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[1] Urban groundwater is frequently contaminated, and the exact location of the pollution
spots is often unknown. Intelligent monitoring of the temporal variations in groundwater
flow in such an area assists in selectively extracting groundwater of drinking water quality.
Here an example from the city of Zurich (Switzerland) is shown. The monitoring strategy
consists of using the ensemble Kalman filter (EnKF) for optimally combining online
observations and online models for the real-time characterization of groundwater flow. We
conducted numerical simulation experiments for the period January 2004 to December 2007
with a 3-D finite element model for variably saturated groundwater flow. It was found that
the daily assimilation of piezometric head data with EnKF results in a better characterization
of piezometric heads than does a model which is inversely calibrated with historical data but
not updated in real time. The positive impact of model updating with observations can still
be observed 10 days after the update. These simulations also suggest that parameters
(hydraulic conductivity and leakage) are successfully updated: 1 and 10 day piezometric
head predictions are better with than without updating of parameters. Additional experiments
with a synthetic model for the same site, in which the only difference is that certain
parameter values are selected as the unknown ‘‘true’’ conditions, show that EnKF also
successfully updates unknown parameters. However, this is only the case if spatially
distributed hydraulic conductivities and leakage coefficients are jointly updated and if a
damping parameter is used. The mean absolute error of estimated log leakage coefficients
decreased by up to 63%; for log hydraulic conductivity a decrease of up to 27% was
observed. From January 2009 the method has been operational at the Water Works Zurich
and showed a remarkable performance until present (October 2010).
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1. Introduction
[2] Groundwater resources supply drinking water for

numerous people globally. The quantity and quality of
groundwater resources are threatened by overpumping, sali-
nization, and various types of contamination. The ground-
water below large cities is often contaminated because of
leakages from petrol stations and zones of industrial activ-
ities. Therefore, it may seem unsuitable to pump ground-
water for drinking water purposes in or near large cities. On
the other hand, it is attractive to pump drinking water close
to large cities because this limits the transportation costs

and large cities are often located close to rivers which
recharge an aquifer. If groundwater is pumped in an urban
area with multiple pollution sources, the operation requires
a sophisticated quality control. In this paper we present a
methodology which has been put into practice for the pump-
ing of drinking water in the city of Zurich (Switzerland).
The methodology is of interest for a large class of cases
involving sites that are relatively close to a larger contami-
nation that is not remediated. It is also of interest for the
selective withdrawal of colder winter infiltration water if
summer temperatures become too high.

[3] We propose an optimal monitoring strategy for the
groundwater flow and solute transport at the site through
both online measurements and online models. The ground-
water flow and transport models are calibrated with histori-
cal information. A monitoring network is developed that
measures, in real time, piezometric heads (and also concen-
trations of solutes or temperature). These data are sent to a
central server, where piezometric head data are used to
update the model predictions. Data and models can be
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combined in an optimal way by data assimilation methods.
In this work, the ensemble Kalman filter (EnKF) [Evensen,
1994; Burgers et al., 1998] is used to update the models in
real time with observations. EnKF provides an optimal esti-
mate (for linear Gaussian systems) of the current spatial
distribution of piezometric heads, concentrations, and tem-
peratures and is therefore very well suited for an optimal
characterization of the risk of pumping contaminated water.
In this paper we focus on the impact of the assimilation of
hydraulic head data on the distribution of piezometric heads.

[4] In this study, the optimal real-time characterization of
the groundwater flow situation was used to optimize the
management of the water works’ well field. The manage-
ment of the site was adapted if the groundwater flow vector
pointed from the city center (with potentially contaminated
sites) to the Hardhof area (containing the drinking water
well field). The management was adapted for the next few
days using fuzzy control techniques and genetic algorithms.
The adapted management resulted in a groundwater flow
vector that was less likely to introduce potentially contami-
nated city water into the pumping wells. However, the real-
time management is not the subject of this paper. It is
described by Bauser et al. [2010].

[5] The material of this paper is novel in the sense that
EnKF, including parameter optimization, is applied here for
a more complex and realistic subsurface flow situation than
presented in the literature up to now. This more complex
subsurface flow situation includes an unconfined aquifer,
the unsaturated zone, and, particularly, river-aquifer interac-
tion. It is shown that information from fluctuating river
stages, which strongly influence the groundwater heads,
yield important information on river bed and aquifer proper-
ties. An additional complicating aspect is that the uncer-
tainty in the values of two different parameters (hydraulic
conductivity and leakage coefficients) is roughly equally
important in this study. This requires updating (calibration)
both uncertain parameter values, which normally is difficult
as they are highly correlated and therefore poorly identifia-
ble. An additional important aspect is that we also test the
EnKF for a real-world case (Zurich, Switzerland), which
presents additional challenges compared to a synthetic
study, as new sources of uncertainty might play a role and
conceptual model errors cannot be excluded. Moreover,
EnKF not only was applied to a real-world case study but
was also made operational for the same area. Since January
2009, the subsurface flow situation is calculated in real
time, and it is used to adapt the management of the ground-
water well field (pumping wells, artificial recharge basins,
and artificial recharge wells) in real time. According to our
knowledge, this is one of the few cases where stochastic
subsurface hydrology is put into practice and the first case
where it is made operational as basis for the improved man-
agement of a well field. The regulators needed to be con-
vinced of the benefit of this methodology, which includes
reducing the risk of pumping contaminated water, while at
the same time requiring considerable investment in infra-
structure (online sensing equipment, software development,
and computing infrastructure). See Renard [2007] for an
overview of problems associated with putting into practice
stochastic groundwater hydrology.

[6] This paper first explains the EnKF for the real-time
updating of a groundwater flow model using observations.

Then the study area, the groundwater flow model, and the
calibration of the model with historical data are introduced.
Finally, the results are presented and discussed.

2. Real-Time Modeling With EnKF
[7] The modeling of groundwater flow and solute trans-

port is associated with large uncertainties. These uncertain-
ties may be related to a possible misspecification of the
conceptual model (for example, the position of the aquifer
boundaries and aquifer bottom and the presence of springs),
the unknown external forcing of the aquifer (e.g., recharge
and boundary conditions), and, particularly, parameter
uncertainties or all of those at once. The most uncertain
parameter values of groundwater flow models in humid
climates are, in general, the spatially distributed hydraulic
conductivities. Hydraulic conductivity is very uncertain due
its large spatial variability, the scarcity of measurements,
and measurement errors. Model calibration, or inverse mod-
eling, helps to reduce the uncertainty of groundwater flow
models by adapting parameters (and possibly boundary con-
ditions, initial conditions, and forcing terms as well) to fit
steady state hydraulic heads [e.g., Kitanidis and Vomvoris,
1983], historical time series of hydraulic heads [e.g., Car-
rera and Neuman, 1986], or both hydraulic heads and con-
centration data [e.g., Medina and Carrera, 1996]. Inverse
methods often focus on obtaining a single best estimate, and
the uncertainty of that estimate can be characterized by the
posterior covariance matrix obtained from a linearized anal-
ysis. However, this uncertainty analysis relies on a Gaussian
assumption and underestimates the true variance [Carrera
and Neuman, 1986]. This and the fact that the calibration
process does not have a unique solution were the main
motivations to develop methods that generate multiple
equally likely solutions to the groundwater inverse problem.
This so-called Monte Carlo (MC) type inverse modeling
was first formulated for 2-D steady state groundwater flow
[Sahuquillo et al., 1992; RamaRao et al., 1995] and later
for 2-D transient groundwater flow with the joint calibration
of spatially variable transmissivity and storativity fields
[Hendricks Franssen et al., 1999], 3-D flow in fractured
media [Gómez-Hernández et al., 2001; LaVenue and de
Marsily, 2001], and coupled groundwater flow and solute
transport [Hendricks Franssen et al., 2003; Wen et al.,
2003]. All the mentioned MC-type inverse modeling
approaches calibrate a large number of spatially distributed
fields of hydraulic conductivity (and possibly also other pa-
rameters) with derivative-based nonlinear optimization
methods, using the adjoint state method to calculate the gra-
dient of the objective function efficiently. The dimensional-
ity of the optimization problem (and therefore also of the
gradient vector) is reduced with parameterization techni-
ques that use master blocks or pilot points [de Marsily,
1978]. MC-type inverse modeling is not limited to forma-
tions with a mild spatial variability of hydraulic conductiv-
ity and is very well suited for the characterization of
uncertainty. A comparison study showed that MC-type
inverse modeling methods outperformed other inverse mod-
eling methods [Hendricks Franssen et al., 2009]. However,
some methods like the inverse moment equations method
[Hernandez et al., 2003] or the regularized pilot points
method in its conditional estimation variant [Alcolea et al.,
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2006] yielded almost as good results as the MC-type inverse
methods but with less CPU time. In principle, MC-type
inverse modeling would be suited for the real-time uncer-
tainty characterization, recalibrating the model each time
new measurements become available. However, the main
limitations of MC- type inverse modeling for real-time
modeling are (1) recalibration with all historical data is very
CPU intensive, (2) an optimal characterization of the actual
conditions is not guaranteed with this approach (the opti-
mum with MC-type inverse modeling being balanced over
a historical set of observations), and (3) the application to a
physically complex systems (for which an adjoint model
has to be formulated) with many different sources of uncer-
tainty is difficult. Alternatives are nonderivative-based MC-
type inverse methods like Markov Chain Monte Carlo
methods (MCMC) or the EnKF. Currently, MCMC methods
are still relatively slow for the inverse modeling of ground-
water flow [Oliver et al., 1997; Fu and Gómez-Hernández,
2009]. The EnKF [Evensen, 1994; Burgers et al., 1998] is a
very fast method for the sequential updating of the model
states each time new measurements become available. The
EnKF was reformulated for subsurface hydrology applica-
tions so that with an augmented state vector approach both
states and parameters can be updated [Chen and Zhang,
2006; Hendricks Franssen and Kinzelbach, 2008; Liu et
al., 2008; Nowak, 2009], an approach that was introduced
slightly earlier in petroleum engineering [e.g., Naevdal et
al., 2003; Wen and Chen, 2006] and surface hydrology
[Moradkhani et al., 2005; Vrugt et al., 2005]. For a syn-
thetic study, Hendricks Franssen and Kinzelbach [2009]
found that EnKF yielded parameter estimates that had
approximately the same error as MC-type inverse modeling
parameter estimates but with a factor of 80 less CPU time.
This was the case for both mildly and strongly heterogene-
ous transmissivity fields, although EnKF could have been
expected to perform worse for more strongly nonlinear
problems, as the method relies on Gaussian statistics.

[8] After indicating why we implemented EnKF for the
real-time updating of states and parameters, we now present
the formulation of EnKF, tailored to our specific problem.
The governing equation is the equation for 3-D unsaturated-
saturated transient groundwater flow including interaction
with rivers [e.g., Bear, 1979]:

@

@t
�nSðpÞ½ � � r �kkrðSÞ

�
rpþ �grzð Þ

� �
¼ q ; ð1Þ

where S is saturation (dimensionless), � is density [M L�3],
n is porosity (dimensionless), p is pressure [M L�1 T�2], t
is time [T], k is permeability [L2], kr is relative permeabil-
ity (dimensionless), � is dynamic viscosity [M L�1 T�1], g
is the gravitational acceleration [L T�2], z is the elevation
with respect to a reference [L], q represents sinks (abstrac-
tions) and sources (recharge) [M L�3 T�1], and the Nabla
operator [L�1] is three-dimensional, referring to spatial
coordinates x. In this paper, the van Genuchten parameter-
ization was applied for modeling the saturation as function
of pressure [van Genuchten, 1980]. The boundary condi-
tions that are used to solve equation (1) also include the
leakage coefficient r [T�1]. The leakage coefficient is given
by Q/(A(hriver � hgw)), where Q is the exchange flux
between river and groundwater [L3 T�1], A is the surface

for the exchange flux [L2], hriver is the river stage [L], and
hgw is the groundwater level [L].

[9] Equation (1) is solved using the finite element
method. We will refer to the numerical model as M. The hy-
draulic conductivity Kc ðKc ¼ k�g��1Þ and the leakage
factor r are stochastic parameters in equation (1), and a
large number of stochastic realizations of these parameters
are generated. In section 4.2, more details are given on the
stochastic generation. The ensemble Kalman filter scheme
proceeds in the following steps:

x0
i;h ¼ M x�i;h

� �
; ð2Þ

where i refers to a stochastic realization (i ¼ 1, . . . , P) and
xi,h is part of the vector xi and contains states from the
previous time step (superscript minus) or the actual time
step (superscript 0). An augmented state vector approach is
used to update states and parameters jointly. The augmented
vector is

xi ¼
xi;h

xi;Y

xi;L

8<
:

9=
; ; ð3Þ

where the subscript Y refers to log10 hydraulic conductiv-
ities and L refers to log10 leakage coefficients. The vector
xi is of dimension N þ E þ Nl, where N is the number of
nodes, E is the number of elements, and Nl is the number of
leakage zones. The covariance matrix of dimension ((N þ
E þ Nl) � (N þ E þ Nl)) is estimated from the series of sto-
chastic realizations. For the first time step, these stochastic
realizations are unconditional or conditioned only on meas-
urements of Y and L. For subsequent time steps the stochas-
tic realizations are also conditional on state information.
The covariance matrix is given by

C ¼
Chh CYh CLh

ChY CYY CLY

ChL CYL CLL

2
4

3
5 ð4Þ

where the subscript hh refers to covariances between mod-
eled hydraulic heads at two locations (grid nodes), hY refers
to cross covariances between a modeled hydraulic head
value at one grid node and a log hydraulic conductivity
value at an element, hL refers to cross covariances between
modeled nodal hydraulic head and the log leakage coeffi-
cient for a zone, YL refers to cross covariances between log
hydraulic conductivity and log leakage coefficient, YY
refers to covariances between log hydraulic conductivities
at two locations, and LL refers to covariances between leak-
age coefficients for two zones. The observations for the
current time step are stored in the vector y0 of dimension n.
The data are perturbed (following Burgers et al. [1998])
according to

y0
i ¼ y0 þ e0

i ; ð5Þ

where e is a vector of random numbers, drawn from a nor-
mal distribution with expectation zero and standard devia-
tion equal to the expected measurement error standard
deviation.
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[10] The model predictions (equation (2)) and the obser-
vations (5) are combined to yield an updated ensemble of
states (hydraulic heads) and parameters (log hydraulic con-
ductivities and log leakage coefficients), according to

xþi ¼ x0
i þ aKðy0

i �Hx0
i Þ ; ð6Þ

where xþi is the updated vector containing updated states
(hydraulic heads) and parameters (Y and L) for stochastic
realization i, a is a matrix filled with zeros, except for the
diagonal elements, which contain damping factors that take
a value between 0 and 1 (for the damping factors related to
the states the entries are always equal to 1; i.e., no damping
is used), and H is a linear operator (n � (N þ E þ Nl)) that
maps the observations to the state space. The damping
factor reduces the correcting influence of the head measure-
ments on updating the log hydraulic conductivity field and
the log leakage coefficients. In a previous study by
Hendricks Franssen and Kinzelbach [2008], damping the
perturbation was found to give improved results by reduc-
ing filter inbreeding problems. K is the Kalman gain matrix
((N þ E þ Nl) � n) :

K ¼
Kh

KY

KL

2
4

3
5 ; ð7Þ

where Kh is related to the states (hydraulic heads), KY is
related to the log hydraulic conductivities, and KL is related
to the log leakage coefficients. K is obtained from

K ¼ C0HTðHC0HT þ R0Þ�1 ; ð8Þ

where C0 is the covariance matrix for the actual time step
(estimated from the ensemble of stochastic realizations)
and R0 (n � n) is the measurement error covariance matrix
for the actual time step, which is estimated a priori.

[11] The ensemble of updated vectors xi (hydraulic heads,
log hydraulic conductivities, and log leakage coefficients) is
the input of the groundwater flow model for the next time
step. Equations (2)– (8) are applied each time new observa-
tions are available. In several simulation experiments that
will be presented in sections 5.1.1 and 5.2.1, only the states
are updated and not the parameters, which implies that the
equations above are applied excluding log hydraulic conduc-
tivities and log leakage coefficients from the expressions.

3. Study Area
[12] The studied aquifer lies below parts of the city of

Zurich and is mainly fed by the rivers Sihl and Limmat but
also receives water from infiltrating precipitation and lateral
inflow from hills. Figure 1 shows an overview of the situa-
tion. The river Sihl has, on average, a limited discharge rate
(6.8 m3 s�1 (Swiss Federal Office for the Environment
(FOEN)), but it has elevated peaks as a response to intense
rainfall. The river Sihl joins the river Limmat in the eastern
part of the city. The river Limmat is the outflow of Lake
Zurich and has an average discharge of 95.8 m3 s�1

(FOEN). Two weirs on the river Limmat fall within the
study area, with the Hoengg weir being located close to the

groundwater well field Hardhof. The rivers Sihl and Limmat
infiltrate into the groundwater, except for the downstream,
western part, where the aquifer exfiltrates into the river
Limmat. The Limmat can show considerable river stage
fluctuations, and the aquifer response in most of the study
area to these stage fluctuations provides important informa-
tion about aquifer and river bed hydraulic properties [e.g.,
Yeh et al., 2009]. No direct measurements of leakage were
available, and the leakage coefficient was calibrated for five
different river sections via the numerical model. Details
will be provided in section 4.

[13] The recharge of the aquifer from rain is limited
because of the generally sealed soil surface. Recharge from
precipitation is calculated as the difference between precipi-
tation and actual evapotranspiration for the nonsealed areas.
Details of the calculations will be given in section 4. The
aquifer receives lateral inflow from the hills at its northern
boundary (Kaeferberg) and, particularly, at its southern
boundary (Uetliberg). The amounts of lateral inflow are,
however, not very large. These lateral inflows are calculated
as functions of the recharge. The largest inflow occurs from
the south (Uetliberg) and in particular close to river Sihl.

[14] The mean hydraulic conductivity of the aquifer is
around 2 � 10�3 m s�1. This value is obtained from aver-
aging estimated Kc from small-scale pumping tests along
transects of boreholes. The aquifer consists of coarse mate-
rial, mainly sandy gravel, which has been deposited by the
river Sihl and as glacial moraine [Kempf et al., 1986]. The
hydraulic conductivity is, in general, larger for the upper
aquifer layers than for the lower aquifer layers. The hetero-
geneity of the hydraulic conductivity is high, and for small-
scale measurements we have �2

Y ¼ 0:51. There is some
evidence that the spatial distribution of log10 conductivity
Y shows a complex spatial pattern consisting of small chan-
nels and lenses with high and low hydraulic conductivities
caused by changing river courses. The aquifer storativity is
assumed to be 0.15. The aquifer thickness is on average
around 20 m, but in the eastern part of the study area
reaches up to 70 m.

[15] Around 20% of the drinking water for the city of
Zurich is pumped in the Hardhof area. Figure 2 gives an
overview of the Hardhof area. The drinking water is
pumped from four horizontal wells. In addition, 19 bank fil-
tration wells along the river Limmat pump water which is
used for artificial recharge and distributed over 12 infiltra-
tion wells and 3 recharge basins. These artificial recharge
facilities are located in the southern part of the Hardhof
area and are supposed to create a hydraulic barrier between
the city center and the Hardhof area. Below the city center,
diffuse pollution is present, which could reach the pumping
wells if the abstraction rates are large. Tracer tests and
additional analysis on the basis of electrical conductivities
revealed that a considerable part (up to 30%) of the water
pumped by two of the four horizontal wells originates from
the city area.

4. Model Components and Online Data
4.1. Variably Saturated Groundwater Flow Model

[16] A three-dimensional finite element model for varia-
bly saturated groundwater flow was developed using the
software SPRING [Delta h, Ingenieurgesellschaft mbH,
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2006]. The size of the triangular elements in the horizontal
directions is typically 50 m, but it is 30 m in the Hardhof
area and refined (down to 1 m) around wells and basins.
The model domain is discretized between the soil surface
and the aquifer bottom into layers of 1.6 m depth. The un-
saturated zone (often with a depth of 5 m) is therefore dis-
cretized in a very coarse manner. However, we did not aim
to calculate detailed soil moisture distributions. All we
wanted was an approximately correct timing of aquifer
recharge. The amount of groundwater recharge was calcu-
lated with an external program (see later in this section)
and was applied to the top layer of the numerical simula-
tion model. If the aquifer bottom lies below 40 m, this part
of the aquifer is neglected in the model. Only a small part
of the model domain has an aquifer bottom below 40 m,
and this part of the aquifer is relatively far away from the
main area of interest (the Hardhof area). The discretization
results in 173,599 elements. The temporal discretization for
the simulations with data assimilation was 24 h, with two
iterations for each time step. One complete model run with
10 iterations showed negligible differences in the solution
compared with the solution for two iterations. The model
boundaries correspond to the natural boundaries, except for
the western boundary. A prescribed head boundary condi-
tion is adopted for the western boundary, using the head
measurement in a piezometer at this boundary.

[17] The rivers Sihl and Limmat are implemented in the
model, and the river-aquifer interaction is modeled with the
leakage concept. The rivers Sihl and Limmat are located on
(or very close to) the northern and eastern boundaries of

the simulation domain (see Figure 1). The leakage is mod-
eled along two lines of nodal points which coincide with
the river banks. It was found that the model results show
little sensitivity with respect to a varying location of these
lines [Engeler et al., 2011]. The software FLORIS [Scietec
Flussmanagement GmbH, 2000] was used to calculate tran-
sient river stages along the two rivers. The program
numerically solves the Saint-Venant equations describing
unsteady flow in open channels. The one-dimensional hy-
draulic model used river cross sections (including dam
locations) together with measured daily average values of
river discharge and river stages as input. These calculations
resulted in daily averages of the river water level for each
river discretization point over the period January 2004 to
August 2005. The results were used to derive quadratic
regression equations for each discretization point along the
river in order to estimate the daily water levels as a func-
tion of the river discharge at the leakage nodes for the com-
plete period September 2005 to December 2007. It is
assumed that the river bed shape did not show major modi-
fications over time. Pumping and infiltration rates of the
wells and basins in the Hardhof area operated by Zurich
Water Works were available on a daily basis.

[18] As explained, the recharge rate was calculated with
a separate program and applied to the topsoil layer. Poten-
tial evapotranspiration (ET) was calculated according to
the Penman-Monteith equation, using measurements from
the meteorological station of Zurich-Affoltern. Actual ET
was calculated with a soil water balance model, using the
Food and Agricultural Organization method [Allen et al.,

Figure 1. The inset shows Switzerland and the location of the study area (black circle). The study site
(black dashed line) corresponds to the boundaries of the simulated domain in the upper Limmat valley in
Zurich (Switzerland). Zurich is located at 47.220 N and 8 320 E. The Sihl and Limmat rivers are marked
by the blue lines. The points in the middle part of the site represent the wells and infiltration basins of
the Hardhof Water Works. From Huber et al. [2011].
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1998]. This method calculates actual ET on the basis of
potential ET, applying a reduction depending on the soil
moisture content. Input values for soil and vegetation
parameters were obtained from Allen et al. [1998]. Precipi-
tation measurements (from Zurich-Affoltern) and the calcu-
lated actual evapotranspiration resulted in the potential net
recharge rate. Only 15% of the calculated value recharged
the aquifer in our model, as most of the surface is sealed
and drains directly to the Limmat in the model area. The
lateral inflow at the model boundaries was calculated as a
function of the calculated recharge rates. It implies that the
total amount of calculated lateral inflow is distributed over
time according to the calculated recharge rate. The lateral
inflow is largest on those days where the calculated
recharge rate is largest. The lateral inflow originates mainly
from precipitation on the hillslopes south and north of the
model area. The overall amount of lateral inflow is small
compared to the amount of infiltration from the rivers.

[19] The log hydraulic conductivity Y and the log leakage
coefficient L were calibrated by transient inverse modeling,
taking into account time series of hydraulic head measure-
ments from 87 piezometers. Two calibration periods were
chosen: June 2004 and July 2005. These periods were
selected because they are characterized by very different
hydrological conditions, including a flood, elevated pump-
ing in the Hardhof area, and also typical mean conditions.

The fact that the river stage showed large fluctuations over
this time period provides important additional information
on aquifer and river bed properties [e.g., Yeh et al., 2009]
because the groundwater level increases in a large part of
the aquifer as a response to floods and subsides later when
the river stage has decreased again. The fluctuations of the
river stage can be considered as large-scale pumping tests
that affect a considerable part of the aquifer. Inverse model-
ing was carried out with help of a pilot point based
approach [de Marsily, 1978] including a regularization term
[Alcolea et al., 2006]. It would have been preferable to con-
dition multiple equally likely Y fields and L values with
transient head data, using the procedure as outlined by Hen-
dricks Franssen et al. [1999]. However, a single model cali-
bration took around 16 days of CPU time on a 2800 Hz
processor, so the conditioning of a large number of stochas-
tic realizations would have required an excessive amount of
CPU time. The leakage coefficient was determined for five
zones; a meaningful division of the river into zones was
obtained taking into account the position of the weirs. The
number of pilot points for the calibration of Y had to be lim-
ited, again because of the CPU intensity of the calculations.
The reproduction of the heads was, in general, good, not
only for the two months of calibration but also for the rest
of the 20 month period. Some systematic patterns in the
model residuals could be observed; these were analyzed by

Figure 2. Model area and Hardhof site [from Engeler et al., 2011].
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Doppler et al. [2007] and Engeler et al. [2011] and are not
the focus of this work. Doppler et al. [2007] and Engeler et
al. [2011] found strong evidence that the leakage coefficient
shows significant temporal fluctuations which are related to
(1) floods that transport sediments of the river bed and
locally modify its permeability, (2) floods that modify the
area over which the river can infiltrate in the aquifer, and
(3) river water temperature fluctuations. Engeler et al.
[2011] demonstrated that the residuals of an isothermally
calibrated model could be reduced up to 30% (for measure-
ment points close to the river) if the temperature depend-
ence of the leakage coefficient was taken into account.
Those calculations were carried out with a 3-D fully
coupled variably saturated groundwater flow and heat trans-
port model.

4.2. Real-Time Model
[20] The numerical model for variably saturated ground-

water flow was coupled to a data assimilation routine. This
routine (written in C/Cþþ) updates the model states (and,
if desired, also Y and/or L) using piezometric head data in
the EnKF approach. The model EnKF3d-SPRING runs on a
Linux platform, and four processors were used for the
calculations. The matrix with damping parameters a, the
frequency of assimilation of new observations, and the fre-
quency of updating the parameters are defined by the user.

[21] In most simulation experiments, the calibrated
model (with historical data) and 99 stochastic realizations
were used together in the EnKF. Therefore, the 99 stochas-
tic realizations characterize the uncertainty and serve to
adapt the deterministic model in real time. We will refer to
the deterministic model as the ‘‘central model run.’’ As the
calibration with the pilot points method only yielded condi-
tional mean fields for Y and L, multiple equally likely
inverse conditioned stochastic realizations were not avail-
able. Stochastic realizations for Y were built by adding a
perturbation Y0 on top of the calibrated Y field using 857
available small-scale Y measurements. It was assumed that
Y0 shows a multi-Gaussian distribution, although there is
evidence that Y could be non-multi-Gaussian for the site.
Not enough data are available for generating meaningful
non-multi-Gaussian stochastic realizations of Y0. It is
unlikely that the EnKF reveals non-multi-Gaussian struc-
tures of Y with the help of head data, as EnKF relies on a
Gaussian assumption. Therefore, it is possible that the per-
formance would have been improved by a combination of
non-multi-Gaussian stochastic realizations and a data
assimilation algorithm that would take into account non-
normality. The Y measurements were obtained with small-
scale pumping tests for limited sections along the boreholes
and are assumed to have a support volume of 1 m � 1 m �
10 cm. The difference between the inversely estimated Y
field and the Y measurements (which were not used in the
calibration) was determined for the measurement locations
(Y0). A semivariogram for Y0 was estimated on the basis of
the Y0 data and fitted with a spherical model, a nugget equal
to zero, sill equal to 0.584 log10(m s�1)2 and a range of
99 m in the horizontal plane and 3.2 m in the vertical direc-
tion. Conditional stochastic realizations were generated on
a very fine regular grid of 1 m � 1 m � 10 cm on the basis
of the estimated variogram [Gomez-Hernandez and Jour-
nel, 1993] and added to the inversely estimated Y field. The

resulting Y þ Y0 stochastic realizations were upscaled to the
finite elements size using simplified renormalization
[Renard et al., 2000]. Stochastic realizations for L were
built by applying a normally distributed perturbation to the
calibrated L for each of the zones. The applied perturba-
tions had an expectation equal to zero and a variance equal
to the posterior variance of the inversely estimated L. The
stochastic realizations of Y and L formed the starting base
for additional conditioning with the help of EnKF. The
assimilated observations were randomly perturbed accord-
ing to Burgers et al. [1998]. The standard deviation of the
measurement error was set to 5 cm. The largest contribu-
tion to the measurement error is the error in the terrain
height.

4.3. Synthetic Aquifer Model
[22] In order to gain better insights into the performance

of alternative data assimilation strategies and, in particular,
the benefit of adapting parameters together with the states,
experiments with a synthetic aquifer model for the Zurich
site were carried out first. This synthetic model uses exactly
the same discretization, boundary conditions, and forcings
(pumping, natural recharge, artificial recharge, rivers) as
the original model. The difference is that one of the sto-
chastic realizations of Y and L was selected as ‘‘truth.’’
This implies that the virtual truth and the 100 stochastic
realizations are generated with the same (geo)statistical
model. This also eliminates one possible error source that
we could have in reality. In this virtual experiment it is
expected that the generated ensemble spread is adequate,
whereas for the real-world case, that the ensemble spread is
too small cannot be excluded. All stochastic realizations
are used for a forward model run for the period January
2004 to August 2005 (i.e., a subset of the complete simula-
tion period of 4 years) during which new synthetic observa-
tions were generated. The observed values have an
expectation value equal to the ‘‘true’’ value (from the for-
ward model run using the true parameters as input) and a
standard deviation of 5 cm. These observations were used
in subsequent simulation experiments as conditioning in-
formation. Note that the simulation experiments for the
synthetic aquifer model differ with respect to the original
model in the following ways: (1) The model forcings and
boundary conditions are without error for the synthetic
case, whereas they may contain errors in practice. (2) The
geostatistical model for Y and L is used to generate the true
Y and L fields in the synthetic case, whereas the reality
might exhibit spatial structures of Y and L that are not in
correspondence with the adopted geostatistical model. (3)
The leakage coefficient L is constant over time, whereas in
reality it might show temporal variations, related to floods
and temperature variations.

4.4. Simulation Experiments
4.4.1. Experiments With a Synthetic Model (January
2004 to August 2005)

[23] Only part of the simulation experiments with the
synthetic model are presented here. We provide results for
calculations where a relatively strong damping for the pa-
rameters Y and L was used (a ¼ 0:1; see equation (6)). It
was found that larger a values gave less satisfactory results,
which is in correspondence with the findings of Hendricks
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Franssen and Kinzelbach [2008] and is related to the filter
inbreeding problem. For these synthetic experiments, the
synthetic model was noncalibrated and used together with
stochastic realizations. In most cases, only 100 stochastic
realizations were used, although more realizations would
have given better results. For 100 stochastic realizations
the required CPU time was already 2 weeks on a standard
PC.

[24] Table 1 gives an overview over the simulation sce-
narios in the experiments with the synthetic model. The fol-
lowing variations were chosen.

[25] 1. For conditioning data, a total of four different
cases were considered: no conditioning data (i.e., open loop
simulations), assimilating all available observations (87)
each day, assimilating part of the observations (43) each
day, and assimilating all available observations only once
every 10 days. The last two experiments are the most suited
for verifying the predictions. In the case where 43 observa-
tions are used, the other 44 measurements are used only for
verifying predictions and are never used for assimilation.
Assimilating only every 10 days allows us to verify whether
a positive impact of the data assimilation (performed 10
days earlier) can be found for a 10 day prediction.

[26] 2. For parameter calibration, a total of four different
cases were considered: no parameter calibration (i.e., only
updating of states), calibration of Y only, calibration of L
only, and calibration of both Y and L.
4.4.2. Off-Line Experiments With Historical Data
(January 2004 to December 2007)

[27] For the off-line experiments with historical data a
large number of simulation experiments were carried out,
part of which are presented here. Again, results are pro-
vided only for experiments in which a relatively strong
damping for the parameters Y and L was used ða ¼ 0:1Þ. In
these simulations the calibrated model is used together with
99 stochastic realizations; the stochastic realizations are
used to update the calibrated model. Only 99 stochastic
realizations were used because the required CPU time for
one simulation experiment was already 1 month (for the pe-
riod January 2004 to December 2007).

[28] Table 2 gives an overview of the simulation scenar-
ios in the experiments with historical data. The same sce-
narios were chosen as in the experiments with the synthetic
model (section 4.4.1), the difference being that in these sce-
narios a period of 4 years was considered.

4.4.3. Online Experiments for the Experimental Site
(January 2009 to September 2010)

[29] EnKF3d-SPRING was implemented in an online
system (see Figure 3). Hydraulic head measurements are
communicated mainly by a 4–20 mA signal via cable (all
except eight cases) but also by mobile telephone (six cases)
or SMS (two cases) and are directly stored in the data ware-
house or on an FTP server that is accessed by the Water
Supply Zurich. Daily meteorological data are automatically
downloaded by FTP from a MeteoSwiss Web site. River
discharge measurements are obtained from the electricity
company EWZ by a cable connection. During the first part
of the simulation period (January 2009 to 14 November
2009), no weather predictions and river discharge predic-
tions were included in the assimilation system. Instead, it
was assumed that the next day the conditions would be the
same as the previous day. From 15 November 2009 onward,
predictions of river discharge for the next few days have al-
ready been included in the data assimilation system. The
river discharge predictions are obtained from a multimodel
ensemble of regional atmospheric models. The predictions
are downscaled and provide 1-hourly input for the distrib-
uted rainfall-runoff model PREVAH [Verbunt et al., 2007].
At the end of each day (i.e., shortly after midnight), 87 daily
averaged piezometric head measurements are assimilated
and used to update the states and leakage parameters of the
model, using a ¼ 0:1 for updating L. The model updating is
done only once per day. The updated initial conditions and
parameter values are used for predictions of the head distri-
butions for the following day, assuming that the manage-
ment of the well field is unchanged. The predictions are
used to optimize the management of the well field for the

Table 1. Different Simulation Scenarios for the Synthetic Case

Simulation
Scenario

Parameters
Calibrated

Amount of
Data Assimilated

Number of
Realizations

0.1 - 0 100
1.1 - 87 100
1.2 Y 87 100
1.3 L 87 100
1.4 Y, L 87 100
2.1 - 43 100
2.2 Y 43 100
2.3 L 43 100
2.4 Y, L 43 100
3.1 - 87, every 10 days 100
3.2 Y 87, every 10 days 100
3.3 L 87, every 10 days 100
3.4 Y, L 87, every 10 days 100

Table 2. Different Simulation Scenarios for the Historic Casesa

Simulation
Scenario

Parameters
Calibrated

Amount of
Data Assimilated

Number of
Realizations

0.1_04-05 - 0 100
1.1_04-05 - 87 100
1.2_04-05 Y 87 100
1.3_04-05 L 87 100
1.4_04-05 Y, L 87 100
2.1_04-05 - 43 100
2.2_04-05 Y 43 100
2.3_04-05 L 43 100
2.4_04-05 Y, L 43 100
3.1_04-05 - 87, every 10 days 100
3.2_04-05 Y 87, every 10 days 100
3.3_04-05 L 87, every 10 days 100
3.4_04-05 Y, L 87, every 10 days 100
0.1_05-07 - 0 100
1.1_05-07 - 87 100
1.2_05-07 Y 87 100
1.3_05-07 L 87 100
1.4_05-07 Y, L 87 100
2.1_05-07 - 43 100
2.2_05-07 Y 43 100
2.3_05-07 L 43 100
2.4_05-07 Y, L 43 100
3.1_05-07 - 87, every 10 days 100
3.2_05-07 Y 87, every 10 days 100
3.3_05-07 L 87, every 10 days 100
3.4_05-07 Y, L 87, every 10 days 100

aThe scenarios followed by 04-05 correspond to the period 1 January
2004 to 31 August 2005, whereas those with 05-07 correspond to the pe-
riod from 17 August 2005 to 31 December 2007.
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next day in an iterative fashion, on the basis of a control en-
gineering approach combining fuzzy-based methods and
genetic algorithms [Bauser et al., 2010]. This optimization
uses an iterative approach, and the final result (in terms of
optimized pumping rates and recharge rates for the different
wells and basins) is used for the definitive predictions with
the model, as the optimized pumping and artificial recharge
rates will be implemented by the water works to operate the
well field. The model predictions are compared with the
head data that are measured later.

4.5. Evaluation of Model Predictions
[30] The main performance criterion to evaluate the pre-

dictions based on the data assimilation algorithm was the
mean absolute error (MAE). A distinction is made between
predictions by the central model run (for the real world
case) and the results from the stochastic realizations (for
both the real-world case and the synthetic case) :

MAEcentralðhÞ ¼ 1
ntn

Xnt

t¼1

Xn

i¼1

hsim
i;t � hmeas

i;t

��� ��� ; ð9Þ

MAEstochasticðhÞ ¼ 1
nrntn

Xnr

r¼1

Xnt

t¼1

Xn

i¼1

hsim
i;t;r � hmeas

i;t

��� ��� ; ð10Þ

where sim refers to model predictions (which were made on
the basis of the updated initial conditions and possibly also
model parameters the day before) and meas refers to meas-
ured values (at time t). As indicated, the mean absolute
error is averaged over all measurement locations n and mea-
surement times nt and for the stochastic realizations over
the number of realizations nr. The mean absolute error is
also evaluated for individual time steps and locations. In

some cases, we will report values for individual time steps
and part of the measurement locations, which will be indi-
cated in the text. Moreover, the root-mean-square error was
calculated, which was also evaluated separately for the cen-
tral model run and the stochastic realizations:

RMSEcentralðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ntn

Xnt

t¼1

Xn

i¼1

hsim
i;t � hmeas

i;t

� �2
s

; ð11Þ

RMSEstochasticðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nrntn

Xnr

r¼1

Xnt

t¼1

Xn

i¼1

hsim
i;t;r � hmeas

i;t

� �2
s

: ð12Þ

[31] For the synthetic experiments, the true parameter
values are known, and estimates can be compared with the
true parameter values. These comparisons are always made
for a specific time step and are never averaged over multi-
ple time steps:

MAEðX ; tÞ ¼ 1
E

XE

i¼1

X sim
i;t � X true

i;t

��� ��� ; ð13Þ

where E is the number of finite elements, true refers to the
parameter values from the synthetic reality, and X is either
Y or L. Also, the root-mean-square error of the parameter
estimates is evaluated but in a slightly different way than
for the hydraulic heads:

RMSEðX ; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
E

XE

i¼1

ð�X i;t � X true
i;t Þ

2
vuut ; ð14Þ

where an overbar indicates ensemble average values.

Figure 3. Overview of the different steps implemented for the operational real-time modeling of
groundwater flow in the Limmat Valley aquifer and the related real-time control of the groundwater well
field Hardhof in the city of Zurich (Switzerland).
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5. Results
5.1. Synthetic Case
5.1.1. Data Assimilation Without Parameter
Calibration

[32] First, we will have a look at the prediction of hy-
draulic heads for the synthetic case. It is important to stress
again that in this case, 100 stochastic realizations for Y and
L are used, conditioned on information from Y and L, but
not conditioned on h, and without a central model run (i.e.,
without a calibrated model). When no hydraulic head data
are used for assimilation, the average absolute error for the
predicted hydraulic head, computed from the ensemble, is
46.6 cm. This average is calculated over all 609 time steps,
87 measurement locations, and 100 realizations. Table 3
summarizes all simulation results in terms of hydraulic
head characterization for the synthetic case. The results will
be discussed in terms of MAE. In most cases, the results in
terms of RMSE correspond with the ones for MAE. If this
is not the case, a separate comment is added.

[33] Daily assimilation of 87 hydraulic head data reduces
the MAEstochastic(h) for 1 day predictions (at the 87 mea-
surement locations) by 59% down to 19.2 cm. Figure 4
shows the temporal evolution of MAEstochastic(h) for this
case. Immediately after assimilation (i.e., for the actual sit-
uation), MAEstochastic(h) is only 3.3 cm. This illustrates that
MAEstochastic(h) increases relatively quickly after assimilat-
ing new information, which is related to parameter errors;
as in the synthetic model, only Y and L are uncertain. It is
possible that assimilation improves the characterization of
hydraulic heads only at the measurement locations but not
elsewhere. Therefore, the data set was split into 43 hydrau-
lic head data used for assimilation and 44 other locations
where the hydraulic head was compared with the predicted
values, without using them for assimilation. In that case,
MAEstochastic(h) for 1 day predictions at the assimilation
locations is 23.9 cm, while it is 28.0 cm at the verification
locations. In this case, less information is assimilated (43
instead of 87 data), which likely causes the smaller

reduction of MAEstochastic(h) at the measurement locations.
On the other hand, at the verification locations the error is
only marginally larger than at the assimilation locations,
which indicates that the data assimilation is able to improve
the estimate of the hydraulic heads in the complete domain.
This positive impact of data assimilation at the verification
locations can also be observed from the error measure
MAEstochastic(h) ; it decreases from 28.0 cm just before
assimilation (1 day prediction) to 19.9 cm right after
assimilation.

[34] A concern is that MAEstochastic(h) increases rapidly
after assimilation. This is illustrated in Figure 5. This
increase could suggest that data assimilation without pa-
rameter adaptation gives an improved characterization of
the hydraulic heads (compared to the default case without
assimilation) only during a relatively short period. How-
ever, this is not the case. If hydraulic head data are only
assimilated every 10 days, the MAEstochastic(h) for 10 days
after the assimilation (i.e., just before a new assimilation) is
36.0 cm, which is still considerably smaller than the value
for the case without assimilation (46.6 cm).
5.1.2. Data Assimilation With Parameter Calibration

[35] If only one of the two unknown parameters (Y or L)
is updated (together with the states), the hydraulic head
characterization is not better than for the case where
only the states are updated. The differences (in terms of
MAEstochastic(h) and RMSEstochastic(h)) are very small for
most of the scenarios (see Table 3). This is in spite of the
fact that the parameter values are better or worse than com-
pared to the prior values. If only L is updated, MAE(L, 609)
(i.e., the mean absolute error at the end of the simulation pe-
riod) is between 19% and 24% lower than the prior value.
In all three cases (with 87 data, 43 data and assimilation of
87 data every 10 days), MAE(L, 609) reached lower values
before the end of the assimilation, with a value that was
more than 30% lower than the prior value. Table 4 summa-
rizes all simulation results in terms of parameter characteri-
zation for the synthetic case. If only Y is updated, MAE(Y,
609) is larger than the prior value. In the beginning of the
assimilation period, MAE(Y) is lower than the prior
MAE(Y) ; after 100 days, the error reduction is 13%. After-
ward, the MAE(Y) starts to increase. See Figure 6. This
result seems to be related to filter inbreeding. Hendricks
Franssen and Kinzelbach [2008] found in simulation
experiments that for small ensemble sizes and frequent
assimilation, the MAE(Y) initially decreases but increases
later during the simulation (see their Figure 8 and Table 4).
They found that for a large Y variance (like the one in this
study) and for a relatively small ensemble of 100 realiza-
tions, in the absence of a damping parameter, MAE(Y) was
larger at the end of a simulation period of 200 days than at
the start. This filter divergence is provoked by a strong
underestimation of the Y variance (filter inbreeding), which
in turn, is at least in part related to the poor quality of the
estimated numerical covariances. Hendricks Franssen and
Kinzelbach [2008] found that even with a damping parame-
ter (and the ensemble of 100 stochastic realizations), the
MAE(Y) increased at later simulation times. However, the
MAE(Y) after 200 days was still smaller than the prior
MAE(Y). They found that 200 stochastic realizations and a
damping parameter avoided filter divergence, and in that
case, only a minor underestimation of the variance (filter

Table 3. Performance Measures for the Synthetic Simulation
Experimentsa

Simulation
Scenario

Assimilation Locations Verification Locations

MAEstochastic

(h) (cm)
RMSEstochastic

(h) (cm)
MAEstochastic

(h) (cm)
RMSEstochastic

(h) (cm)

0.1 46.6 63.4
1.1 19.2 30.7
1.2 19.2 30.7
1.3 21.2 29.3
1.4 7.2 19.4
2.1 23.9 35.8 28.0 55.6
2.2 24.0 35.9 27.2 54.8
2.3 23.8 35.6 27.5 55.5
2.4 16.6 26.1 21.2 41.0
3.1 36.0 50.5
3.2 36.0 50.5
3.3 36.0 50.5
3.4 7.4 17.2

aThe 1 and 10 day predictions of hydraulic head are given at the same
locations where the assimilation was done or at independent verification
locations. Note that in all cases, error statistics from predictions are pro-
vided, although this corresponds in many cases to the same location where
observations were assimilated.
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inbreeding) was observed. The same is the case for the
experiments presented here; the experiments with the
damping parameter resulted in a MAE(Y) that after 200
days was smaller than the prior one. Experiments without
including a damping parameter or daily updating of Y
showed a worse performance, with only an initial small
decrease of MAE(Y) and MAE(Y) values larger than the
prior ones after only 50 and 75 days, respectively.

[36] An alternative explanation for the observed increase
of MAE(Y) at later simulation times could be that the initial
ensemble had too small a spread. As explained, this is not
expected because the virtual truth and the 100 stochastic

realizations were generated using the same (geo)statistical
model. The initial ensemble spread was analyzed for the
open-loop simulations where no data were assimilated.
This was done using a procedure similar to the one used by
Moradkhani et al. [2005] and De Lannoy et al. [2006].
According to this method, the ratio of the time-averaged
RMSE of the ensemble mean and the mean RMSE of the
ensemble members was calculated. For 100 stochastic real-
izations it is expected that this ratio will be 0.711, while for
this study a ratio of 0.464 was calculated. This implies that
our initial ensemble spread was too large. The explanation
for this deviation is most likely that the generated virtual

Figure 4. The mean absolute error for 1 day predictions of hydraulic head for the synthetic case as
function of time. The mean absolute error is evaluated over all 100 stochastic realizations. Shown are the
predictions for the cases where (1) no data assimilation was performed, (2) only states were updated
with the help of 87 daily hydraulic head data, and (3) states, Y, and L were updated with 87 daily hydrau-
lic head data.

Figure 5. The mean absolute error (as function of time) for 1 day predictions of hydraulic head and af-
ter data assimilation with EnKF. The mean absolute error is evaluated over all 100 stochastic realiza-
tions. Shown are the results for scenario 1.1 of the synthetic cases.
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truth was by chance a very ‘‘average’’ one, which is there-
fore well covered by the 100 stochastic realizations. Other
measures for analyzing the ensemble spread indicate too
large an initial ensemble spread as well. This excessive ini-
tial ensemble spread does not explain the later too small en-
semble spread (filter inbreeding) and increased MAE(Y).

[37] The observed increase in MAE(Y) could also be
linked to nonoptimal conditions under which the ensemble
Kalman filter is applied, like bias and nonnormal distribu-
tions of parameters and states. For this synthetic case under
controlled conditions, only the nonnormal distribution of
states might have had a negative impact on the results.

[38] If Y and L were simultaneously updated along with
the states, results were much better. For those scenarios,

MAEstochastic(h) was only 7.2 cm for 1 day predictions in
cases where 87 data were assimilated (compared to 19.2 cm
without parameter updating). Figure 4 illustrates this case.
For the same case, Figure 7 displays explicitly the relative
improvement of performance if states, Y, and L are updated
simultaneously compared with updating states only. It
illustrates that the relative improvement continues to grow
during the first 200 days of simulation. For the 10 day pre-
diction the differences were even larger: MAEstochastic(h)
was only 7.4 cm compared to 36.0 cm without calibration
(see Figure 8). It is remarkable that RMSEstochastic(h) for 10
day predictions is even lower than for 1 day predictions.
This seems to be related to better parameter estimates if hy-
draulic heads are assimilated only every 10 days. For the
experiment with assimilation of 43 head data only and 44
verification locations, the error reductions were smaller: at
the verification locations, MAEstochastic(h) was 21.2 cm
instead of 28.0 cm (without parameter adaptation). The pa-
rameter updates also improved for these simulation scenar-
ios. MAE(L, 609) (i.e., the mean absolute error at the end of
the simulation period) was between 43% and 62% lower
than the prior value, which is a much better result than the
one obtained for the cases when only L was calibrated. For
all three scenarios (with 87 data, 43 data, and assimilation
of 87 data every 10 days) the estimate of L improved
throughout the entire simulation period. Also, the estimates
of Y improved for all the three simulation experiments were
Y was calibrated together with L. However, results still
seem to be influenced by filter inbreeding. The best results
were found if head data were only assimilated every 10
days: in that case, MAE(Y, 609) was 27% lower than the
prior MAE(Y), and an improvement of MAE(Y) was
observed throughout the complete simulation period. The
worst results were obtained if 87 head data were assimilated
each day. In that case, MAE(Y, 609) was only 4% lower
than the prior MAE(Y) and increased during the second part

Table 4. Performance Measures for the Synthetic Simulation
Experimentsa

Simulation
Scenario

MAE (Y)
(log10(m s�1))

RMSE (Y)
(log10(m s�1))

MAE (L)
(log10(m s�1))

RMSE (L)
(log10(m s�1))

0.1 0.396 0.494 0.296 0.356
1.1 NA NA NA NA
1.2 0.457 0.572 NA NA
1.3 NA NA 0.232 0.321
1.4 0.381 0.475 0.142 0.151
2.1 NA NA NA NA
2.2 0.398 0.498 NA NA
2.3 NA NA 0.224 0.278
2.4 0.332 0.414 0.168 0.199
3.1 NA NA NA NA
3.2 0.313 0.391 NA NA
3.3 NA NA 0.240 0.269
3.4 0.290 0.363 0.112 0.130

aA comparison is made between the true parameter values and the esti-
mated parameter values at the end of the simulation period (after 609
days). NA indicates not applicable (i.e., for that scenario the parameter
was not calibrated).

Figure 6. Temporal evolution of mean absolute errors of log hydraulic conductivities (synthetic case),
evaluated over all finite elements. Given are results for the case where only Y is updated (although both
Y and L are uncertain) and three different cases where both Y and L are updated: with assimilation of 87
daily hydraulic head data (S 1.4), with assimilation of 43 daily hydraulic head data (S 2.4), and with
assimilation of 87 hydraulic head data, every 10 days (S 3.4).
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of the simulation part after reaching a reduction above 12%
in the middle of the simulation period. This behavior is
also displayed in Figure 6, together with the results for
some other scenarios. These findings are typical for filter

inbreeding. Nevertheless, all results confirm that jointly
updating Y and L yields very good results, which are much
better than what is obtained by updating states only or by
updating only one of the two parameters.

Figure 8. The mean absolute error for 10 day predictions of hydraulic head for the synthetic case as
function of time. The mean absolute error is evaluated over all 100 stochastic realizations. Shown are the
predictions for the cases where (1) no data assimilation was performed, (2) only states were updated
using 87 daily hydraulic head data, and (3) states, Y, and L were updated using 87 daily hydraulic head
data.

Figure 7. Relative improvement of data assimilation (synthetic case) where both states and parameters
are updated, as compared to data assimilation where only the states are updated. The ratio of MAE(h) if
states, Y, and L are updated to MAE(h) if only states are updated is given. Shown are the predictions for
the case where 87 daily hydraulic head data are assimilated and MAE(h) is calculated over all 100 sto-
chastic realizations.
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5.2. Off-Line Experiments With Historical Data
(January 2004 to December 2007)
5.2.1. Data Assimilation Without Parameter
Calibration

[39] It is stressed that in this case the calibrated model
was the central model run, which was updated with obser-
vations using an ensemble of 99 stochastic realizations. The
results for the updated central model forecast and the fore-
casts from the stochastic realizations are analyzed sepa-
rately. Results are also compared separately for the period
from January 2004 to August 2005, the period in which 2
months were used for calibration, and the period from Sep-
tember 2005 to December 2007, the verification period.
Tables 5 (central model run) and 6 (stochastic realizations)
summarize all simulation results in terms of hydraulic head
characterization for the off-line experiments.

[40] In the application we find again that data assimila-
tion always reduces MAE(h). This MAE(h) reduction is
larger for the stochastic realizations than for the central
model run, which could be expected as the central model
run was calibrated with historical data. Nevertheless,
MAEcentral(h) still is reduced by 33% (January 2004 to Au-
gust 2005) or 41% (September 2005 to December 2007) for
1 day predictions (and assimilating 87 hydraulic head data
daily) compared to predictions without data assimilation.
Data assimilation with EnKF also reduces MAEcentral(h) if

only 43 data are assimilated and for 10 day predictions,
both compared to predictions with a calibrated model. For
stochastic realizations, MAEstochastic(h) decreases by 53%
for 1 day predictions if 87 data are assimilated, both for the
period January 2004 to August 2005 and for the period Sep-
tember 2005 to December 2007. The simulation experiment
with 44 verification locations showed that the reduction of
MAEstochastic(h) (i.e., averaging over the realizations) at the
verification locations was stronger (40% for 1 day predic-
tions for the period August 2005 to December 2007) than
the MAEcentral(h) reduction (21% for the same period). Fur-
ther simulation results are given in Table 5 and illustrate
that the hydraulic head characterization is improved with
data assimilation both for the real-world case and if an al-
ready calibrated model is used.
5.2.2. Data Assimilation With Parameter Calibration

[41] If only Y or L is calibrated, MAEcentral(h) and
MAEstochastic(h) are not reduced compared to simulations
where only the states are updated. The 1 day predictions of
MAE(h) or RMSE(h) are even slightly worse in two cases
when only L is calibrated. These results correspond with
the results from the synthetic study. Tables 5 and 6 contain
all simulation results for the scenarios where parameters
were updated.

[42] Jointly updating Y and L in the real-world case
improves the estimates compared to updating the states

Table 5. Performance Measures for the Real-World Simulation
Experiments for the Periods January 2004 to August 2005 and
August 2005 to December 2007a

Simulation
Scenario

Assimilation Locations Verification Locations

MAEcentral

(h) (m)
RMSEcentral

(h) (m)
MAEcentral

(h) (m)
RMSEcentral

(h) (m)

0.1_04-05 0.195 0.278
1.1_04-05 0.130 0.168
1.2_04-05 0.130 0.167
1.3_04-05 0.128 0.210
1.4_04-05 0.112 0.145
2.1_04-05 0.126 0.166 0.206 0.323
2.2_04-05 0.126 0.161 0.204 0.319
2.3_04-05 0.128 0.165 0.191 0.290
2.4_04-05 0.116 0.155 0.185 0.267
3.1_04-05 0.179 0.237
3.2_04-05 0.179 0.241
3.3_04-05 0.179 0.236
3.4_04-05 0.142 0.191
0.1_05-07 0.257 0.361
1.1_05-07 0.151 0.214
1.2_05-07 0.151 0.216
1.3_05-07 0.195 0.256
1.4_05-07 0.130 0.181
2.1_05-07 0.162 0.223 0.202 0.330
2.2_05-07 0.162 0.222 0.200 0.319
2.3_05-07 0.162 0.222 0.203 0.332
2.4_05-07 0.182 0.410 0.218 0.445
3.1_05-07 0.230 0.313
3.2_05-07 0.230 0.313
3.3_05-07 0.231 0.313
3.4_05-07 0.161 0.220

aHere the central model run simulations are evaluated. The 1 and 10 day
predictions of hydraulic head are given at the same locations where the
assimilation was done or at independent verification locations. Note that in
all cases, error statistics from predictions are provided, although this corre-
sponds in many cases to the same location where observations were
assimilated.

Table 6. Performance Measures for the Real-World Simulation
Experiments for the Periods January 2004 to August 2005 and
August 2005 to December 2007a

Simulation
Scenario

Assimilation Locations Verification Locations

MAEstochastic

(h) (m)
RMSEstochastic

(h) (m)
MAEstochastic

(h) (m)
RMSEstochastic

(h) (m)

0.1_04-05 0.506 0.666
1.1_04-05 0.237 0.318
1.2_04-05 0.236 0.317
1.3_04-05 0.250 0.327
1.4_04-05 0.139 0.181
2.1_04-05 0.313 0.440 0.394 0.563
2.2_04-05 0.313 0.437 0.392 0.552
2.3_04-05 0.317 0.447 0.384 0.556
2.4_04-05 0.184 0.308 0.262 0.395
3.1_04-05 0.423 0.561
3.2_04-05 0.419 0.559
3.3_04-05 0.423 0.563
3.4_04-05 0.169 0.234
0.1_05-07 0.525 0.674
1.1_05-07 0.245 0.324
1.2_05-07 0.244 0.325
1.3_05-07 0.274 0.358
1.4_05-07 0.138 0.197
2.1_05-07 0.281 0.366 0.314 0.415
2.2_05-07 0.281 0.366 0.313 0.415
2.3_05-07 0.281 0.367 0.314 0.415
2.4_05-07 0.250 0.411 0.315 0.518
3.1_05-07 0.444 0.570
3.2_05-07 0.444 0.570
3.3_05-07 0.444 0.570
3.4_05-07 0.177 0.255

aHere the stochastic simulation runs are evaluated. The 1 and 10 day
predictions of hydraulic head are given at the same locations where the
assimilation was done or at independent verification locations. Note that in
all cases, error statistics from predictions are provided, although this corre-
sponds in many cases to the same location where observations were
assimilated.
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only: in terms of MAEcentral(h) and 1 day predictions with
87 head data the values were 11.2 versus 13.0 cm for Janu-
ary 2004 to August 2005 and 13.0 versus 15.1 cm for Sep-
tember 2005 to December 2007. For 10 day predictions, the
corresponding values are 14.2 versus 17.9 cm for January
2004 to August 2005 and 16.1 versus 23.0 cm for Septem-
ber 2005 to December 2007. Updating the parameters for
the already calibrated model might also yield better esti-
mates because L is subjected to temporal fluctuations, as
mentioned [Doppler et al., 2007; Engeler et al., 2011]. For
MAEstochastic(h) the error reduction is larger : for 1 day pre-
dictions with 87 data it is 13.9 versus 23.7 cm for January
2004 to August 2005 and 13.8 versus 24.5 cm for Septem-
ber 2005 to December 2007. For 10 day predictions,
MAEstochastic(h) is also much lower than for simulations
that used the same data without parameter updating: 16.9
versus 42.3 cm for January 2004 to August 2005 and 17.7
versus 44.4 cm for September 2005 to December 2007. It is
found that after a certain simulation time, the stochastic
realizations, which were not calibrated to h data, yield head
predictions that are equally as good as the central model
run, which was calibrated to historical head time series.
This clearly supports the hypothesis that jointly updating Y
and L results in improved parameter estimates. (See Figure
9 for an illustration.)

[43] Results are less favorable for simulations over the
period September 2005 to December 2007 for the assimila-
tion of 43 data using 44 data for verification. In that case,
MAEcentral(h) is slightly larger than if only states were

updated, and MAEstochastic(h) is only slightly lower. More-
over, RMSEcentral(h) and RMSEstochastic(h) are much larger
than if only states were updated. This holds for both assimi-
lation locations and verification locations. A closer look at
the results reveals that until June 2007, MAEcentral(h),
MAEstochastic(h), RMSEcentral(h), and RMSEstochastic(h) at
assimilation and verification locations are clearly lower
than the same measurements for simulations without pa-
rameter updating. In the second half of 2007, results are,
however, much worse, and at some locations MAE(h) and,
particularly, RMSE(h) become very large because of the
generation of implausible parameter values. This result
points to the risk of instabilities that might appear because
of the continuous updating of parameter values in real time.
For the simulation period January 2004 to August 2005,
results are always better if Y and L are jointly updated, at
both assimilation and verification locations, and for the 99
stochastic realizations the improvement is significant.

[44] For the real-world case it is not possible to compare
estimated and true parameter values. It should also be
stressed that for the real-world case there is an increased
risk that the prior ensemble has too small a spread, for
example, because the adopted geostatistical model may not
be adequate. We compare here the estimated parameter val-
ues for those simulation scenarios where both Y and L are
updated (i.e., different amounts of hydraulic head data and
for the two different simulation periods). It is found that the
parameter perturbations (updated parameter values minus a
priori values) are strongly correlated among the different

Figure 9. The mean absolute error for 1 day predictions of hydraulic head using 87 hydraulic head
data for the real-world case for the period August 2005 to December 2007. Shown are the (1) predictions
with the central model (inversely calibrated) whose states are updated daily with EnKF (central model,
scenario 1.1), (2) predictions with the 99 stochastic realizations (not calibrated previously) whose states
are updated daily with EnKF (members, scenario 1.1), and (3) predictions with the 99 stochastic realiza-
tions whose states are updated daily and parameters (Y and L) are updated every 10 days with EnKF
(members, scenario 1.4).
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scenarios. It is particularly interesting to have a look at L.
The different scenarios give consistent results for three of
the five zones: in comparison with the a priori values, L
shows a strong increase (around 1.0 log10 units on average)
for the Limmat west of the Hardhof area, no change for the
Limmat in the eastern Hardhof area, and a significant
decrease (around 0.7 log10 units on average) for the Lim-
mat east of Hardhof. For the Limmat in the eastern Hardhof
a yearly cycle in the leakage coefficient with an average
amplitude of 0.2 log10 units is found. The minimal leakage
coefficient is found in May in all 4 years, and the maximum
value for the leakage coefficient always occurs in Novem-
ber (see Figure 10). This suggests that the updated leakage
coefficient lags 3 months behind the true cycle. Doppler et
al. [2007] and Engeler et al. [2011] showed that for this
section of the Limmat, the temperature dependence of the
leakage coefficient has a significant impact on the hydraulic
heads, and minimum L is expected for February, with max-
imum L expected for August. The time lag might be related
to the time needed for the filter to adapt. Further, the hy-
draulic conductivities somewhat farther away from the
river are also influenced by the temperature dependence
because the retardation of the temperature wave shows a
shifted cycle compared to the leakage factor. Now we have
to look at the two sections of the rivers where results are
less consistent. For the Limmat in the western Hardhof area
the results for the simulation scenarios differ but are con-
sistent for the two simulation periods: no significant
change for the simulation period January 2004 to August
2005 and a strong decrease (around 0.9 log10 units on aver-
age) for the period August 2005 to December 2007. This
decrease seems to be related to modifications of the river
bed due to the major flood in August 2005. Visual inspec-
tion of model residuals also revealed a sudden jump in the
model residuals coinciding with the flood event in August

2005 in this area [Engeler et al., 2011]. It should be
stressed that the EnKF needed around 8 months to fully
adjust to the new L value. Finally, for the Sihl, three of the
scenarios show that the updated L is almost equal to the
prior L, whereas for three other scenarios an increase of L
was found (on average, 0.3 log10 units). This part of the
model domain has fewer observations.

5.3. Online Experiments (June to December 2009)
[45] EnKF3d-SPRING was implemented online using in-

formation from online sensors. Since January 2009, the data
assimilation has been running online and making daily hy-
draulic head predictions for the next day. The default imple-
mentation included updating leakage coefficients but not
updating hydraulic conductivities. As explained in section
4.4.3, initially, in the data assimilation it was assumed that
the forcing for the next day would be the same as for the
current day. This introduces an error as, for example, the
river stage shows large temporal oscillations. This is the
main reason why MAE(h) and RMSE(h) are larger than in
the off-line experiments for 1 day predictions of hydraulic
head. However, from 15 November 2009 onward, predic-
tions of the river stage for the next day are integrated in the
data assimilation framework. It was found that these predic-
tions were very reliable during periods with larger varia-
tions of the river stage.

[46] Figure 11 shows the temporal evolution of MAE(h)
and RMSE(h) for the period of May 2009 to September
2010. Before May 2009, there were strong pumping activ-
ities due to dewatering of construction sites that were not
accounted for in the data assimilation. Therefore, the period
January–April 2009 is not included in the comparison.
MAE(h), evaluated over all measurement locations and
time steps, is 22.2 cm, whereas RMSE(h) is 30.0 cm. Better
results were found for the period where the river stage for

Figure 10. The average yearly cycle of the calibrated leakage coefficient for the real-world case (for
the river Limmat in the Hardhof area) based on simulations for the period January 2004 to December
2007. Results are according to simulation scenario 3.4.
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the next day was predicted. For this period the average
MAE(h) and RMSE(h) were 21.5 and 27.7 cm, respectively,
as compared to 23.3 and 33.5 cm, respectively, for the
period before. The performance of the data assimilation for
the period when river stage predictions were included was
even better than these numbers suggest. However, the pe-
riod May–August 2010 showed again strongly increased
errors in spite of predicting the daily river stage. In this
period all piezometers were replaced with new online sen-
sors, and the information system at the Water Works was
also replaced. Many new sensors initially gave erroneous
measurement values, and at times more than half of them
were not available. This explains the larger errors during
this period. Predictions with EnKF for the verification pe-
riod (August 2005 to December 2007), including calibration
of leakage and perfectly known forcings, gave an MAE(h)
of 19.5 cm. Predictions without data assimilation but with
perfectly known forcings, using a model calibrated with his-
torical data, resulted in an MAE(h) of 25.7cm for the verifi-
cation period (August 2005 to December 2007).

6. Discussion
[47] These results indicate the positive impact of assimi-

lating hydraulic head data, which yields better predictions
of hydraulic head distributions, including heads away from
the measurement locations and at a time horizon of predic-
tion of 10 days, than a conventional model calibrated with
historical data. Results can be improved further if uncertain
parameter values (Y and L) are jointly updated together
with the states. Jointly updating Y and L gives better results
than updating Y or L alone. We think that this result is
related to the fact that both Y and L are affected by errors. If
only Y or L is corrected, the updated parameter also
accounts for the error in the other parameter. This results in
overcorrection and worse results compared to the case
where it is acknowledged that both parameters might
be affected by errors. However, some questions remain
because in the synthetic case, parameter estimates of Y got

worse later in the simulation period in one case (out of
three). However, also in that case the estimates of Y at the
end of the simulation period were still better than the prior
values. There is evidence that the increase in the mean
absolute error of the hydraulic conductivities in the second
half of the simulation period is related to filter inbreeding.
In the real-world case the prediction of hydraulic head distri-
butions including parameter updating did not improve in
one case (out of six) compared to predictions based on the
same amount of data but without parameter updating. It was
found that for that specific case, estimated hydraulic head
distributions were much better than those obtained without
parameter updating for the first 700 days of simulation but
much worse for the last 150 simulation days. This result was
related to numerical instabilities and points to the risks of
continuously updating parameter distributions in real time.
We think that the better results for the experiments where
the assimilation is carried out every 10 days instead of each
day (and parameters are updated) can also be explained by
reduced filter inbreeding. Less frequent updating reduces
problems with filter inbreeding [Hendricks Franssen and
Kinzelbach, 2008]. On the other hand, this may not be the
only reason. After a longer time period without assimilation,
the model residuals are larger and contain clearer signals
about too small/too large parameter values.

[48] To avoid filter inbreeding, we suggested some meas-
ures [Hendricks Franssen and Kinzelbach, 2008]. The use
of a damping parameter is very important in reducing
problems with filter inbreeding, and a large ensemble is
also important. For large simulation models this requires
parallelization of the code and many processors. That setup
was not possible in this study, and the number of stochastic
realizations (100) was relatively small ; better results are
expected for a larger number of stochastic realizations.
Problems with filter inbreeding can be reduced further by
excluding spurious larger positive or negative covariances
for large separation distances [Houtekamer and Mitchell,
1998]. Results for the synthetic study would have been bet-
ter if we would have taken additional measures against

Figure 11. Comparison of online one day hydraulic head predictions with EnKF and measurements.
Shown are the absolute mean error and root-mean-square error averaged over all measurement locations
and as a function of time.

W02532 HENDRICKS FRANSSEN ET AL.: REAL-TIME GROUNDWATER FLOW MODELING W02532

17 of 20



filter inbreeding, but nevertheless, all results (in terms of
hydraulic heads and parameter updates) were better than
simulations with updating of states only.

[49] A bit more complicated is the situation for the real-
world case study. Here instabilities developed at the end of
a large assimilation experiment over 4 years. In this assimi-
lation experiment, less data were assimilated. As parameter
updates improve, especially in the beginning of the assimi-
lation period, and stabilize later (or become worse again in
the case of filter inbreeding), our suggestion for calibrating
real-world models with EnKF and operational applications
is to limit parameter calibration to the beginning of the sim-
ulation period with, for example, around 30 parameter
updates and then update parameters later in the simulation
period only very occasionally. The optimal frequency for
parameter updating will depend on the case, and it is impor-
tant to gain experience from additional simulation experi-
ments to determine the role of the updating frequency and
provide measures against possible instabilities that could
develop over time.

[50] Nevertheless, EnKF was also successful for updating
states and parameters of a subsurface flow system (for both
a real-world case and an operational case) which was con-
siderably more complex than the synthetic 2-D saturated
groundwater flow problem used by Hendricks Franssen and
Kinzelbach [2008, 2009]. As mentioned in section 1, real-
time modeling is used as a basis for real-time optimization
of the water management at the site (fixing the amount to be
abstracted and infiltrated but optimizing the spatial distribu-
tion of artificial recharge, taking into account constraints
like the capacity of artificial recharge basins and wells).
Simulations indicate that without optimization (traditional
management) the fraction of city water (i.e., potentially
contaminated water) is 11% at well C (5% in case of opti-
mization) and 6% at well D (2% in case of optimization). If
the amount of water to be infiltrated is allowed to increase,
an estimated fraction of city water of 0% at all wells can be
achieved. The improved quality of the pumped water in
online mode was confirmed by the evolution of its electrical
conductivity, indicating a reduced fraction of pumped city
water. See Bauser et al. [2010] for further details. The next
extension of the method to more general problems is under
preparation. It concerns the calibration with data assimila-
tion of fully distributed, integral hydrological models that
include overland flow as well as evapotranspiration from
the unsaturated zone. This is only feasible by assimilating
various types of data and by parallelizing the code and run-
ning it on a supercomputer (at least for the testing stage) to
process sufficiently large ensembles.

7. Conclusions
[51] This paper presents data assimilation with the en-

semble Kalman filter (EnKF) for variably saturated subsur-
face flow including river-aquifer interaction, implemented
in a finite element model with 173,599 elements. Simula-
tion experiments are carried out for the Limmat Valley
aquifer for the period January 2004 to December 2007 and
also for a synthetic case which is similar to the Limmat
Valley aquifer, except for the fact that a certain parameter
distribution was selected as the virtual truth. Finally, results
are presented for the online implementation of this same

model for the period May 2009 –September 2010. To our
knowledge, this is the first online implementation of a data
assimilation framework for subsurface flow and the first to
adapt online the optimal pumping strategy.

[52] Results indicate that data assimilation with EnKF
but without parameter calibration improves 1 day and 10
day hydraulic head predictions, at both assimilation and
prediction locations. The reduction of the mean absolute
error (MAE) is slightly larger for the synthetic experiments
(e.g., 59% reduction of MAE for 1 day predictions and
assimilation of 87 hydraulic head data) than for the 99 sto-
chastic realizations from the real-world case (53% MAE
reduction for the same case). The difference is larger for
10 day predictions based on 87 assimilated data (23%
reduction for the synthetic case versus 15% for the real-
world case). Further improvements are obtained if log hy-
draulic conductivities (Y) and log leakage coefficients (L)
are updated along with the states. If Y and L are updated
simultaneously, MAE(h) is much lower than for the uncon-
ditional case, with an 85% reduction for 1 day predictions
and an 84% reduction for 10 day predictions. For the real-
world case, MAE(h) is reduced by 73% (1 day predictions)
or 66% (10 day predictions) when compared to the same
sets of simulation experiments. The improvements are
smaller for 1 day predictions at verification locations: 54%
MAE(h) reduction for the synthetic case and 44% reduc-
tion for the real-world case. The synthetic experiments
allowed us to verify that the parameter estimates indeed
improved for all experiments where both hydraulic con-
ductivities and leakage coefficients were updated. The
improvement was largest if all observations were assimi-
lated but only every 10 days. In that case the MAE reduc-
tion for log hydraulic conductivity was 27%, and the MAE
reduction for the log leakage coefficient was 63%. It was
also observed that for one of the synthetic simulation sce-
narios the log hydraulic conductivity estimates initially
improved strongly but got worse later during the simula-
tion period, although they were still better than the prior
estimates at the end of the simulation estimates. It is
believed that this behavior is linked to filter inbreeding
because the ensemble of 100 realizations was relatively
small, resulting in numerical covariances subjected to con-
siderable sampling fluctuations. Also, the fact that states
are nonnormally distributed in this synthetic experiment
might have contributed to the suboptimal results. In addi-
tion, an already inversely calibrated model was updated in
the off-line experiments for the real-world case study. This
model yielded the best hydraulic head predictions, which
were also improved in the case when additional data were
assimilated and were further improved if parameters were
adapted in real time.

[53] The hydraulic head estimates obtained with the
online operational model are better if data assimilation is
applied. The absolute errors are larger than for the off-line
model because of the up-to-now inferior characterization of
the model forcings.

[54] These results corroborate the potential of the ensem-
ble Kalman filter for the operational updating of large-scale
groundwater flow models showing a highly dynamic
response to surface water bodies and confirm that unknown
model parameters can be calibrated and improved in real
time. The results also indicate that very frequent updating
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of parameters might give less good results than less fre-
quent updating because of filter inbreeding and the risk of
numerical instabilities.
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ich. This project is funded by the Swiss Innovation Promotion Agency CTI
under contract 7608.2 EPRP-IW.

References
Alcolea, A., J. Carrera, and A. Medina (2006), Pilot points method

incorporating prior information for solving the groundwater flow
inverse problem, Adv. Water Resour., 29, 1678 – 1689, doi :10.1016/
j.advwatres.2005.12.009.

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotrans-
piration: Guidelines for computing crop water requirements, FAO Irrig.
Drainage Pap. 56, Food and Agric. Organ., Rome.

Bauser, G., H. J. Hendricks Franssen, H. P. Kaiser, U. Kuhlmann, F.
Stauffer, and W. Kinzelbach (2010), Real-time management of a ground-
water well field threatened by diffuse pollution in an urban area, Environ.
Sci. Technol., 44, 6802–6807, doi:10.1021/es100648j.

Bear, J. (1979), Hydraulics of Groundwater, McGraw-Hill, New York.
Burgers, G., P. J. van Leeuwen, and G. Evensen (1998), Analysis scheme in

the ensemble Kalman filter, Mon. Weather Rev., 126, 1719– 1724.
Carrera, J., and S. P. Neuman (1986), Estimation of aquifer parameters

under transient and steady-state conditions: 1. Maximum likelihood
method incorporating prior information, Water Resour. Res., 22, 199–
210.

Chen, Y., and D. Zhang (2006), Data assimilation for transient flow in geo-
logic formations via ensemble Kalman filter, Adv. Water Resour., 29,
1107–1122, doi:10.1016/j.advwatres.2005.09.007.

De Lannoy, G. J. M., P. R. Houser, V. R. N. Pauwels, and N. E. C. Verhoest
(2006), Assessment of model uncertainty for soil moisture through en-
semble verification, J. Geophys. Res., 111, D10101, doi:10.1029/
2005JD006367.

Delta h, Ingenieurgesellschaft mbH (2006), SPRING 3.2, software, Witten,
Germany.

de Marsily, G. (1978), De l’identification des systemes hydrogeologiques,
Ph.D. thesis, Paris VI, Paris.

Doppler, T., H. J. Hendricks Franssen, H. P. Kaiser, U. Kuhlman, and F.
Stauffer (2007), Field evidence of a dynamic leakage coefficient for
modelling river-aquifer interactions, J. Hydrol., 347, 177–187,
doi:10.1016/j.jhydrol.2007.09.017.

Engeler, I., H. J. Hendricks Franssen, R. Müller, and F. Stauffer (2011),
The importance of coupled modelling of variably saturated groundwater
flow-heat transport for assessing river-aquifer interactions, J. Hydrol.,
397, 295–305, doi:10.1016/j.hydrol.2010.12.007.

Evensen, G. (1994), Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods in forecast error studies,
J. Geophys. Res., 99(C5), 10,143– 10,162.

Fu, J., and J. Gomez-Hernandez (2009), Uncertainty assessment and data
worth in groundwater flow and mass transport modeling using a blocking
Markov chain Monte Carlo method, J. Hydrol., 364, 328– 341,
doi:10.1016/j.jhydrol.2008.11.014.
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