001     16493
005     20210129210646.0
024 7 _ |2 DOI
|a 10.1016/j.ijms.2011.01.015
024 7 _ |2 WOS
|a WOS:000295864100003
037 _ _ |a PreJuSER-16493
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Atomic, Molecular & Chemical
084 _ _ |2 WoS
|a Spectroscopy
100 1 _ |a Becker, J.S.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB96675
245 _ _ |a Mass spectrometric imaging (MSI) of metals using advanced BrainMet techniques for biomedical research
260 _ _ |a [S.l.]
|b Elsevier Science
|c 2011
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a International Journal of Mass Spectrometry
|x 1387-3806
|0 2787
|y 1
|v 307
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Mass spectrometric imaging (MSI) is a young innovative analytical technique and combines different fields of advanced mass spectrometry and biomedical research with the aim to provide maps of elements and molecules, complexes or fragments. Especially essential metals such as zinc, copper, iron and manganese play a functional role in signaling, metabolism and homeostasis of the cell. Due to the high degree of spatial organization of metals in biological systems their distribution analysis is of key interest in life sciences. We have developed analytical techniques termed BrainMet using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging to measure the distribution of trace metals in biological tissues for biomedical research and feasibility studies-including bioaccumulation and bioavailability studies, ecological risk assessment and toxicity studies in humans and other organisms. The analytical BrainMet techniques provide quantitative images of metal distributions in brain tissue slices which can be combined with other imaging modalities such as photomicrography of native or processed tissue (histochemistry, immunostaining) and autoradiography or with in vivo techniques such as positron emission tomography or magnetic resonance tomography.Prospective and instrumental developments will be discussed concerning the development of the metalloprotein microscopy using a laser microdissection (LMD) apparatus for specific sample introduction into an inductively coupled plasma mass spectrometer (LMD-ICP-MS) or an application of the near field effect in LA-ICP-MS (NF-LA-ICP-MS). These nano-scale mass spectrometric techniques provide improved spatial resolution down to the single cell level. (C) 2011 Elsevier B.V. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |a 89574 - Theory, modelling and simulation (POF2-89574)
|0 G:(DE-HGF)POF2-89574
|c POF2-89574
|x 1
|f POF II T
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Bioimaging
653 2 0 |2 Author
|a Brain tissue
653 2 0 |2 Author
|a Laser ablation inductively coupled plasma mass spectrometry
653 2 0 |2 Author
|a Laser microdissection inductively coupled plasma mass spectrometry
653 2 0 |2 Author
|a Metals
653 2 0 |2 Author
|a Metallomics
653 2 0 |2 Author
|a Nano-LA-ICP-MS
653 2 0 |2 Author
|a Tumour
700 1 _ |a Matusch, A.
|b 1
|u FZJ
|0 P:(DE-Juel1)138474
700 1 _ |a Becker, J.Su.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Wu, B.
|b 3
|u FZJ
|0 P:(DE-Juel1)138881
700 1 _ |a Palm, C.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Becker, A.J.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Salber, S.
|b 6
|u FZJ
|0 P:(DE-Juel1)VDB100927
773 _ _ |a 10.1016/j.ijms.2011.01.015
|g Vol. 307
|q 307
|0 PERI:(DE-600)1484635-4
|t International journal of mass spectrometry
|v 307
|y 2011
|x 1387-3806
856 7 _ |u http://dx.doi.org/10.1016/j.ijms.2011.01.015
909 C O |o oai:juser.fz-juelich.de:16493
|p VDB
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 1
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89574
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ZCH
|l Zentralabteilung für Chemische Analysen
|g ZCH
|0 I:(DE-Juel1)ZCH-20090406
|x 0
920 1 _ |k INM-2
|l Molekulare Organisation des Gehirns
|g INM
|0 I:(DE-Juel1)INM-2-20090406
|x 1
920 1 _ |k INM-4
|l Physik der Medizinischen Bildgebung
|g INM
|0 I:(DE-Juel1)INM-4-20090406
|x 2
970 _ _ |a VDB:(DE-Juel1)130521
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406
981 _ _ |a I:(DE-Juel1)INM-2-20090406
981 _ _ |a I:(DE-Juel1)INM-4-20090406
981 _ _ |a I:(DE-Juel1)ZCH-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21