-1242/22/8/018
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0268-1242/22/12/014
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.susc.2004.06.156
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp0508296
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.44.617
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2178196
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.371551
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1345830
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.41.L1247
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.61.1756
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.41.5315
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.193404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.34.7295
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.35.7526
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.72.2430
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.33.2395
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0169-4332(96)00178-X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-0248(95)01035-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.107092
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.48.5716
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.70.1826
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-0248(95)00517-X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0921-4526(95)00923-X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.50.14340
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0038-1098(90)90877-E
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 N. S. Sokolov
|y 1991
|2 Crossref
|t Insulating Films on Semiconductors 1991
|o N. S. Sokolov Insulating Films on Semiconductors 1991 1991
999 C 5 |a 10.1088/0268-1242/7/12/001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s003390101064
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0169-4332(99)00364-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1145877
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.33.3830
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.38.3632
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0167-5729(89)90002-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.96478
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0368-2048(90)80184-C
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.96383
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 S. Hashimoto
|y 1986
|2 Crossref
|t Layered Structures and Epitaxy
|o S. Hashimoto Layered Structures and Epitaxy 1986
999 C 5 |a 10.1103/PhysRevLett.40.964
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0039-6028(91)90573-B
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.48.18332
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0169-4332(00)00209-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/9789812796899
|1 I. Markov
|2 Crossref
|9 -- missing cx lookup --
|y 2003
999 C 5 |a 10.1007/BF02666659
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.101416
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.123777
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21