000016645 001__ 16645
000016645 005__ 20240712100826.0
000016645 0247_ $$2DOI$$a10.1029/2000JD000114
000016645 0247_ $$2WOS$$aWOS:000180331300003
000016645 0247_ $$2ISSN$$a0141-8637
000016645 0247_ $$2Handle$$a2128/7322
000016645 0247_ $$2altmetric$$aaltmetric:21806502
000016645 037__ $$aPreJuSER-16645
000016645 041__ $$aeng
000016645 082__ $$a550
000016645 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000016645 1001_ $$0P:(DE-Juel1)VDB8771$$aMcKenna, D. S.$$b0$$uFZJ
000016645 245__ $$aA new Chemical Lagrangian Model of the Stratosphere (CLaMS) 1 : formulation of transport and mixing
000016645 260__ $$aWashington, DC$$bUnion$$c2002
000016645 300__ $$aD16
000016645 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000016645 3367_ $$2DataCite$$aOutput Types/Journal article
000016645 3367_ $$00$$2EndNote$$aJournal Article
000016645 3367_ $$2BibTeX$$aARTICLE
000016645 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000016645 3367_ $$2DRIVER$$aarticle
000016645 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v107$$x0148-0227
000016645 500__ $$aRecord converted from VDB: 12.11.2012
000016645 520__ $$aRecent satellite observations and dynamical studies have demonstrated the existence of filamentary structures in chemical tracer fields in the stratosphere. It is also evident that such features are often below the spatial resolution of the highest-resolution Eulerian models that have been used up to the present time. These observations have motivated the development of a novel Chemical Lagranigan Model of the Stratosphere (CLaMS) that is based on a Lagrangian transport of tracers. The description of CLaMS is divided into two parts: Part 1 (this paper) concentrates on the Lagrangian dynamics, i.e., on the calculation of trajectories and on a completely new mixing algorithm based on a dynamically adaptive grid, while part 2 describes the chemical integration and initialization procedure. The mixing of different air masses in CLaMS is driven by the large-scale horizontal flow deformation and takes into account the mass exchange between the nearest neighbors determined by Delaunay triangulation. Here we formulate an isentropic, i.e., two-dimensional version of the model and verify the mixing algorithm using tracer distributions measured during the space shuttle CRISTA-1 experiment where highly resolved stratospheric structures were observed in early November 1994. A comparison of the measured Southern Hemispheric N2O distribution with CLaMS results allows the intensity of simulated mixing to be optimized. The long-term robustness of the transport scheme is investigated in a case study of the 1996-1997 Northern Hemisphere polar vortex. This study further provides a dynamical framework for investigations of chemical arctic ozone destruction discussed in part 2.
000016645 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000016645 588__ $$aDataset connected to Web of Science
000016645 650_7 $$2WoSType$$aJ
000016645 65320 $$2Author$$aatmosphere
000016645 65320 $$2Author$$astratosphere
000016645 65320 $$2Author$$aCLaMS
000016645 65320 $$2Author$$aLagrangian
000016645 65320 $$2Author$$atracers
000016645 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b1$$uFZJ
000016645 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b2$$uFZJ
000016645 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b3$$uFZJ
000016645 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b4$$uFZJ
000016645 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2000JD000114$$gVol. 107, p. D16$$pD16$$q107<D16$$tJournal of geophysical research / Atmospheres  $$tJournal of Geophysical Research$$v107$$x0148-0227$$y2002
000016645 8567_ $$uhttp://hdl.handle.net/2128/615$$uhttp://dx.doi.org/10.1029/2000JD000114
000016645 8564_ $$uhttps://juser.fz-juelich.de/record/16645/files/McKenna_et_al-2002-Journal_of_Geophysical_Research__Atmospheres_%281984-2012%29.pdf$$yOpenAccess
000016645 8564_ $$uhttps://juser.fz-juelich.de/record/16645/files/McKenna_et_al-2002-Journal_of_Geophysical_Research__Atmospheres_%281984-2012%29.gif?subformat=icon$$xicon$$yOpenAccess
000016645 8564_ $$uhttps://juser.fz-juelich.de/record/16645/files/McKenna_et_al-2002-Journal_of_Geophysical_Research__Atmospheres_%281984-2012%29.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000016645 8564_ $$uhttps://juser.fz-juelich.de/record/16645/files/McKenna_et_al-2002-Journal_of_Geophysical_Research__Atmospheres_%281984-2012%29.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000016645 8564_ $$uhttps://juser.fz-juelich.de/record/16645/files/McKenna_et_al-2002-Journal_of_Geophysical_Research__Atmospheres_%281984-2012%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000016645 909CO $$ooai:juser.fz-juelich.de:16645$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000016645 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000016645 9141_ $$y2002
000016645 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000016645 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000016645 970__ $$aVDB:(DE-Juel1)13084
000016645 9801_ $$aFullTexts
000016645 980__ $$aVDB
000016645 980__ $$aConvertedRecord
000016645 980__ $$ajournal
000016645 980__ $$aI:(DE-Juel1)IEK-7-20101013
000016645 980__ $$aUNRESTRICTED
000016645 980__ $$aFullTexts
000016645 981__ $$aI:(DE-Juel1)ICE-4-20101013
000016645 981__ $$aI:(DE-Juel1)IEK-7-20101013