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GW calculations including spin-orbit coupling: Application to Hg chalcogenides

R. Sakuma,1,2,* C. Friedrich,3 T. Miyake,2,4 S. Blügel,3 and F. Aryasetiawan1,2
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4JST, Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama 332-0012, Japan

(Received 30 June 2011; published 30 August 2011)

We present self-energy calculations for Hg chalcogenides (HgX, X = S, Se, and Te) with inverted band

structures using an explicit spin-dependent formulation of the GW approximation. Spin-orbit coupling is fully

taken into account in calculating the single-particle Green function G and the screened interaction W . We have

found, apart from an upward shift of the occupied conductionlike Ŵ6 state by about 0.7 eV, an enhancement of

spin-orbit splitting by about 0.1 eV, in good agreement with experiment. This renormalization originates mainly

from spin-orbit induced changes in G rather than W , which is affected only little by spin-orbit coupling.
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I. INTRODUCTION

Owing to the spin-orbit coupling, the spin of an electron

that is propagating through a material with structure or

bulk inversion asymmetry interacts with the orbital motion

through space in a way as if a momentum-dependent magnetic

field was applied. This gives rise to a number of exciting

phenomena such as the Dresselhaus1 and Bychkov-Rashba2

effect as well as to a number of recent discoveries such

as the spin Hall3 and quantum spin Hall effect4 as well

as two- and three-dimensional topological insulators.5 These

spin-orbit related phenomena opened a new alternative vista

for spintronics and unleashed a world-wide effort to search

for appropriate materials and to understand their electronic

and transport properties. Although only very few topological

insulator materials are known, many materials have been

suggested to have the potential to be topological insulators.6–10

The focus is on materials composed of atoms with high

atomic numbers such as mercury, thallium, lead, or bismuth,

as electrons traveling through these materials are expected

to exhibit a strong spin-orbit interaction. One such material

class is the mercury chalcogenides, HgX (X = S, Se, and Te).

For instance, the key experiment4 revealing for the first time

the two-dimensional quantum spin Hall effect was carried out

on a HgTe quantum well after it had been predicted to be a

two-dimensional topological insulator.11

While the spin-orbit coupling is of atomic origin and

is believed to be well described within the one-particle

picture with some effective potential, such as the local-density

approximation (LDA) of density-functional theory (DFT), the

modification of the band structure near the Fermi energy

due to the spin-orbit coupling can lead to intriguing phe-

nomena including many-body effects: an interesting example

is the recently discovered Ir-based spin-orbit induced Mott

insulators,12–14 in which the spin-orbit splitting as well as

electron correlation are essential in determining the electronic

properties.

In this work, we investigate the effect of the spin-orbit

coupling on quasiparticle calculations within the GW ap-

proximation (GWA).15–17 Because of the coupling of spin and

spatial degrees of freedom, spin is not a good quantum number

anymore and the Hamiltonian acquires terms that are nondi-

agonal in spin giving rise to one-particle wave functions that

exhibit spatially dependent spin expectation values. This de-

pendence can be expressed by spinor wave functions consisting

of nonzero spin-up and spin-down components. Likewise, the

Green function and self-energy exhibit additional mixed spin

components. Explicit formulas have recently been derived18,19

for a general spin-dependent electron-electron interaction. The

generalization provides, as a special case, a framework to treat

systems with inherent spin dependence, such as spin-orbit

coupling or spin-spiral structures. A similar approach was

recently used to study the effect of spin-orbit coupling on

the quasiparticle lifetime.20,21

In this work, we apply the spin-dependent GWA to

mercury chalcogenides HgX (X = S, Se, and Te) within

the full-potential linearized augmented-plane-wave (FLAPW)

method, which treats core and valence electrons on the

same footing. Mercury chalcogenides, which crystallize in the

zinc-blende structure typical for III-V and II-VI compound

semiconductors, are prototype materials with a so-called

inverted band structure, a property pertinent to realize spin-

Hall insulators22 or strong topological insulators.23 In these

materials the twofold degenerate Ŵ6 band, which forms a con-

duction band in conventional zinc-blende semiconductors, lies

below the fourfold degenerate Ŵ8 bands and sometimes even

below the twofold degenerate split-off Ŵ7 bands. Apart from

the fundamental theoretical interest related to the quantum

spin-Hall effect and topological insulators, these materials are

of theoretical interest because the LDA does not reproduce the

band structure quantitatively: the inverse band gap in the LDA

is overestimated by about 1 eV, and the spin-orbit splitting is

about 0.1 eV too small with respect to experiment.

While in previous GW studies of these materials24,25 the

spin-orbit splitting was treated within LDA and added a

posteriori to the quasiparticle spectrum as a perturbative

correction, we use the full four-component spinor wave

functions for the GW calculations in this work. In this way, not

only the inverse band gaps, but also the spin-orbit splittings are

corrected by the self-energy. As a result, apart from a definite

quantitative improvement of the direct inverse gaps, we find a

hitherto unknown renormalization of the spin-orbit splitting,
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which is mainly attributed to spin-orbit induced changes in

the single-particle Green function. The resulting spin-orbit

splitting compares well with experiment.

II. METHOD

Our approach is based on the fully spin-dependent GWA,

Refs. 18 and 19, applied to the case of a spin-independent

electron-electron interaction. We consider a many-body

Hamiltonian with a spin-dependent one-particle part h0 and

the bare Coulomb interaction V (r) = 1/r ,

H =
∑

i

h0(ri,si) +
1

2

∑

i �=j

V (|ri − rj |). (1)

The one-particle part can contain any arbitrary spin-dependent

term, indicated by the spin variable si , and in this work

we include the spin-orbit interaction, which is primarily a

one-particle phenomenon. Nonlocal spin-spin and spin-charge

(Lorentz) interactions as well as relativistic retardation effects

are neglected. Here and in the following, we employ atomic

units unless noted otherwise.

Due to the coupling of spin and spatial degrees of freedom,

the Green function and the self-energy are no longer diagonal

in spin space, but must be written as 2 × 2 matrices. The Bloch

wave function of Bloch vector k and band index µ is written

as

φkµ(r,s) = φ+
kµ(r)χ+(s) + φ−

kµ(r)χ−(s), (2)

where s is the spin variable, which can take only two values,

and χ± are the spin basis functions, which are chosen to be

the eigenfunctions of ŝz, the z component of the spin operator.

The Green function of the noninteracting system is given by

G(rs,r′s ′; ω) =
∑

kµ

φkµ(r,s)φ∗
kµ(r′,s ′)

ω − ǫkµ + iη sgn(ǫkµ − ǫF)
, (3)

and the matrix elements in the spin basis are

Gαβ(r,r′; ω) =
∑

kµ

φα
kµ(r)φ

β∗
kµ(r′)

ω − ǫkµ + iη sgn(ǫkµ − ǫF)
, (4)

where α,β = ± are the indices of the spin basis functions,

η is a positive infinitesimal, ǫF is the Fermi energy, and ǫkµ

are the eigenenergies corresponding to the Bloch functions of

Eq. (2). We employ the Kohn-Sham system within the LDA

as the reference one-particle system. The fully spin-dependent

GW self-energy is written as18,19


αβ(r,r′; ω) =
i

2π

∫

Gαβ(r,r′; ω + ω′)W (r,r′; ω′)eiηω′
dω′,

(5)

where the screened Coulomb interaction W is calculated from

the polarization function

P (r,r′; ω) =
−i

2π

∑

αβ

∫

Gαβ(r,r′; ω + ω′)Gβα(r′,r; ω′)dω′

(6)

and the bare Coulomb interaction, which are related by the

Dyson-type equation W = V + V PW . Although W does not

depend on spin explicitly, it is affected by the spin-orbit

coupling through the Green function in Eq. (4). The self-

energy, Eq. (5), is affected directly through G and indirectly

through W . The off-diagonal spin components of the Green

function are responsible for the off-diagonal elements of the

self-energy.

The quasiparticle wave function fkµ satisfies the quasipar-

ticle equation

∫

d3r ′
∑

β

[

δ(r − r′)[h0
αβ(r) + vH(r)δαβ]

+
αβ(r,r′,Ekµ)
]

f
β

kµ(r′) = Ekµf α
kµ(r), (7)

where vH(r) is the Hartree potential. In this work, we calculate

the quasiparticle energy Ekµ within the so-called one-shot

GW approach, in which one approximates f α
kµ ≈ φα

kµ within

first-order perturbation theory leading to

Ekµ = ǫkµ +
∑

αβ

〈φα
kµ|
αβ(Ekµ) − vxcδαβ |φβ

kµ〉, (8)

where vxc(r) is the exchange-correlation potential, which is

spin-independent for a nonmagnetic system and approximated

by the LDA in this work. In previous GW calculations,24,25 the

spin-orbit coupling was not taken into account in the solution

of Eq. (8), i.e., neither in the self-energy nor in the Kohn-Sham

states and energies. It entered only as an additive perturbative

correction to the quasiparticle energies. Spin-off-diagonal

terms of the Green function (and all quantities derived from it)

describing spin-flip processes due to the spin-orbit interaction

were thus ignored.

We have implemented the fully spin-dependent GW ap-

proximation according to Eqs. (5), (6), and (8) into the

GW code SPEX,26 which is based on the FLAPW method.

In the code, two-particle quantities are expanded in the

spin-independent mixed product basis set {MqI (r)}. For the

exchange part of the self-energy in Eq. (5), we can perform

the integration over frequency analytically by summing over

the residues, which gives

〈

φα
kµ

∣

∣
x
αβ

∣

∣φ
β

kµ

〉

=
i

2π

∑

qν

∑

I,J

〈

M̃qJ φα
kµ

∣

∣φα
k+qν

〉〈

M̃qIφ
β

kµ

∣

∣φ
β

k+qν

〉∗

×
∫

dω′ VIJ (q)eiηω′

ω + ω′ − ǫk+qν + iη sgn(ǫk+qν − ǫF)

= −
∑

qν

∑

I,J

θ (ǫF − ǫk+qν)

×
〈

M̃qJ φα
kµ

∣

∣φα
k+qν

〉

VIJ (q)
〈

M̃qIφ
β

kµ

∣

∣φ
β

k+qν

〉∗
, (9)

where VIJ (q) = 〈MqI |V |MqJ 〉 is the matrix element of the

Coulomb interaction27 and {M̃qI } is the biorthogonal set of

{MqI }. The corresponding expression for the correlation part of

the self-energy, obtained by replacing VIJ (q) in the frequency

integral of Eq. (9) with W c
IJ (q,ω′) = WIJ (q,ω′) − VIJ (q),

requires an explicit integration over frequency, for which we

use the contour integration technique.
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The polarization function P is calculated as

PIJ (q,ω) =
∑

αβ

∑

kµν

θ (ǫF − ǫkµ)θ (ǫk+qν − ǫF)

×
〈

M̃qIφ
α
kµ

∣

∣φα
k+qν

〉〈

M̃qJ φ
β

kµ

∣

∣φ
β

k+qν

〉∗

×
[

1

ω − �kµν(q) + iη
−

1

ω + �kµν(q) − iη

]

,

(10)

where �kµν(q) = ǫk+qν − ǫkµ and time-reversal symmetry

has been employed.

Using spatial symmetry of the system greatly accelerates

the computation and saves memory: the wave functions in

the full Brillouin zone are generated from those at the

corresponding symmetry-equivalent k points in the irreducible

Brillouin zone, by operating a spatial rotation and also a 2 × 2

unitary rotation in spin space; symmetry is also exploited in

computing P and 
 to reduce the number of k points appearing

in the sum, as described in Ref. 26.

We first prepare well-converged LDA wave functions and

energies with the FLAPW DFT code FLEUR,28 employing

the Perdew-Zunger parametrization of the LDA exchange-

correlation functional.29 In the FLEUR code, the core electrons

are treated fully relativistically by solving the Dirac equation

in the spherically averaged effective potential around each

atomic nucleus. For the valence electrons, space is partitioned

into nonoverlapping muffin-tin spheres, which are centered

at the atomic nuclei, and the interstitial region. Different

basis representations are used in the two regions of space

(see below). In the interstitial region, relativistic effects are

neglected, as they amount to only about 1% of the total

relativistic contribution. However, in the muffin-tin spheres,

all relativistic effects (e.g., the relativistic mass enhancement

to any order in the speed of light) are included, combining the

scalar-relativistic approximation30 with a fast self-consistent

nonperturbative treatment of the spin-orbit coupling31 em-

ploying the second-variation technique.32 In second variation

one performs a first diagonalization of the scalar-relativistic

(spin-orbit-free) Hamiltonian and, then, diagonalizes the fully

relativistic Hamiltonian, including the spin-orbit coupling term

vSOC, in the basis of the scalar-relativistic eigenfunctions

ϕα
kn(r), which yields the fully relativistic (i.e., with spin-orbit

interaction) solutions

φkµ(r,s) =
∑

α

∑

n

Zα
nµ(k)ϕα

kn(r)χα(s). (11)

The band index n comprises at least all states that are later

used in the GW calculation. This yields sufficient variational

freedom for the spin-orbit coupling term by far. The ϕα
kn(r) are

expanded in terms of the LAPW basis, i.e.,

ϕα
kn(r) =

1
√

�

∑

G

cα
kn,Gei(k+G)·r (12)

with the unit-cell volume � in the interstitial region and

ϕα
kn(r) =

∑

G

cα
kn,G

∑

lm

[

aα
alm(G,k)uα

al(r)

+ bα
alm(G,k)u̇α

al(r)
]

Ylm(r̂)

=
∑

lm

[

Aα
alm,n(k)uα

al(r) + Bα
alm,n(k)u̇α

al(r)
]

Ylm(r̂)

(13)

inside the muffin-tin sphere of atom a, where r is measured

from the sphere center. Here the eigenvectors cα
kn,G are

obtained by diagonalizing the scalar-relativistic Hamiltonian,

and the LAPW coefficients aα
alm(G,k) and bα

alm(G,k) are deter-

mined such that the wave functions and their radial derivatives

are continuous at the muffin-tin sphere boundaries. The radial

functions uα
al(r) and u̇α

al(r) are the solution of the radial scalar-

relativistic Dirac equation30 and its energy derivative, respec-

tively. They consist of a large (L) and a small (S) component

uα
al(r) =

(

uLα
al (r)

−iσru
Sα
al (r)

)

(14)

with σr = σ · r/r , where σ is the vector of Pauli spin

matrices, and analogously for u̇α
al(r). The small component

becomes negligible at the muffin-tin sphere boundary.

The basis can be extended by local orbitals to describe

semicore states33 and high-lying unoccupied states,34,35 which

is important to obtain converged GW results.36 In the basis

of the scalar-relativistic eigenfunctions the spin-orbit coupling

term is given by

〈ϕα
kn|vSOC|ϕβ

kn′〉 =
∑

a

∑

lm

∑

l′m′

δll′

∫ Ra
MT

0

drr2

×
1

(2Malc)2

1

r

dva(r)

dr
〈lmα|L · σ |lm′β〉

×
[

Aalm,n(k)uL
al(r) + Balm,n(k)u̇L

al(r)
]∗

×
[

Aalm′,n′ (k)uL
al(r) + Balm′,n′ (k)u̇L

al(r)
]

,

(15)

where Ra
MT and va(r) are the muffin-tin radius and the

spherical part of the Kohn-Sham effective potential at atom

a, respectively, and c is the speed of light. The spin-orbit

coupling is sizable only close to the atomic nuclei, where the

electron velocity is relativistic. It is negligible in the interstitial

region, and we may replace the potential by its spherical part

va(r) in the muffin-tin spheres. Since the Hg chalcogenides,

examined in this work, are nonmagnetic, we have omitted the

spin index for the wave-function coefficients, the potential,

and the radial functions. The relativistic mass Mal is given by

Mal = me +
1

2c2
[ǫal − va(r)], (16)

where me (= 1 in atomic units) is the electron rest mass and ǫal

is the energy parameter used in the construction of the ual(r)

and u̇al(r). The extension to local orbitals is straightforward.

In each iteration a new electron density is constructed from the

wave functions in Eq. (11), which serves as input density for

the next iteration. The procedure is iterated until convergence

of the density is achieved.

We use the experimental zinc-blende lattice constants taken

from Ref. 25 (HgS: 11.057 a.u.; HgSe: 11.497 a.u.; HgTe:

12.210 a.u.). We employ a plane-wave cutoff |k + G| �

Gmax = 5.0 bohr−1 in the interstitial region and an angular-

momentum cutoff l � lmax = 10 in the spheres. Semicore d

states of Se and Te as well as Hg 5p states are treated as valence

orbitals by using suitably defined local orbitals. To describe

high-lying states accurately, we also include for each atom two

additional local orbitals per angular momentum up to l = 4.
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The resulting spinor wave functions and energies are then

used for the subsequent GW calculations. All occupied states,

including the core states, are included in the exchange part of

the self-energy, and semicore states are taken into account in

both the polarization function and the correlation part of the

self-energy. We employ an 8 × 8 × 8 k-point sampling and

include around 1000 unoccupied bands to compute the Green

function and the polarization function.

III. RESULTS AND DISCUSSION

A. LDA band structure

Before presenting the results for the Hg-chalcogenide

semiconductors, let us briefly review the understanding of the

band structure of semiconductors with zinc-blende lattice. The

s and p valence electrons of the two atoms in the unit cell form

bonding and antibonding combinations, which generate the

highest valence and the bottom conduction bands of the crystal,

respectively. The top of the valence band is at the Ŵ point and

arises from three p bonding orbitals, which are degenerate.

Considering the spin of the electrons the top of the valence

band is sixfold degenerate. The cubic crystal field imposed by

the zinc-blende lattice splits the p band in the vicinity of the Ŵ

point into a fourfold degenerate heavy- and a twofold degen-

erate light-hole band along high-symmetry lines � and �.

Spin-orbit interaction, and for the HgX compounds this

means essentially the spin-orbit interaction of the chalcogenide

anions S, Se, and Te, changes the band topology. It splits

the top-most valence bands into two groups, the p3/2 bands

with a fourfold degeneracy at the center of the Brillouin

zone and labeled Ŵ8, using the appropriate double-group

representations for the zinc-blende space group, and the p1/2

bands, also called spin-orbit split-off bands, with degeneracy

2 and labeled Ŵ7 states at the Ŵ point. The latter band connects

to the neighboring high-symmetry points as the light-hole

band would at the absence of spin-orbit interaction. Around

the Ŵ point, the cubic crystal field splits the p3/2 states into

two twofold degenerate bands of mj = ±3/2 and mj = ±1/2

eigenstates. One takes the role of the heavy-hole (m = ±3/2)

band across the high-symmetry lines and one the light-hole

states around Ŵ.

Since the zinc-blende lattice lacks a center of inversion, the

Dresselhaus effect1 is expected to lift the degeneracies of bands

along particular high-symmetry lines, with the consequence

that the energy maximum of the valence band is slightly

shifted off the center of the zone. However, the removal of

the double degeneracy close to the center of the Brillouin zone

by the effect of the linear terms in k is very small and is not

considered here any further. For conventional II-VI compounds

the conduction electrons are predominantly of antibonding s

character and the state at the zone center is denoted by Ŵ6.

The high nuclear number of Hg changes now the picture

in two respects. The s electron has a high probability of

presence in the vicinity of the nucleus, where the s electron

experiences the deep Coulomb potential of Hg. The high

speed of the electron associated with the deep potential

leads to a considerable relativistic mass enhancement,

which pulls the energy level of the s state down, changes the

bonding-antibonding hybridization between s and p electrons,

alters the band dispersions, and leads to the inverted band

structure of the Hg compounds, where the Ŵ6 state lies now

below the Ŵ8 state and as we will see below, in the case of LDA

calculations applied to mercury compounds, it is also always

below the Ŵ7 state. In particular around the Ŵ point, k · p

perturbation theory37 tells us that the effective mass of the Ŵ6,

the Ŵ7, and the light-hole Ŵ8 state depends on matrix elements

between s and p electrons and an energy denominator, in which

the energy difference between the valence and conduction state

enters. If the s state moves below one of the p ones, curvatures

of the bands in the vicinity of the Ŵ6, Ŵ7, and the light-hole

state can change sign and depending on the energy difference,

effective electron masses change their absolute values.

The inversion of the band structure is facilitated by

the contraction of the Hg s wave function that increases

the screening of the Coulomb attraction of the nucleus and the

mercury d states become shallower in energy. According to the

zinc-blende space group, Hg d and chalcogenide p states can

hybridize and the p electrons get slightly pushed up in energy,

and a slight p-d antibonding character is mixed into the valence

p states. This state repulsion decreases from HgS to HgTe

and together with the decrease of the s-s and p-p bonding-

antibonding splitting and the increased spin-orbit splitting of

the valence p bands, when comparing the chemical trend from

HgS to HgTe, explains then the subtle difference of the band

topology around the Ŵ point of the mercury chalcogenides.

Now we turn to the calculated band structures shown in

Figs. 1(a)–1(c) and in Figs. 2(a)–2(c) magnified around the Ŵ

point focusing first on the LDA results. The band structures

of the three compounds are very similar. HgSe and HgTe

are semimetals, and β-HgS is a semiconductor with a small

energy gap of 0.1 eV. In all cases, the Ŵ6 state is the lowest

valence state at the Ŵ point. Along the high-symmetry line

between the Ŵ and the L point, the energy difference between

the mj = ±3/2 heavy-hole and mj = ±1/2 light-hole band

increases from HgS to HgTe due to the increase of the

spin-orbit splitting. A closer look reveals also a small splitting

of the heavy-hole band along that direction, which increases

also when comparing HgS to HgSe and HgTe. This is due

to the hybridization of the spin-orbit split p band with the

spin-orbit split (2 eV) Hg d bands located at around −7.7 eV

below the Fermi energy (outside the displayed energy range).

To analyze the band inversion, which results from a

hybridization of s and p states as already mentioned, the

contribution from the Hg 6s muffin-tin orbital is indicated by

the size of the vertical bars along the LDA band dispersion. It

can be seen that the orbital character is rather k dependent. At

the Ŵ point, the lowest band in the figures (Ŵ6) exhibits a large

admixture of Hg 6s, which clearly shows the inverted band

structure of these systems, while the fourfold degenerate Ŵ8

and twofold degenerate split-off Ŵ7 states, which lie above the

Ŵ6 state, are mainly composed of chalcogen p orbitals. Apart

from a small region of k space around the Ŵ point, the lowest

unoccupied band mainly consists of Hg 6s. The values of

the inverse band gap and spin-orbit splitting are tabulated in

Tables I and II. Results from previous studies and experiment

are also shown for comparison.

B. GW band structure

Concerning the quasiparticle band structure, the self-energy

correction results in three noticeable effects. First, there is a
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TABLE I. Calculated inverse direct band gaps at selected high-symmetry k points in eV. At the Ŵ point the inverse band gap is defined

as Eg = EŴ6
− EŴ8

. In parentheses we report the results obtained with the screened Coulomb interaction W calculated without spin-orbit

coupling (see text).

HgS HgSe HgTe

LDA GW LDA GW LDA GW

Ŵ

This work −0.66 −0.02 −1.27 −0.58 −1.20 −0.60

(−0.01) (−0.57) (−0.58)

Ref. 24 −1.27 −0.51

Ref. 25 −0.62 +0.06 −1.23 −0.60 −1.17 −0.57

Ref. 38a −0.573 −1.18 −1.025

−0.58 −1.26 −1.15

Expt. −0.15b,−0.11c −0.274d −0.29 ± 0.02e

−0.30f

L

This work +2.37 +3.28 +1.81 +2.67 +1.28 +1.95

(+3.29) (+2.69) (+1.97)

Ref. 24 +2.9

Expt. +2.949,+2.971g 2.25f

X

This work +5.40 +6.25 +5.00 +5.79 +4.03 +4.62

(+6.26) (+5.80) (+4.65)

Expt. +5.7h +5.0h

aResults with VASP (Ref. 39) and ABINIT (Ref. 40) at theoretical volumes.
bReference 41.
cReference 42.
dReference 43.
eReference 44.
fReference 46.
gReference 47.
hReference 48.

significant upward shift of the Ŵ6 state, which causes a flip

in the sequence between the Ŵ6 and Ŵ7 state for HgTe as

compared to the LDA result and which reduces in general

the negative inverse band gaps at Ŵ, defined as EŴ6
− EŴ8

,

by about 0.7 eV for all materials, giving a much better

agreement with experiment. These results are in accordance

with previous studies by Rohlfing and Louie24 as well as

Fleszar and Hanke.25 Second, the lowest conduction band,

which is primarily of Hg 6s character, is shifted up markedly

except at the Ŵ point. This results in a strongly reduced

effective mass as discussed later. Third, the energy gap of

β-HgS formed by Ŵ8 and Ŵ7 valence and conduction states,

respectively, increases to 0.2 eV.

As pointed out by Cardona et al.,38 the fact that the

LDA yields too deep conductionlike Ŵ6 states in the Hg

chalcogenides is related to the band-gap problem of the

LDA. In a LDA band structure of a conventional zinc-blende

semiconductor, the conduction band is located too close to

the valence band so that states around the Ŵ point strongly

hybridize with each other. A similar hybridization effect can be

seen in Fig. 1, where the Ŵ6 state at the top of the valence band

acquires Hg 6s character, whereas the lowest conduction state

Ŵ7 is mainly of chalcogenide p character, giving rise to the

inverted band structure. The LDA places the conductionlike

Ŵ6 state too low in energy, just as it would in the case of a

normal zinc-blende semiconductor, where this state forms the

conduction-band minimum. As the GW approximation for the

self-energy is known to correct for the underestimation of the

normal semiconductor band gap, one might expect that it also

corrects for the too low placement of the Ŵ6 states in LDA.

Indeed, as Fig. 1 shows, states of Hg 6s character are shifted

up markedly, reducing the absolute value of the inverse band

gap considerably. One may say that the LDA overestimates the

stability of the inverted band structure.

Comparing our results with experiment, it seems that the

GWA still underestimates the inverse band gap for HgSe and

HgTe by about 0.3 eV. Considering the large discrepancy

(around 1 eV) between the LDA results and experiment,

the remaining discrepancy between the GW results and

experiment may be overcome by using a better reference

one-particle system than LDA as starting point or by iterating

the GW calculation. On the other hand, the discrepancy may be

due to the shortcoming of the GWA itself. Indeed, by including

a vertex correction derived from time-dependent LDA, Fleszar

and Hanke obtained a 0.1–0.2-eV upward correction of the

GW inverse band gaps.25

C. Effective mass

Figure 1 shows that the electron effective mass at the Ŵ

point is considerably reduced by the self-energy correction.

We have estimated the effective masses from our data points
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TABLE II. Spin-orbit splitting at selected high-symmetry k points in eV. At the Ŵ point the splitting is defined as � = EŴ8
− EŴ7

. The

negative values in HgS mean that the Ŵ7 split-off state is above the Ŵ8 state. In parentheses we report the results obtained with the screened

Coulomb interaction W calculated without spin-orbit coupling (see text).

HgS HgSe HgTe

LDA GW LDA GW LDA GW

Ŵ

This work −0.12 −0.19 +0.23 +0.32 +0.78 +0.91

(−0.19) (+0.32) (+0.91)

Ref. 24 +0.30

Ref. 25 −0.12 −0.12 +0.23 +0.23 +0.80 +0.80

Ref. 38a −0.111 +0.23 +0.783

−0.18 +0.34 +0.81

Expt. +0.39,+0.38b +0.91±0.02c

+0.910d

L

This work +0.04 +0.01 +0.19 +0.24 +0.54 +0.61

(+0.01) (+0.24) (+0.61)

Expt. +0.27e, +0.3f +0.62g, +0.75f

X

This work +0.12 +0.14 +0.01 < +0.01 +0.21 +0.22

(+0.14) (< +0.01) (+0.22)

Expt. +0.3f +0.1-0.2f

aResults with VASP (Ref. 39) and ABINIT (Ref. 40) at theoretical volumes.
bReference 49.
cReference 44.
dReference 45.
eReference 47.
fReference 48.
gReference 46.

and list them in Table III. The reduction of the effective mass

in the case of HgSe was also found by Rohlfing and Louie.24

The ratio between the quasiparticle effective mass mQP and the

LDA effective mass mLDA for a given state is given by50

m
QP
kµ

mLDA
kµ

=
1

Zkµ

lim
k→0

[

1 +
∑

i

mLDA
kµ

ki

∂Re
(k,Ekµ)

∂ki

]−1

, (17)

where

Zkµ =

[

1 −
∂Re
(k,ω)

∂ω

∣

∣

∣

∣

ω=Ekµ

]−1

(18)

is the quasiparticle renormalization factor. The experimental

values of these materials are strongly dependent on electron

concentration but typically m ≈ 0.03.42,49 The GWA clearly

improves the agreement with experiment. The quasiparti-

cle renormalization factor Zkµ is typically 0.7–0.8 giving

1/Zkµ ≈ 1.5, and since m
QP
kµ/mLDA

kµ ≈ 0.5, we can conclude

from the above equation that the k dependence of the self-

energy must be strong, which is a result of the k-dependent

orbital character of the lowest conduction band, changing from

chalcogenide p to Hg 6s as we approach the Ŵ point.

D. Spin-orbit splitting

The spin-orbit splitting � at the Ŵ point is defined as � =
EŴ8

− EŴ7
. As displayed in Table II, the spin-orbit splittings

of HgSe and HgTe are enhanced by about 0.1 eV as a result

of the GW self-energy correction, bringing them closer to

experiment. Since the spin-orbit splitting itself is of the same

order of magnitude, this is a significant improvement, which

has not been observed by Fleszar and Hanke,25 who included

the spin-orbit coupling perturbatively after the GW correction.

Obviously, many-body renormalization effects not only affect

the negative inverse band gap but also the spin-orbit splitting,

even though the spin-orbit coupling is predominantly a one-

particle phenomenon. Thus at least for compounds containing

chemical elements with high nuclear numbers such as, for

example, Hg, Tl, Pb, or Bi, a purely perturbative treatment of

spin-orbit coupling is not sufficient, and the self-energy must

be taken as a full 2 × 2 matrix in spin space as is done in this

work.

E. Self-energy analysis

In order to analyze the self-energy effect on the inverse band

gap and the spin-orbit splitting, we plot in Figs. 3(a) and 3(b),

TABLE III. Theoretical electron effective masses at the Ŵ point

for [111] (Ŵ → L) and [100] (Ŵ → X) directions.

HgS HgSe HgTe

LDA GW LDA GW LDA GW

m[111] 0.27 0.15 0.34 0.16 0.30 0.17

m[100] 0.21 0.15 0.23 0.15 0.19 0.14

085144-6



GW CALCULATIONS INCLUDING SPIN-ORBIT . . . PHYSICAL REVIEW B 84, 085144 (2011)

W L Γ X K
-4

-3

-2

-1

0

1

2

3

4

E
n

e
rg

y
 [

e
V

]

W L Γ X K
-4

-3

-2

-1

0

1

2

3

4

E
n

e
rg

y
 [

e
V

]

W L Γ X K
-4

-3

-2

-1

0

1

2

3

4

E
n
e
rg

y
 [

e
V

]

(a) β-HgS

(b) HgSe

(c) HgTe

Γ
6

Γ
7

Γ
8

Γ
6

Γ
7

Γ
8

Γ
6

Γ
8

Γ
7

FIG. 1. (Color online) Band structures of HgX (X = S, Se,

and Te) calculated with LDA (solid lines) and GW (circles).

All calculations include spin-orbit coupling nonperturbatively. The

vertical bars scale with the projection of the wave functions onto the

Hg 6s state. The dashed lines are a guide to the eye.

respectively, the exchange and correlation contributions to

the self-energy correction for the Ŵ6, Ŵ7, and Ŵ8 states.

The exchange self-energy correction, which is defined as
∑

αβ〈φα
kµ|
x

αβ − vxcδαβ |φβ

kµ〉, has a pronounced effect on the

quasiparticle band structure. The Ŵ6 state shifts upward by

around 2 eV, whereas the other two shift downward by 1–2 eV.

The large upward shift can be understood by noticing that the

Ŵ6 state is mainly of conduction-band-like Hg 6s character.

Therefore it has little overlap with the valence states so that this

state experiences a much weaker exchange interaction than the

other two states. This peculiar, strong k and band dependence

of the self-energy correction is a very unusual but characteristic

feature of the band inversion in these materials. It should be

observed in other systems with inverted band structures, too.

The exchange part of the self-energy correction has a profound

effect on the spin-orbit splitting, which is reduced by about

1 eV in the case of HgS, while it is increased by as much

as 1 eV for HgSe and HgTe. The inclusion of the correlation

self-energy strongly compensates the large effect of the bare

exchange, as shown in Fig. 3(b), but a small correction remains
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FIG. 2. (Color online) Band structure of HgX (X = S, Se, and

Te) as shown in Fig. 1 magnified around the Ŵ point. Labels indicate

GW results.

and yields values in good agreement with experiment, as we

have seen in Table II. Obviously, the self-energy correction

of the spin-orbit splitting is subject to a balance between

the state-dependent exchange and correlation contributions,

in much the same way as in the case of the band gap. As

shown in Table II, the enhancement of the spin-orbit splitting

can also be seen at the L and X points, and the calculated

values agree well with experiments, except for the splitting

at the X point of HgSe. The renormalization of the spin-orbit

splitting due to the self-energy correction is also found with

a two-dimensional Rashba model Hamiltonian by Chen and

Raikh.51

To analyze the effect of spin-orbit coupling on the self-

energy in more detail, we show in Tables I and II in parentheses

results obtained with the screened Coulomb interaction W

calculated without spin-orbit coupling. In these calculations,

P and W are generated from LDA wave functions and energies

obtained from a one-shot diagonalization of the spin-orbit-free

Hamiltonian with the same effective potential as for the other

calculations. For all other quantities, in particular the Kohn-

Sham Green function in Eq. (5), we use the fully relativistic

spinor wave functions. As can be seen, the difference to the

original values is very small, on the order of ten meV. This

indicates that virtual transitions into high-lying states yield the

dominant contribution to screening so that spin-orbit effects,

which are confined to a very small energy region around the
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FIG. 3. (Color online) Self-energy correction for the states Ŵ6,

Ŵ7, and Ŵ8: (a) only bare exchange and (b) full GW correction. The

lines are a guide to the eye.

Fermi energy, give only a minor correction. This also implies

that the corrections of the negative inverse band gap and the

spin-orbit splitting have their origin in the “static” part of the

self-energy, i.e., the Green function in Eq. (5), which suggests

that one may be able to simplify the GW calculations by

including the effect of the spin-orbit coupling only in G, thus

avoiding the time-consuming calculation of the polarization

function with twice as many band states.

F. Ordering of states

Finally, we briefly mention the ordering of the states at

the Ŵ point, which is still under debate, as obtained from the

quasiparticle correction. We obtain from top to bottom Ŵ7 −
Ŵ8 − Ŵ6 in HgS, Ŵ8 − Ŵ7 − Ŵ6 in HgSe, and Ŵ8 − Ŵ6 − Ŵ7 in

HgTe. In experiment, the ordering is Ŵ8 − Ŵ6 − Ŵ7 in HgSe

and HgTe. The discrepancy between theory and experiment in

HgSe is most likely to be attributed to the still underestimated

inverse gap in GW . The HgS case is more difficult to assess.

Experimentally, the gap of HgS is negative,41,42 indicating

that HgS has an inverted band structure. In contrast, Fleszar

and Hanke25 showed that in HgS the Ŵ6 state is above the

Ŵ8 state within the GWA, which indicates that HgS has a

“normal” band structure, except for the negative spin-orbit

splitting, with the ordering Ŵ7 − Ŵ6 − Ŵ8. Moon and Wei52

also obtained a normal band structure for HgS using the

LDA and a semiempirical local potential. Their ordering is

Ŵ6 − Ŵ7 − Ŵ8, with a band gap of 0.30 eV. On the other

hand, in our calculation Ŵ6 is, in fact, slightly below the Ŵ8

state, giving rise to an inverted band structure, in qualitative

agreement with experiment. However, the inverse gap of

−0.02 eV deviates somewhat from the experimentally found

values of −0.15 eV, Ref. 41, and −0.11 eV, Ref. 42. Further

experimental studies, including the determination of the sign

of the spin-orbit splitting, would be helpful to settle this issue.

IV. CONCLUSIONS

In this paper, we have implemented a fully spin-dependent

formulation of the GW approximation, which allows us to

describe many-body renormalization effects that arise from

spin-orbit coupling. This approach goes beyond a mere

perturbative treatment within LDA and takes into account

the spin off-diagonal elements of the Green function and

the self-energy, which emerge as a result of the coupling

of spatial and spin degrees of freedom. The core, valence,

and conduction states of the reference one-particle system are

treated fully relativistically as four-component spinor wave

functions.

We have applied the scheme to quasiparticle calculations

of mercury chalcogenides and found that the self-energy

correction has a noticeable effect on their electronic band

structures. These systems exhibit an inverted band structure

due to strong relativistic effects. In LDA their band gaps

are correctly predicted to be negative. However, quantita-

tively, they are far too negative compared to experiment,

leading to an overestimated band inversion. In accordance

with previous studies, we obtain a considerable quantitative

improvement of the inverse band gap within the GW ap-

proximation, bringing the calculated values much closer to

experiment.

Furthermore, we find an unprecedented many-body renor-

malization of the spin-orbit splitting that amounts to about

0.1 eV. This renormalization significantly improves the theo-

retical values with respect to experiment (with the exception of

the spin-orbit splitting at the X point of HgSe). It is important

to note that this renormalization effect is inaccessible in a

pure perturbative treatment of spin-orbit coupling, and a full

spin-dependent formulation is essential.

We have analyzed the self-energy correction of the inverse

band gap and could trace it back to the inverted band structure:

the lowest conduction band changes character from Hg 6s to

chalcogenide p as one approaches the Ŵ point, whereas the

valence band containing the Ŵ6 state shows the opposite trend.

This change of orbital character gives rise to a self-energy

with a pronounced k dependence, which selectively pushes

the conductionlike Ŵ6 state up in energy, effectively reducing

the inverse band gap and bringing it closer to experiment.

Another interesting finding is the reduction of the electron

effective mass by a factor of 2 as compared with the LDA

value. For the case of HgSe this was already reported in

Ref. 24. We have shown that the origin of this reduction

can also be attributed to the strong k dependence of the

self-energy. We suggest further experimental studies on β-HgS

semiconductors to settle finally the presence of an energy gap

in this system.

We have investigated the effect of spin-orbit coupling

on the screened interaction and found it to be minor in

the systems studied, implying that the spin-orbit induced

changes of the GW self-energy originate mainly from the

single-particle Green function. This finding may allow for a

simplification of GW calculations with spin-orbit coupling

where the fully relativistic wave functions—including the spin-

orbit coupling—are only used for the Green function, while the

screened interaction is constructed from the scalar-relativistic,

spin-orbit-free wave functions, thereby saving a large amount

085144-8



GW CALCULATIONS INCLUDING SPIN-ORBIT . . . PHYSICAL REVIEW B 84, 085144 (2011)

of computational effort. It would be interesting to investigate

if this finding also applies to other systems, e.g., the Ir-based

systems such as Sr2IrO4, in which spin-orbit coupling modifies

the band structure considerably.

The fully spin-dependent GWA presented here, in which

spin-orbit coupling has been included in a consistent way,

provides a reliable methodological approach to investigate the

fine details of the electronic structure of topological insulators.

These materials frequently contain chemical elements with

high nuclear numbers, which are decisive for the physics

induced by large spin-orbit interaction.
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