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Dynamic self-assembly and directed flow of rotating colloids in microchannels
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Nonequilibrium structure formation and dynamics in suspensions of superparamagnetic colloids driven by an

external rotating magnetic field are studied by particle-based mesoscale hydrodynamics simulations in confined

geometry. We address the fundamental question how the rotation of the colloids about their own axes can

be converted into a translational motion by breaking the symmetry of the confining geometry. We study a

two-dimensional system of colloids with short-range repulsive interactions, which mimics flow in shallow

microchannels. In straight channels, we observe a two-way traffic but—for symmetry reasons—no net transport.

However, by keeping some colloids fixed near one of the two walls, net transport can be achieved. This approach

allows the control and switchability of the flow in complex microchannel networks. A minimal geometry that

fulfills the requirement of broken symmetry are ring channels. We determine the translational velocity of the

spinning colloids and study its dependence on the channel width for various median radii. We conclude that

spinning colloids present a promising alternative for flow generation and control in microfluidic devices.
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I. INTRODUCTION

Externally actuated and self-propelled micro- and nanoro-

tators show an intriguing variety of nonequilibrium structure

formation and dynamics. Examples of such systems include

superparamagnetic colloidal particles in a rotating magnetic

field [1–4], dipolar colloids in a rotating electric field [5],

colloidal dimers rotated by laser tweezers [6], and biological

swimmers such as Volvox algae [7]. The collective behavior of

rotator suspensions is governed by hydrodynamic interactions.

In bulk fluids, two Volvox algae, spinning due to beating

cilia on their surfaces, form stable bound states [7]; several

spinning magnetic disks at the liquid-air interface sponta-

neously assemble in rotating clusters with a hexagonal crystal

structure [1,2]; and suspensions of rotators at sufficiently large

volume fraction show an enhanced translational diffusion due

to their spinning motion [8]. In confined geometry, spinning

colloids also show interesting features; for example, spinning

colloids placed asymmetrically in a microfluidic channel act

as micropumps [3,4,6].

Microfluidic devices have recently attracted much interest

due to their vast variety of applications in medical diagnosis

and chemical synthesis [9]. The main advantages of microflu-

idic systems are that they require only small fluid volumes

(sample as well as reagents), their high efficiency due to the

good surface to volume ratio, fast response times because of

short diffusion distances, and that they allow the application

at the point of need. An integral part of these systems are

micropumps. Recent experimental designs include colloidal

particles that are actuated by optical tweezers [6,10] and self-

assembling superparamagnetic colloids in an external rotating

magnetic field [3]. An advantage of spinning colloids is that

they allow the massively parallel operation of micropumps.

Simulations can help to gain insight into the flow prop-

erties of complex fluids and are therefore important for
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understanding the mechanisms of flow generation and dy-

namical properties in microfluidic devices. Hydrodynamic

interactions and thermal fluctuations often play an essential

role in soft matter systems. However, the gap between the

mesoscopic length and time scales of the macromolecules or

colloids and the microscopic scales of the solvent prohibits

a full molecular dynamics (MD) treatment on the atomistic

level. Therefore, a mesoscale simulation technique is required,

which is sufficiently efficient to be tractable, but at the same

time captures the relevant physical behavior. We employ here

the multi-particle collision dynamics (MPC) approach, which

naturally includes both hydrodynamics and thermal motion

[11–13].
In order to understand the basic physical mechanisms of

flow generation by rotating colloids, it is important to reduce
the geometry of the problem to its essential features. A
key prerequisite for converting rotational into a translational
motion is symmetry breaking in the confining geometry. This
can be achieved, for example, by curvature of a microchannel
[14] or by asymetric boundary conditions in a linear channel
[15,16]. Since the height of microchannels is typically much
smaller than their width, and the rotators in Ref. [3] are self-
assembled disklike clusters of superparamagnetic colloidal
particles, we focus on two-dimensional (2D) model systems;
see Fig. 1. Discs that are free to move are embedded in the
fluid, with each disk exposed to the same external torque.

In the last 160 years, there have been several different

approaches to deal with the problem of the viscous flow

around cylinders (or disks in two dimensions). In contrast

to spheres, even for the simple case of flow around a

single infinitely extended cylinder, there exists no solution of

the low-Reynolds-number Navier-Stokes equations (Stokes’s

paradox) [17–19]. However, these difficulties only apply to

unbounded fluid domains. In Ref. [20,21], the flow induced

by a macroscopic rotating cylinder with fixed axis placed

at an off-center position in a planar channel has been

studied by finite-element methods, and in Ref. [22], the flow

past a single freely rotating cylinder was studied numeri-

cally. Passively rotating cylinders between actively rotating
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FIG. 1. (Color online) Simulation snapshot of 12 spinning col-

loids (diameter σ in a straight channel of width D = 2.5σ and length

10σ with periodic boundary conditions in the lateral direction).

confining cylinders have been investigated in Ref. [23] using

multipole-accelerated boundary-element methods. Rotating

cylinders and rotlets (infinitesimal cylinders) with fixed axis

have been studied in Refs. [24,25]. However, all these stud-

ies neglect thermal fluctuations, which become increasingly

important with advancing miniaturization of microfluidic

devices.

A well-established mesoscale hydrodynamics simulation

technique that naturally includes thermal fluctuations is

multiparticle collision dynamics (MPC) [11]. This particle-

based method has been applied to various systems such as

colloids [26–29], polymers [30–36], membranes, vesicles and

red blood cells [37,38], ternary amphiphilic fluids [39], and

chemical reaction systems [40]. An overview can be found in

the reviews of Refs. [12,13]. The algorithm is computationally

very efficient and is constructed such that mass, energy,

and translational momentum are locally conserved, which

is essential for correct hydrodynamic behavior to emerge.

Hybrid simulations combining an MPC fluid with MD for

the solute particles as well as coupling to moving boundaries

are easily possible. We employ here an angular momentum

conserving version [41], denoted MPC-AT+a, for which it

has been shown that it yields the correct forces and flow

fields for two rotating eccentric cylinders [42] (which is not

the case for the standard version, denoted stochastic rotation

dynamics).

II. SIMULATION METHOD

A. Multiparticle collision dynamics (MPC)

In MPC simulations, the fluid is represented by N point

particles of mass m that undergo two alternating steps. In

the streaming step, the particles propagate freely, i.e., their

positions ri are updated according to ri(t + �t) = ri(t) +
vi�t , where �t is the time interval between collisions and vi

are the particle velocities. Subsequently, the particles are sorted

into cubic cells of lattice constant a, hereafter referred to as

collision cells. This superimposed lattice is randomly shifted

in each step to ensure Galilean invariance [43]. By assigning

the particles new velocities, the collision step then mimics the

simultaneous interaction of all particles within each collision

cell. Here linear momentum is conserved in each cell, in order

to obtain correct hydrodynamic behavior. Since the standard

MPC collision algorithm (stochastic rotation dynamics [11])

does not conserve angular momentum, which has been shown

to be essential when torques acting on rotating colloids are

considered [42], we employ an angular momentum conserving

variant (MPC-AT+a), where the velocities of particles are

updated by [41,42]

v′
i = vG

c + vran
i −

∑

j∈cell

vran
j /Nc

+m�−1
∑

j∈cell

[

rj,c ×
(

vj − vran
j

)]

× ri,c, (1)

where � is the moment-of-inertia tensor of the particles in

the cell. The relative position is ri,c = ri − rG
c , where rG

c is

the center of mass of the particles in the cell. This collision

method serves at the same time as a thermostat.

B. Boundary conditions

The colloids are treated as (2D) spherical, movable bound-

aries of diameter σ that are impenetrable for the fluid particles.

In the case of the ring channels, the colloids and fluid are

confined between two fixed concentric cylinders with the

inner and outer wall radii Ri and Ro, respectively. The linear

channels are parallel walls with distance D and periodic

boundary conditions in the direction of the channel. The fluid-

wall interaction and the fluid-colloid interaction are modeled

as hard interactions, i.e., the potential is V = ∞ inside walls

and colloids, and V = 0 otherwise. In order to account for the

microscopic roughness of the confining walls and the surface

of the colloids, stick (no-slip) boundary conditions are used. In

the streaming step, this is achieved by scattering the particles

with a bounce-back rule on surfaces: v′ = −v + 2vsur, where

vsur is the local velocity of the surface, and v and v′ are the

old and new particle velocities, respectively. In the collision

step, virtual particles are required to reduce the slip on

the surfaces [44]. Here the virtual particles are distributed

randomly within layers of width
√

2a along all surfaces

before each collision step, as described in Refs. [14,42]. Their

velocities are chosen from a Maxwell-Boltzmann distribution

with zero mean velocity. For the colloids, the local velocity

Vj + (�j × r̂virt
i )σcol/2 is added, where Vj and �j are the

velocity and angular velocity of the corresponding colloid j ,

respectively, and r̂virt
i is the normalized relative position vector

of virtual particle i with respect to the center of colloid j .

Consequently the forces and the torques exerted by the fluid on

the colloids consist of a kinetic and a collisional contribution.

During the streaming step, the change of the linear

momentum and the angular momentum of all fluid particles

that collide with colloid j are accumulated, i.e., �Pkin
j =

∑

m(vi − v′
i) and �Lkin

j =
∑

mr∗
i × (vi − v′

i), where r∗
i is

the relative position of the collision of particle i with respect

to the colloid’s center. The linear and angular velocities of the

colloids are then updated according to V′
j = Vj + �Pkin

j /M

and �′
j = �j + �Lkin

j /I , where M and I are the mass and the

moment of inertia of the colloid, respectively. In the collision

step, momentum is exchanged in cells that contain virtual

as well as real particles at the same time, so that �Pcoll
j =

∑

m(v′
virt − vvirt) and �Lcoll

j =
∑

mrvirt × (v′
virt − vvirt). The

new linear and angular velocities of the colloids at the end

of the time step are then given by V′
j = Vj + �Pcoll

j /M and

�′
j = �j + �Lcoll

j /I .

Since the hydrodynamics are only correctly resolved on

length scales larger than the collision cell size a, we add a

short-range Lennard-Jones repulsion to the excluded volume
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in order to avoid direct contact of colloids with the walls and/or

with other colloids:

V LJ(s) = 4ǫ

[

(

δLJ

s

)12

−
(

δLJ

s

)6
]

+ ǫ. (2)

The colloid-colloid interaction is then given by

V (rij ) =







∞, rij < σ,

V LJ(rij − σ ), σ < rij < rcut,

0, else,

(3)

where rij is the colloid-colloid distance, rcut is the cutoff radius,

and ǫ and δLJ set the potential strength and range, respectively.

Similarly, the colloid wall interactions are

V (r) =







∞, r < R̃i,

V LJ
(

r − σ
2

− Ri

)

, R̃i < r < R̃i + rcut,

0, r > R̃i + rcut,

(4)

with R̃i = Ri + σ/2 for the inner wall, and

V (r) =







∞, r > R̃o,

V LJ
(

r + σ
2

− Ro

)

, R̃o − rcut < r < R̃o,

0, r < R̃o − rcut,

(5)

with R̃o = Ro − σ/2 for the outer wall. The colloid-wall

interactions for the linear channel are defined analogously. The

positions of the colloids are updated by performing several MD

steps between the MPC collisions, using the velocity-Verlet

algorithm.

C. Parameters

We simulate 2D flows. The simulation data are displayed

with the units of length σ and time τ = a
√

m/kBT , respec-

tively. We use �t/τ = 0.02 and the average number of fluid

particles per collision cell is n = 10. For these parameters,

the collisional contribution to the viscosity η dominates over

the kinetic contribution; the analytical expressions for the

viscosity of MPC-AT+a derived in Ref. [45] yield η =
18

√
mkBT /a2. The geometry of the ring channel (annulus)

is characterized by its median radius R and its width D, so

that Ri = R − D/2 and Ro = R + D/2. While varying R

and D, we keep the colloid line density Ncol/(2πR) fixed

at 1/(4π )a−1.

The finite range of the multiparticle interaction in the

collision step sets limitations to the validity of the hydrody-

namics at short length scales. Therefore, colloid sizes much

larger than the collision-cell size a are required. Here we

use σ = 10a. Furthermore, we chose ǫ = kBT , δLJ = a and

rcut = 21/6a for the thin soft-repulsion layer in addition to

the hard interaction. The mass density of the colloids is

chosen to be the same as the fluid mass density; i.e., the

mass of the colloids is given by M = mnπσ 2/4 ≈ 785m for

our choice of parameters. Motivated by the experiments on

superparamagnetic particles [3], we apply a constant external

torque to the colloids. An external torque results in an average

angular velocity �∞ = Lext/(ηπσ 2) in an infinitely extended

fluid, where η is the viscosity of the fluid. In order to avoid

high surface velocities vsur = V + �σ/2, we choose the torque

such that �∞σ/2 < 0.1aτ−1. This corresponds to a small

Reynolds number Re = �∞σ 2ρ/(2η) < 0.73 for the largest

torques considered.

The translational diffusion constant Dt for a colloid is

measured without external torque in a wide ring channel of

diameter D = 2.5σ . The Péclet number Pe for the rotating

colloids is then given by Pe = σv/Dt , where v is the average

tangential velocity. The velocity and thus Pe depend on the

considered geometry and on the applied external torque. In

order to study the influence of thermal fluctuations, we use

three different torques to obtain different Péclet numbers. For

the largest torque, Lext,0 = 150kBT , the Péclet number varies

between Pe = O(10) (narrowest channel) and Pe = O(102)

(widest channel). For the widest channel, the Péclet number

varies linearly with the colloid torque, with Pe = O(10) for

the smallest torque Lext,0/9 = 16.7kBT . If not mentioned

otherwise, the torque Lext,0 is employed.

III. RESULTS FOR LINEAR CHANNELS

A. Linear channels with freely moving colloids

We first consider spinning colloids in straight channels.

For a rotating cylinder close to a single wall, the resulting

hydrodynamic forces vanish [46,47]. However, in the presence

of a second wall, the cylinder experiences a net force,

unless it is centered between the walls. Micropumps based

on this principle have been studied experimentally [48] and

numerically [20,21]. Moreover, pairs of corotating cylinders in

an unbounded viscous fluid mutually exert forces on each other

that are perpendicular to their connecting line at leading-order

of approximation [49], causing the pairs to circulate about each

other.

Pairs of colloids close to opposing walls enhance the

hydrodynamic forces that would act on individual colloids,

leading to accelerated opposite motions along the walls. In

straight channels that are wide enough to allow colloids to

pass each other, this causes a two-way-traffic-like behavior. At

finite colloid density, the colloids tend to stay close to the walls

at distance σ/2 + δLJ, as shown by the probability density

in Fig. 2(a) for a wall separation D = 3σ . With increasing

colloid density, colloids push each other hydrodynamically

toward the walls, and the peak height in the density distribution

increases. The two small additional peaks in Fig. 2(a) at a

distance 3/2σ + 2δLJ from the walls arise from colloids that

circumnavigate other colloids close to the opposite walls, i.e.,

at a distance of approximately σ + δLJ from the colloids at the

walls.

When the colloids stay close to the walls, an unhindered

two-way traffic is facilitated. However, due to thermal fluc-

tuations colloids can change lanes and thus the direction

of motion. For lower Pe, the peaks in the colloid density

distribution are less pronounced, since they are smeared out

by the thermal motion; see Fig. 2(b).

The density peaks close to the walls for large area fractions

� of spinning colloids in Figs. 2(a) and 2(b) are much

more pronounced than the layering found in corresponding

simulations at the same colloid area fractions at thermal

equilibrium [see Fig. 2(c)]. In contrast, for very low colloid

area fractions and large torques, a maximum in the channel

center is observed; see Fig. 2(a); here the local colloid density
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FIG. 2. (Color online) Normalized density profiles of spinning

colloids across a linear channel with D = 3.0σ at different colloid

area fractions � = 0.314 (red solid line), � = 0.157 (green dashed

line), and � = 0.105 (blue dotted line). (a) High Pe with torque Lext
0 ,

(b) low Pe with torque Lext
0 /3, and (c) at equilibrium.

in the center is higher than in thermal equilibrium. Since the

Reynolds number is of order unity in this case (Re ≃ 0.7), we

believe that this is related to the Segre-Silberberg effect [50]

of particle migration in Poiseuille flow due to inertia.

Colloid velocity profiles for different colloid densities

are shown in Fig. 3. For small density, the colloid velocity

profile is nearly linear, reflecting the hydrodynamic force on

a single rotating colloid between two walls. The small dip

at the surface is probably due to a slowing down of the

rotational motion as a result of increased friction near the wall.

With increasing colloid density, the central part of the profile

remains unchanged, while the velocity within the lanes levels

off, because all colloids within a lane have to move with the

same velocity. Furthermore, since we apply a constant torque
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FIG. 3. (Color online) Colloid velocity profiles for a linear

channel with D = 3.0σ for different colloid area fractions �, as

indicated, and the corresponding fluid velocity profiles (inset).

to the colloids, they rotate slower and thus also move slower

at larger densities. The corresponding fluid velocity profiles

are displayed in the inset of Fig. 3. The complex behavior

of the fluid velocity profile is a result of the combination

of colloid motion pressing the liquid column ahead plus the

surface velocity due to the colloid rotation, which are in turn

affected by the velocity field caused by the colloids at the

opposite wall.

The average colloid velocity per half channel exhibits a

maximum at finite colloid densities, as we have shown in

Ref. [14]. This behavior can be understood as follows. In the

limit of vanishing colloid densities, the colloid velocity per half

channel increases with increasing density, because it is more

likely to find colloids near the walls where the main thrust is

generated. Moreover, colloids near opposite walls propel each

other. On the other hand, if the colloid density is to high, they

hinder each other, and since the external torque is constant, the

rotational velocity decreases. Thus, at high colloid densities,

the average colloid velocity per half channel decreases with

increasing density.

Although the colloid motion can be described as a two-

way traffic, colloids are still able to change lanes due to

thermal fluctuations. It is therefore interesting to investigate

the dependence of the time a colloid remains in one lane on

the Péclet number. In order to eliminate short-time fluctuations

near the channel center line, we divide the channel into two

lanes near the walls that are separated by a region of width d

(see Fig. 4). We define the time a colloid stays in one lane to be

the time between the first entrance into this lane until the first

entrance into the lane at the opposite wall. The distribution

of times between lane changes is shown in Fig. 5 for Pe0

and Pe0/9. In the limit Pe = 0, this would correspond to the

FIG. 4. Illustration of the definition for the two lanes in a straight

channel separated by a strip of width d = σ/2.
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FIG. 5. (Color online) Histogram (not normalized) over the time

between two lane changes in a linear channel for Péclet numbers Pe0

(dark gray/red columns) and Pe0/9 (light gray/green columns). The

channel width is D = 2.5σ and the colloid area fraction � = 0.25.

The solid lines are fits (by eye) to Eq. (6).

first-passage time of a random walk in one dimension, where

the probability is given by [51]

P (t) =
d

√

4πD0t3
e−d2/4D0t (6)

in the absence of confining walls. With walls, the first-

passage-time distribution is modified for longer times, because

long excursions away from the dividing strip are suppressed;

however, this effect is not important in our analysis. Figure 5

shows that Eq. (6) describes the histograms obtained from the

simulations reasonably well. Therefore, a fit to Eq. (6) provides

an estimate of the effective diffusion constant Deff(Pe) of the

colloids. We obtain Deff = 0.0010a2/τ for Pe0/9, and Deff =
0.0021a2/τ for Pe0. Thus, the effective diffusion coefficient

increases weakly with increasing Péclet number. For low Pe,

the behavior is dominated by equilibrium thermal diffusion,

and the value of the diffusion coefficient is consistent with the

equilibrium diffusion coefficient for the same channel width.

The increase of the effective diffusion coefficient for high Pe

can be attributed to the circling motion when two colloids

come close to each other, because hydrodynamic interaction

strengthen with increasing spinning frequency. It is important

to emphasize that the distance a colloid travels within each

lane strongly increases with increasing Péclet number, because

the increased velocity strongly overcompensates the increased

diffusion constant.

B. Linear channels with a periodic array of fixed colloids

near the wall

Net transport in a linear channel requires symmetry break-

ing. This can be achieved by fixing the positions of a linear

periodic array of colloids near one of the two walls; see Fig. 6.

We start by considering a single fixed colloid in the periodically

repeated channel segment. The fixed colloid is allowed to spin;

however, the qualitative behavior is very similar if the fixed

colloid is not allowed to spin, because due to the vicinity of

the wall, its spinning frequency is much smaller than for free

colloids. Since one of the two lanes is now blocked, there is

a net flow in the open lane. Alternatively, this situation can

FIG. 6. (Color online) Simulation snapshots of spinning colloids

in a channel, for which some colloids (red/dark gray) are fixed in

position near the lower side of the channel. (Top) 1 of 12 colloids

fixed; (bottom) 4 of 12 colloids fixed. All other colloids (blue/light

gray) are free to move. The flow field is indicated by arrows. The

channel width is D = 3.0σ , the channel length is 10σ , and the colloid

area fraction is � = 0.314. A movie of the colloid motion in a channel

with a fixed colloid is provided in the supplemental material [52].

be viewed as a narrower channel in which colloids can move

freely, but with no-slip boundary conditions on one side (at the

hard wall), and some slip on the other side (the wall with the

fixed colloids).

We vary the total number of colloids, while keeping the

colloid area fraction constant (at � = 0.314). The colloid

velocity is averaged over all colloids (including the fixed one),

since this quantity is proportional to the colloid transport rate.

The results are shown in Fig. 7 as a function of the total

number of colloids (in a periodic segment) for three different

channel widths. In all three cases, the velocity decreases with

increasing ratio of the total colloid number to the number

of fixed ones. This can be understood as follows. With

increasing colloid number, the length of the periodic channel

segment increases, so that the line density of fixed colloids

decreases; therefore, an increasing part of the channel segment

is unaffected by the fixed colloid and does not contribute

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  5  10  15  20  25

v
x
 /

 σ
Ω

∞

N

FIG. 7. (Color online) Average colloid velocity in a linear channel

with one fixed colloid and (N − 1) freely moving colloids as a

function of the total number N of colloids, for D = 2.5σ (red,

bottom), D = 3.0σ (green, middle), D = 3.5σ (blue, top). The

colloid line density is kept constant, with corresponding colloid area

fractions of � = 0.377 for D = 2.5σ , � = 0.314 for D = 3.0σ , and

� = 0.269 for D = 3.5σ .
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to the net transport. Furthermore, the fixed colloid reduces

the half-channel velocity in the same lane. Thus, the optimal

condition for large translational transport should be to fix about

30% to 50% of all colloids near one wall.

The corresponding fluid velocity profiles are shown in

Fig. 8(a). They demonstrate that the velocity profiles are nearly

symmetric for large N (and thus long channel segments),

which indicates very small net transport, but pronouncedly

asymmetric for N = 3. In order to estimate finite-size effects,

we compare a system with three colloids (one fixed) with

a system with 12 colloids (four fixed; see Fig. 6(b)); the

corresponding velocity profiles are shown in Fig. 8(b). The

comparison shows that the effect of the periodic images

in the system with only three colloids in a periodic box

leads to an overestimation of the net fluid flow. This effect is

responsible for the sharp increase of the transport velocity in

Fig. 7 for N = 3. The finite-size effects are less pronounced for

larger N .

The possibility of fixing the position of some selected

colloids in a channel near the walls, and to change the location

of these fixed positions on a time scale much longer than the

typical spinning time, allows us to vary the effective boundary

conditions in microchannels. Thereby, the flow velocity and

the flow direction in simple channels as well as in complex

microchannel networks can be controlled. As an example for
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FIG. 8. (Color online) Fluid velocity profiles for channels with

fixed colloid near one wall. (a) Variation of the density of fixed

colloids, with one colloidal particle fixed, and various total numbers

of colloids, as indicated. (b) Variation of the periodic tube segment,

with three colloids of which one is fixed (red solid line), and 12

colloids, of which four are fixed (green dashed line). The total colloid

density is constant, � = 0.314. The channel width is D = 3.0σ .

FIG. 9. (Color online) Simulation snapshot for a channel with

alternating pumping direction. Six colloids (red/dark gray) are fixed

in position at the upper wall on the left-hand side of the channel, and

another six at the lower wall on the right-hand side. All other colloids

(blue/light gray) are free to move. The channel width is D = 2.5σ .

a channel with more complex boundary conditions, a linear

channel with opposite pumping directions in the left and right

sections of a channel segment is shown in Fig. 9. Here the

colloids are pumped toward the middle of the channel segment.

This give rise to a aggregation of colloids, which is reflected

in a peak in the colloid density along this channel, as shown in

Fig. 10. However, there is a fluid backflow in the gap caused

by the fixed colloids (as indicated in Fig. 11), which makes

colloid motion in such a blocked configuration very slow.

IV. RESULTS FOR RING CHANNELS

A. Tangential force generated by colloid rotation in

ring channels

The forces due to pressure inhomogeneities generated

by a rotating colloid close to a concave wall dominate

over the viscous forces and thus give rise to a motion of

the colloid opposite to the direction expected for a rolling

motion [14,42,46]—in contrast to a planar wall, where these

two contributions exactly compensate (in two dimensions).

However, in an annular region, the velocity field is strongly

affected by the presence of the second wall, and the problem

cannot be considered as a superposition of the effect of the two

walls separately.

Figure 12 shows the tangential component of the force

acting on a single rotating colloid as a function of the radial

position r of the fixed axis of rotation in the channel. Close

to the outer wall, the colloid experiences a force pushing it

in a counterclockwise direction in the annulus. Near the inner

wall, the sign of the force reverses. This behavior is similar as

for linear channels. However, in ring channels the forces near

the inner and outer walls differ in magnitude, with a higher

magnitude near the outer wall. For D = 2.0σ and 2.5σ , the
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FIG. 10. (Color online) Colloid density profile along the channel

corresponding to Fig. 9.
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FIG. 11. (Color online) Illustration of the fluid flow caused by

the fixed colloids in a channel segment with alternating pumping

direction.

force as a function of r shows a nonmonotonic behavior, in

contrast to the narrowest channel.

B. Ring channels with freely moving colloids

We now consider several freely moving colloids in a ring

channel. The applied external torque causes counterclockwise

spinning of the colloids, as before. The curvature of the

channel leads to a translational motion along the ring channel,

which is quantified by the average tangential velocity of the

colloids, shown in Fig. 13(a) for D = 1.5σ , D = 2σ and

D = 2.5σ as a function of the medium channel radius R.

A total counterclockwise motion in the annulus is observed in

the simulations that monotonically decreases with increasing

annulus diameter for all investigated channel widths. Over

the investigated range of radii, the tangential velocity is well

described by a power law:

vtan ∝ R−γ . (7)

Due to the complex interplay of geometric and hydrodynamic

effects, the exponent is not unique. For the largest torque

Lext,0 = 150kBT , we find γ ≈ 1.7 for the smallest channel

width, D = 1.5, γ ≈ 0.76 for D = 2.0, and γ ≈ 1.0 in wider

channels, D = 2.5 and 3.0, where colloids can pass each

other [14].

Figure 13(b) shows the corresponding results for the

smallest torque Lext,0/9 = 16.7kBT . Here, in the channel

where the colloids can pass each other, with D = 2.5σ , we find

the same exponent γ ≈ 1.0. However, in narrower channels,

the exponents are different from the case of large torque;
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FIG. 12. (Color online) Tangential component of the force acting

on a single rotating colloid with fixed axis at r for R = 2.4σ and

D = 1.5σ (red solid line), 2.5σ (green dashed line), and 3.0σ (blue

dotted line).
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FIG. 13. (Color online) Average tangential velocity vtan of spin-

ning colloids as a function of the medium annulus radius R for fixed

channel widths D = 1.5σ (red solid line), 2.0σ (green dashed line),

2.5σ (blue dotted line), and 3.0σ (magenta dashed-dotted line). The

errors are estimated from four independent runs. (a) High Pe with

torque Lext
0 and (b) low Pe with torque Lext

0 /9.

we now obtain γ ≈ 0.85 for D = 1.5σ , and γ ≈ 0.65 for

D = 2.0σ . We thus conclude that the exponent for wide

channels, where colloids can pass each other, is universal,

γ ≈ 1.0, independent of the channel width and the Péclet

number (at least for Pe > 1), while the effective exponent

for narrow channels is nonuniversal. In particular for the

very narrow channel, the effective exponent depends very

sensitively on Pe.

When the channel width is varied for a fixed medium radius,

the tangential velocity shows an interesting, nonmonotonic

behavior. We consider channel widths from D = 1.5σ to 3.0σ

for fixed medium radii R = 2.4σ , R = 3.6σ , and R = 4.8σ

(see Fig. 14). In the narrowest channels, where colloids cannot

pass each other, the colloids tend to stay close to the outer

wall [see density distribution in Fig. 15(a) and snapshot in

Fig. 16(a)]. This configuration allows a nearly unhindered

circulation of the fluid around the inner confining cylinder

in the opposite direction (compared to the motion of the

colloids); see Fig. 15(b). Hence, the average tangential velocity

is small. The strong confinement in the narrow channel leads

to a reduced spinning angular velocity compared to wide

channels.

A maximum in the tangential velocity is reached in channels

with D ≈ 2.0σ . Here, because of the additional repulsive

Lennard-Jones potential, two colloid just cannot pass each

other. Due to the mutual forces acting on colloids close
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FIG. 14. (Color online) Average tangential velocity vtan of the

colloids as a function of channel widths D for fixed annulus radii R =
2.4σ (red solid line), R = 3.6σ (green dashed line), and R = 4.8σ

(blue dotted line). The errors are estimated from four independent

runs.

to the inner and and outer walls, pairs of colloids become

wedged together into the channel [see snapshot in Fig. 16(b)

for R = 2.4 and density profile in Fig. 15(a)]. In this way,

the colloids are forming plugs that the fluid can hardly pass,

and the fluid is efficiently dragged along with these pairs,

and a strong backflow of the fluid that would hinder the

motion of the colloids is prevented, as demonstrated by the
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FIG. 15. (Color online) (a) Radial colloid density and (b) tan-

gential fluid velocity for R = 2.4σ and D = 1.5σ (red solid line),

D = 2.0σ (green dashed line), and D = 2.5σ (blue dotted line). The

width of the curves in (a) and (b) is different, because colloids cannot

approach the walls closer than σ/2 + δLJ.

FIG. 16. (Color online) Snapshots of rotating colloids in ring

channels with median radius R = 2.4σ , and widths D = 1.5σ , 2.0σ,

and 2.5σ (top to bottom). Movies of the colloid motion in ring

channels are provided in the supplemental material [52].

tangential fluid velocity profile in Fig. 15(b), which is positive

(counterclockwise motion) over essentially the whole cross

section of the channel. A maximum of the tangential velocity

is also observed for R = 3.6σ and R = 4.8σ . Here, although

triplets can be observed transitionally, pairs of colloids are the

preferred configuration.

The observation that the pairs move counterclockwise is

consistent with the forces measured on single rotating colloids

fixed at different radii (compare Sec. IV A). Here the forces

acting on colloids close to the inner and outer walls point in

opposite directions, but the magnitude of the force acting on

the colloids near the outer wall is larger than on the colloids

near the inner wall. Hence, a net force resulting in motion in the

counterclockwise direction is expected. However, the presence

of other colloids influences the velocity field and thereby also
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FIG. 17. Fluid velocity field, measured in a corotating frame, for

ring channels with R = 2.4σ and D = 2.1σ .

the forces acting on a single colloid, so taking the sum of the

forces can be only a first approximation.

In the range of D = 2.0σ to 2.2σ , we observe the formation

of colloid triplets as well as pairs and combination of both,

depending on the initial conditions (sequence of random num-

bers), where both are stable for roughly 500 full circulations

(2 × 107 MPC steps). Since all involved interactions are purely

repulsive, the stabilization of the clusters must be due to

hydrodynamics. The highest tangential velocity results for

triplets, which are observed more often for small R. The

corresponding fluid velocity field, measured in a corotating

frame, is shown in Fig. 17. Here fluid vortices (with clockwise

circulation) appear between neighboring colloidal triplets,

which stabilize the colloid clusters.

In wider channels, with D > 2.2σ , where two colloids

can pass each other, the colloids at the inner wall move in

the opposite direction compared to those at the outer wall,

thereby reducing the overall tangential velocity [see snapshot

Fig. 16(c)]. Figure 15(b) shows for D = 2.5σ that there is a

significant backflow near the inner wall, hence the overall fluid
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FIG. 18. Tangential colloid velocity as a function of time t (scaled

with the spinning frequency �∞ in a bulk fluid) for R = 2.4σ and

D = 1.7σ .

FIG. 19. (Color online) Snapshots of the two different states for

R = 2.4σ and D = 1.7σ . In the zigzag-like state (left), the colloids

move faster than in the aligned state (right). A movie of the colloid

motion in this channels is provided in the supplemental material [52].

transport is diminished. Increasing the channel width further,

the tangential velocity rises again. This might be a similar

effect as in the case of straight channels, where the average

velocity per half channel is higher for broader channels. Since

we keep the colloid line density fixed, the volume density

decreases with increasing D. Moreover, due to geometric

reasons, there are more colloids near the outer wall than near

the inner wall.

C. Velocity fluctuations in narrow ring channels

For intermediate channel widths (D = 1.6σ to 1.8σ ),

the system shows an interesting dynamical behavior. The

continous increase of the average colloid velocity shown in

Fig. 14 hides the fact that the system can alternate between

two different states with two distinct velocities, see Fig. 18,

a zig-zag phase, where backflow is hindered by blocking

colloids, resulting in a fast motion, and an aligned phase, where

all colloids have the same radial distance from the center of

the channel ring (Fig. 19). The average tangential velocities

in the two states differ strongly, by a factor 4, resulting in

large variations for the average tangential velocity in Fig. 14.

The transition between two different states for R = 2.4σ and

D = 1.7σ is quite abrupt as shown in Fig. 18. When the leading

colloid sheers out of line due to thermal fluctuations, fluid is

pumped into the resulting gap, destroying the order of the

subsequent colloids. Figure 18 shows the tangential colloid

velocity as a function of time, clearly showing the two distinct

states. A similar behavior is observed for D = 1.6 and 1.8.

V. SUMMARY AND CONCLUSIONS

We have investigated spinning colloids in confined

geometries—linear and ring channels—by a mesoscale hydro-

dynamics simulation technique that naturally includes thermal

fluctuations. We focus on a concentration regime, where

hydrodynamic interactions, volume exclusion, and thermal

fluctuations dominate the dynamical behavior.

In linear channels, with channel diameters somewhat larger

than two the colloid diameters, the colloids tend to stay close

to the walls at which they move in opposite directions; due to

symmetry reasons, there is no overall flow. When the twofold

rotational symmetry of the channel is broken, net flow can

be obtained. This can be achieved by fixing the positions of a

periodic array of colloids near one of the two walls. In this way

the flow direction can not only be controlled but also switched
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externally by changing the location of the fixed colloids. In

an experiment, the position of a selected number of colloids

can be fixed, for example, by laser tweezers [53,54]. It seems

possible to use this approach to control the flow of complex

fluids in complex microchannel networks.

Rotating electrical fields to generate flow in water-filled

nanotubes (with the elctrical dipole of the water molecules

coupling to the electrical field) have been suggested and

investigated recently in Refs. [15,16]; here symmetry break-

ing and net flow in a preferred direction are achieved by

different boundary conditions (slip and no-slip) at opposing

walls. An advantage of our approach employing magnetic

colloids is that it offers more flexibility for dynamically

changing the flow direction and magnitude in microfluidic

networks.

Transport velocities and Péclet numbers in typical microflu-

idic systems can be estimated from the results of Sec. III.

With the spinning frequency � = 125 Hz of the experimental

system of Ref. [3], and the scaled half-channel velocity

vx/σ� ≃ 0.05 from Fig. 3, we obtain for colloidal particles

in water with a diameter σ = 10 µm velocities vx in the range

of 50 to 100µm/s and Péclet numbers Pe = 3πησ 2vx/(kBT )

of about 104. However, there is a strong size dependence

of the Péclet number on the colloid diameter, Pe ∼ σ 3, so

that for smaller colloids of diameter σ = 1 µm, we predict

vx ≃ 1 µm/s and Pe ≃ 10. Therefore, thermal fluctuations are

clearly relevant in systems of smaller colloids.

In circular channels, the two-way-traffic-like behavior that

is already observed in linear channels is superimposed with

a net flow induced by the channel curvature. Due to the

complex interplay of geometric and hydrodynamic effects,

the resulting average colloid velocity in the channel shows

a complex behavior as a function of median radius, channel

width, and spinning frequency. Moreover, hydrodynamically

induced self-organization of the purely repulsive colloids is

found. The most efficient propulsion is achieved for channel

widths, when two colloids just cannot pass each other and thus

block their converse motion. Here pairs of colloids form plugs

that efficiently push the fluid column ahead.
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