000016436 001__ 16436
000016436 005__ 20210301091646.0
000016436 0247_ $$2Handle$$a2128/16524
000016436 0247_ $$2ISSN$$a1866-1807
000016436 020__ $$a978-3-89336-813-6
000016436 037__ $$aPreJuSER-16436
000016436 041__ $$aII, 165 S.
000016436 1001_ $$0P:(DE-Juel1)VDB85047$$aWeiss, Christian$$b0$$eCorresponding author$$gmale$$uFZJ
000016436 245__ $$aSTM beyond vacuum tunnelling, a route to ultra high resolution
000016436 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2011
000016436 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis
000016436 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook
000016436 3367_ $$02$$2EndNote$$aThesis
000016436 3367_ $$2DRIVER$$adoctoralThesis
000016436 3367_ $$2BibTeX$$aPHDTHESIS
000016436 3367_ $$2DataCite$$aOutput Types/Dissertation
000016436 3367_ $$2ORCID$$aDISSERTATION
000016436 4900_ $$0PERI:(DE-600)2445293-2$$aSchriften des Forschungszentrums Jülich. Schlüsseltechnologien / Key Technologies$$v47
000016436 502__ $$bDr. (FH)$$d2011
000016436 500__ $$3POF3_Assignment on 2016-02-29
000016436 500__ $$aRecord converted from VDB: 12.11.2012
000016436 520__ $$aDirect imaging is a fast and reliable method for the characterization of surfaces. When it comes to small surface structures in the size of the features e.g. in todays computer processors, classical optical imaging methods fail in resolving these structures. With the invention of the scanning tunnelling microscope (STM) for the first time it became possible to image the structure of surfaces with atomic precision. However, the STM fails in resolving complex chemical structures like e.g. organic molecules. The lack of chemical sensitivity in STM images can be overcome by the condensation of molecular hydrogen or deuterium in the STM junction. Images recorded in the so-called scanning tunnelling hydrogen microscopy (STHM) closely resemble the chemical structure of different organic molecules. However, the mechanism behind the contrast formation has not been addressed so far. Here we show that the origin of the STHM contrast is a single hydrogen (H$_{2}$) or deuterium (D$_{2}$) molecule located directly below the tip apex that acts as a combined sensor and signal transducer. Together with the tip the gas molecule forms a nano-scale force sensor, comparable to sensors in atomic force microscopy (AFM), which probes the total electron density (TED) of the surface trough the Pauli repulsion and converts this signal into variations of the junctions’ conductance again via Pauli repulsion. Other than the sensors in conventional scanning force techniques, due to its size, the sensor of the STHM junction is intrinsically insensitive to long-range forces, usually limiting the image resolution. The insensitivity to long-range forces results in a high image resolution, so that even small changes in the TED leave a mark in obtained STHM images. The resolution hereby reaches an unprecedented level as can be seen by the direct imaging of local intermolecular interactions like e.g. hydrogen bonds appear with remarkable clarity in STHM images of organic layers. Thus, besides the identification of chemical species of different adsorbates, the STHM mode allows the study of interactions between adsorbates which e.g. lead to their self organization on the surface. Therefore, the STHM mode may give important insight in the driving mechanisms behind the formation and composition of matter on the atomic level. However, the STHM mode, in which a single H$_{2}$ (D$_{2}$) molecule probes the TED of the surface, is only one example of a broader class of sensors. It is conceivable, that by an appropriate choice of the molecule in the junction, other surface properties can be imaged which are usually inaccessible by other imaging techniques.
000016436 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000016436 655_7 $$aHochschulschrift$$xDissertation (FH)
000016436 8564_ $$uhttps://juser.fz-juelich.de/record/16436/files/FZJ-16436.pdf$$yOpenAccess$$zPrepress version for printing
000016436 8564_ $$uhttps://juser.fz-juelich.de/record/16436/files/FZJ-16436.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000016436 8564_ $$uhttps://juser.fz-juelich.de/record/16436/files/FZJ-16436.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000016436 8564_ $$uhttps://juser.fz-juelich.de/record/16436/files/FZJ-16436.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000016436 909CO $$ooai:juser.fz-juelich.de:16436$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000016436 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000016436 9141_ $$y2011
000016436 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000016436 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000016436 920__ $$lyes
000016436 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$gPGI$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000016436 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000016436 970__ $$aVDB:(DE-Juel1)130404
000016436 980__ $$aVDB
000016436 980__ $$aConvertedRecord
000016436 980__ $$aphd
000016436 980__ $$aI:(DE-Juel1)PGI-3-20110106
000016436 980__ $$aI:(DE-82)080009_20140620
000016436 980__ $$aUNRESTRICTED
000016436 980__ $$aJUWEL
000016436 980__ $$aFullTexts
000016436 9801_ $$aFullTexts
000016436 981__ $$aI:(DE-Juel1)VDB881