001     16694
005     20230426083027.0
024 7 _ |a 10.1103/PhysRevB.84.115443
|2 DOI
024 7 _ |a WOS:000295163100011
|2 WOS
024 7 _ |a 2128/10917
|2 Handle
037 _ _ |a PreJuSER-16694
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Tsukamoto, S.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Stabilized scattering wave-function calculations using the Lippmann-Schwinger equation for long conductor systems
260 _ _ |a College Park, Md.
|b APS
|c 2011
300 _ _ |a 115443
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review B
|x 1098-0121
|0 4919
|y 11
|v 84
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We are gratefully acknowledge Professor T. Ono of Osaka University for a number of comments and suggestions. This work is supported in part by the Strategic Japanese-German Cooperative Program of the Japan Science and Technology Agency and the German Research Foundation. Some of the computations were carried out by the supercomputer JuRoPa at Julich Supercomputing Centre, Forschungszentrum Julich.
520 _ _ |a We present an improvement of the Lippmann-Schwinger equation method, which calculates electron-scattering wave functions of a nanoscale conductor suspended between a pair of electrodes. The improvement eliminates the numerical collapse which frequently occurs while solving the Lippmann-Schwinger equation for long conductor systems and originates from evanescent wave components of the retarded Green's function of the Lippmann-Schwinger equation. We introduce regularization and ratio expression into the Green's function matrix and discover that the resultant Green's function does not suffer from the numerical collapse without increasing computational cost. As a performance test, we carry out electron transport calculations of Al monoatomic linear chains with a length of up to 75.6 bohrs. The numerical test demonstrates that the improved Lippmann-Schwinger equation method is applicable to long conductor systems with no numerical collapse and adequate computational accuracy.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
542 _ _ |i 2011-09-23
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Egami, Y.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Hirose, K.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Blügel, S.
|b 3
|u FZJ
|0 P:(DE-Juel1)130548
773 1 8 |a 10.1103/physrevb.84.115443
|b American Physical Society (APS)
|d 2011-09-23
|n 11
|p 115443
|3 journal-article
|2 Crossref
|t Physical Review B
|v 84
|y 2011
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.84.115443
|g Vol. 84, p. 115443
|p 115443
|n 11
|q 84<115443
|0 PERI:(DE-600)2844160-6
|t Physical review / B
|v 84
|y 2011
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.84.115443
856 4 _ |u https://juser.fz-juelich.de/record/16694/files/PhysRevB.84.115443.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/16694/files/PhysRevB.84.115443.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/16694/files/PhysRevB.84.115443.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/16694/files/PhysRevB.84.115443.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/16694/files/PhysRevB.84.115443.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:16694
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|g PGI
|x 0
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)130888
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)VDB881
999 C 5 |a 10.1017/CBO9780511755606
|1 M. Di Ventra
|2 Crossref
|9 -- missing cx lookup --
|y 2008
999 C 5 |a 10.1103/RevModPhys.71.S306
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/CBO9780511805776
|1 S. Datta
|2 Crossref
|9 -- missing cx lookup --
|y 1995
999 C 5 |a 10.1103/PhysRevB.67.115404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.165401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.74.1079
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.245412
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.51.5278
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.82.056706
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.195118
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.67.195315
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.52.5335
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.49.2067
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.81.3515
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.18.616
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.035459
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.64.121402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.66.161402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1783251
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.67.153304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.045402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.64.125323
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.84.979
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.41.7491
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0368-2048(97)00239-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 N. D. Lang
|y 1973
|2 Crossref
|t Solid State Physics
|o N. D. Lang Solid State Physics 1973
999 C 5 |a 10.1103/PhysRevB.1.4555
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.181.522
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 M. Thuthu
|y 2008
|2 Crossref
|t Computer Mathematics
|o M. Thuthu Computer Mathematics 2008
999 C 5 |a 10.1142/p370
|1 K. Hirose
|2 Crossref
|9 -- missing cx lookup --
|y 2005
999 C 5 |a 10.1103/PhysRevB.72.085115
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.82.5016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.43.1993
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0927-0256(98)00074-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.tsf.2004.06.085
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0039-6028(99)00024-2
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21