001     16556
005     20240712100823.0
024 7 _ |a 10.1029/2001JD000456
|2 DOI
024 7 _ |a WOS:000180466200092
|2 WOS
024 7 _ |a 0141-8637
|2 ISSN
024 7 _ |a 2128/20919
|2 Handle
037 _ _ |a PreJuSER-16556
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Meteorology & Atmospheric Sciences
100 1 _ |a Grooß, J.-U.
|0 P:(DE-Juel1)129122
|b 0
|u FZJ
245 _ _ |a Simulation of ozone depletion in spring 2000 with the Chemical Lagrangian Model of the Stratosphere (CLaMS)
260 _ _ |c 2002
|a Washington, DC
|b Union
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Geophysical Research D: Atmospheres
|x 0148-0227
|0 6393
|v 107
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Simulations of the development of the chemical composition of the Arctic stratosphere for spring 2000 are made with the Chemical Lagrangian Model of the Stratosphere (CLaMS). The simulations are performed for the entire Northern Hemisphere on four isentropic levels (400-475 K). The initialization in early February is based on observations made from satellite, balloon and ER-2 aircraft platforms. Tracer-tracer correlations from balloon-borne cryosampler (Triple) and ER-2 measurements, as well as tracer-PV correlations, are used to derive a comprehensive hemispherical initialization of all relevant chemical trace species. Since significant denitrification has been observed on the ER-2 flights, a parameterization of the denitrification is derived from NOy and N2O observations on board the ER-2 aircraft and the temperature history of the air masses under consideration. Over the simulation period from 10 February to 20 March, a chemical ozone depletion of up to 60% was derived for 425-450 K potential temperature. Maximum vortex-averaged chemical ozone loss rates of 50 ppb d(-1) or 4 ppb per sunlight hour were simulated in early March 2000 at the 425 and 450 K potential temperature levels. We show comparisons between the measurements and the simulations for the location of the ER-2 flight paths in late February and March and the location of the Triple balloon flight. The simulated tracer mixing ratios are in good agreement with the measurements. It was not possible to reproduce the exact details of the inorganic chlorine compounds. The simulation agrees with ClOx observations on the Triple balloon flight but overestimates for the ER-2 flights. The simulated ozone depletion agrees with estimates from other observations in the 425 and 450 K levels, but is underestimated on the 475 K level.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a stratosphere
653 2 0 |2 Author
|a ozone
653 2 0 |2 Author
|a ozone depletion
653 2 0 |2 Author
|a CLaMS
653 2 0 |2 Author
|a Lagrangian
653 2 0 |2 Author
|a denitrification
700 1 _ |a Günther, G.
|0 P:(DE-Juel1)129123
|b 1
|u FZJ
700 1 _ |a Konopka, Paul
|0 P:(DE-Juel1)129130
|b 2
|u FZJ
700 1 _ |a Müller, R.
|0 P:(DE-Juel1)129138
|b 3
|u FZJ
700 1 _ |a McKenna, D. S.
|0 P:(DE-Juel1)VDB8771
|b 4
|u FZJ
700 1 _ |a Stroh, F.
|0 P:(DE-Juel1)129158
|b 5
|u FZJ
700 1 _ |a Vogel, B.
|0 P:(DE-Juel1)129164
|b 6
|u FZJ
700 1 _ |a Engel, A.
|0 P:(DE-Juel1)VDB352
|b 7
|u FZJ
700 1 _ |a Müller, M.
|0 P:(DE-Juel1)VDB1106
|b 8
|u FZJ
700 1 _ |a Hoppel, K.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Bevilacqua, R.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Richard, E.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Webster, C. R.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Elkins, J. W.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Hurst, D. F.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Roamshkin, P. A.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Baumgardner, D. G.
|0 P:(DE-HGF)0
|b 16
773 _ _ |0 PERI:(DE-600)2016800-7
|a 10.1029/2001JD000456
|g Vol. 107
|q 107
|t Journal of Geophysical Research
|v 107
|x 0148-0227
|y 2002
|t Journal of geophysical research / Atmospheres
856 7 _ |u http://dx.doi.org/10.1029/2001JD000456
856 4 _ |u https://juser.fz-juelich.de/record/16556/files/2001JD000456.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/16556/files/2001JD000456.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:16556
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2002
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |k ICG-I
|l Stratosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB47
|x 0
970 _ _ |a VDB:(DE-Juel1)13065
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013
981 _ _ |a I:(DE-Juel1)IEK-7-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21