000016500 001__ 16500
000016500 005__ 20200702121602.0
000016500 0247_ $$2pmid$$apmid:21786313
000016500 0247_ $$2DOI$$a10.1002/etc.630
000016500 0247_ $$2WOS$$aWOS:000295309400024
000016500 037__ $$aPreJuSER-16500
000016500 041__ $$aeng
000016500 082__ $$a690
000016500 084__ $$2WoS$$aEnvironmental Sciences
000016500 084__ $$2WoS$$aToxicology
000016500 1001_ $$0P:(DE-HGF)0$$aGao, Z.$$b0
000016500 245__ $$aImproving Uncertainty Analysis in Kinetic Evaluations Using Iteratively Reweighted Least Squares
000016500 260__ $$aLawrence, KS$$bSETAC [u.a.]$$c2011
000016500 300__ $$a2363 - 2371
000016500 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000016500 3367_ $$2DataCite$$aOutput Types/Journal article
000016500 3367_ $$00$$2EndNote$$aJournal Article
000016500 3367_ $$2BibTeX$$aARTICLE
000016500 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000016500 3367_ $$2DRIVER$$aarticle
000016500 440_0 $$01870$$aEnvironmental Toxicology and Chemistry$$v30$$x0730-7268$$y10
000016500 500__ $$3POF3_Assignment on 2016-02-29
000016500 500__ $$aRecord converted from VDB: 12.11.2012
000016500 520__ $$aKinetic parameters of environmental fate processes are usually inferred by fitting appropriate kinetic models to the data using standard nonlinear least squares (NLS) approaches. Although NLS is appropriate to estimate the optimum parameter values, it implies restrictive assumptions on data variances when the confidence limits of the parameters must also be determined. Particularly in the case of degradation and metabolite formation, the assumption of equal error variance is often not realistic because the parent data usually show higher variances than those of the metabolites. Conventionally, such problems would be tackled by weighted NLS regression, which requires prior knowledge about the data errors. Instead of implicitly assuming equal error variances or giving arbitrary weights decided by the researcher, we use an iteratively reweighted least squares (IRLS) algorithm to obtain the maximum likelihood estimates of the model parameters and the error variances specific for the different species in a model. A study with simulated data shows that IRLS gives reliable results in the case of both unequal and equal error variances. We also compared results obtained by NLS and IRLS, with probability distributions of the parameters inferred with a Markov-Chain Monte-Carlo (MCMC) approach for data from aerobic transformation of different chemicals in soil. Confidence intervals obtained by IRLS and MCMC are consistent, whereas NLS leads to very different results when the error variances are distinctly different between different species. Because the MCMC results can be assumed to reflect the real parameter distribution imposed by the observed data, we conclude that IRLS generally yields more realistic estimates of confidence intervals for model parameters than NLS.
000016500 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000016500 588__ $$aDataset connected to Web of Science, Pubmed
000016500 650_2 $$2MeSH$$aAlgorithms
000016500 650_2 $$2MeSH$$aConfidence Intervals
000016500 650_2 $$2MeSH$$aKinetics
000016500 650_2 $$2MeSH$$aLeast-Squares Analysis
000016500 650_2 $$2MeSH$$aLikelihood Functions
000016500 650_2 $$2MeSH$$aMarkov Chains
000016500 650_2 $$2MeSH$$aModels, Chemical
000016500 650_2 $$2MeSH$$aMonte Carlo Method
000016500 650_2 $$2MeSH$$aUncertainty
000016500 650_7 $$2WoSType$$aJ
000016500 65320 $$2Author$$aKinetic evaluation
000016500 65320 $$2Author$$aNonlinear optimization
000016500 65320 $$2Author$$aDegradation kinetic
000016500 65320 $$2Author$$aLeast squares
000016500 7001_ $$0P:(DE-HGF)0$$aGreen, J.W.$$b1
000016500 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b2$$uFZJ
000016500 7001_ $$0P:(DE-HGF)0$$aSchmitt, W.$$b3
000016500 773__ $$0PERI:(DE-600)2027441-5$$a10.1002/etc.630$$gVol. 30, p. 2363 - 2371$$p2363 - 2371$$q30<2363 - 2371$$tEnvironmental toxicology and chemistry$$v30$$x0730-7268$$y2011
000016500 8567_ $$uhttp://dx.doi.org/10.1002/etc.630
000016500 909CO $$ooai:juser.fz-juelich.de:16500$$pVDB$$pVDB:Earth_Environment
000016500 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000016500 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000016500 9141_ $$y2011
000016500 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000016500 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x0
000016500 970__ $$aVDB:(DE-Juel1)130550
000016500 980__ $$aVDB
000016500 980__ $$aConvertedRecord
000016500 980__ $$ajournal
000016500 980__ $$aI:(DE-Juel1)IBG-3-20101118
000016500 980__ $$aUNRESTRICTED