000016556 001__ 16556
000016556 005__ 20240712100823.0
000016556 0247_ $$2DOI$$a10.1029/2001JD000456
000016556 0247_ $$2WOS$$aWOS:000180466200092
000016556 0247_ $$2ISSN$$a0141-8637
000016556 0247_ $$2Handle$$a2128/20919
000016556 037__ $$aPreJuSER-16556
000016556 041__ $$aeng
000016556 082__ $$a550
000016556 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000016556 1001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b0$$uFZJ
000016556 245__ $$aSimulation of ozone depletion in spring 2000 with the Chemical Lagrangian Model of the Stratosphere (CLaMS)
000016556 260__ $$aWashington, DC$$bUnion$$c2002
000016556 300__ $$a
000016556 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000016556 3367_ $$2DataCite$$aOutput Types/Journal article
000016556 3367_ $$00$$2EndNote$$aJournal Article
000016556 3367_ $$2BibTeX$$aARTICLE
000016556 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000016556 3367_ $$2DRIVER$$aarticle
000016556 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v107$$x0148-0227
000016556 500__ $$aRecord converted from VDB: 12.11.2012
000016556 520__ $$aSimulations of the development of the chemical composition of the Arctic stratosphere for spring 2000 are made with the Chemical Lagrangian Model of the Stratosphere (CLaMS). The simulations are performed for the entire Northern Hemisphere on four isentropic levels (400-475 K). The initialization in early February is based on observations made from satellite, balloon and ER-2 aircraft platforms. Tracer-tracer correlations from balloon-borne cryosampler (Triple) and ER-2 measurements, as well as tracer-PV correlations, are used to derive a comprehensive hemispherical initialization of all relevant chemical trace species. Since significant denitrification has been observed on the ER-2 flights, a parameterization of the denitrification is derived from NOy and N2O observations on board the ER-2 aircraft and the temperature history of the air masses under consideration. Over the simulation period from 10 February to 20 March, a chemical ozone depletion of up to 60% was derived for 425-450 K potential temperature. Maximum vortex-averaged chemical ozone loss rates of 50 ppb d(-1) or 4 ppb per sunlight hour were simulated in early March 2000 at the 425 and 450 K potential temperature levels. We show comparisons between the measurements and the simulations for the location of the ER-2 flight paths in late February and March and the location of the Triple balloon flight. The simulated tracer mixing ratios are in good agreement with the measurements. It was not possible to reproduce the exact details of the inorganic chlorine compounds. The simulation agrees with ClOx observations on the Triple balloon flight but overestimates for the ER-2 flights. The simulated ozone depletion agrees with estimates from other observations in the 425 and 450 K levels, but is underestimated on the 475 K level.
000016556 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000016556 588__ $$aDataset connected to Web of Science
000016556 650_7 $$2WoSType$$aJ
000016556 65320 $$2Author$$astratosphere
000016556 65320 $$2Author$$aozone
000016556 65320 $$2Author$$aozone depletion
000016556 65320 $$2Author$$aCLaMS
000016556 65320 $$2Author$$aLagrangian
000016556 65320 $$2Author$$adenitrification
000016556 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b1$$uFZJ
000016556 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b2$$uFZJ
000016556 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b3$$uFZJ
000016556 7001_ $$0P:(DE-Juel1)VDB8771$$aMcKenna, D. S.$$b4$$uFZJ
000016556 7001_ $$0P:(DE-Juel1)129158$$aStroh, F.$$b5$$uFZJ
000016556 7001_ $$0P:(DE-Juel1)129164$$aVogel, B.$$b6$$uFZJ
000016556 7001_ $$0P:(DE-Juel1)VDB352$$aEngel, A.$$b7$$uFZJ
000016556 7001_ $$0P:(DE-Juel1)VDB1106$$aMüller, M.$$b8$$uFZJ
000016556 7001_ $$0P:(DE-HGF)0$$aHoppel, K.$$b9
000016556 7001_ $$0P:(DE-HGF)0$$aBevilacqua, R.$$b10
000016556 7001_ $$0P:(DE-HGF)0$$aRichard, E.$$b11
000016556 7001_ $$0P:(DE-HGF)0$$aWebster, C. R.$$b12
000016556 7001_ $$0P:(DE-HGF)0$$aElkins, J. W.$$b13
000016556 7001_ $$0P:(DE-HGF)0$$aHurst, D. F.$$b14
000016556 7001_ $$0P:(DE-HGF)0$$aRoamshkin, P. A.$$b15
000016556 7001_ $$0P:(DE-HGF)0$$aBaumgardner, D. G.$$b16
000016556 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2001JD000456$$gVol. 107$$q107$$tJournal of geophysical research / Atmospheres  $$tJournal of Geophysical Research$$v107$$x0148-0227$$y2002
000016556 8567_ $$uhttp://dx.doi.org/10.1029/2001JD000456
000016556 8564_ $$uhttps://juser.fz-juelich.de/record/16556/files/2001JD000456.pdf$$yOpenAccess
000016556 8564_ $$uhttps://juser.fz-juelich.de/record/16556/files/2001JD000456.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000016556 909CO $$ooai:juser.fz-juelich.de:16556$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000016556 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000016556 9141_ $$y2002
000016556 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000016556 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000016556 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000016556 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000016556 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000016556 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000016556 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000016556 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000016556 970__ $$aVDB:(DE-Juel1)13065
000016556 9801_ $$aFullTexts
000016556 980__ $$aVDB
000016556 980__ $$aConvertedRecord
000016556 980__ $$ajournal
000016556 980__ $$aI:(DE-Juel1)IEK-7-20101013
000016556 980__ $$aUNRESTRICTED
000016556 981__ $$aI:(DE-Juel1)ICE-4-20101013
000016556 981__ $$aI:(DE-Juel1)IEK-7-20101013