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‘We present an improvement of the Lippmann-Schwinger equation method, which calculates electron-scattering
wave functions of a nanoscale conductor suspended between a pair of electrodes. The improvement eliminates the
numerical collapse which frequently occurs while solving the Lippmann-Schwinger equation for long conductor
systems and originates from evanescent wave components of the retarded Green’s function of the Lippmann-
Schwinger equation. We introduce regularization and ratio expression into the Green’s function matrix and
discover that the resultant Green’s function does not suffer from the numerical collapse without increasing
computational cost. As a performance test, we carry out electron transport calculations of Al monoatomic linear
chains with a length of up to 75.6 bohrs. The numerical test demonstrates that the improved Lippmann-Schwinger
equation method is applicable to long conductor systems with no numerical collapse and adequate computational

accuracy.
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I. INTRODUCTION

In view of the recent progress in nanostructure fabricating
technology, electron transport properties of nanoscale func-
tional systems have attracted a great deal of attention over the
years, because electron transport properties are recognized as
one of the critical issues for developing nanoscale functional
electronic devices in the near future. So far, a number of
studies have been conducted experimentally and theoretically
for electron transport through nanostructures, e.g., tunnel-
ing junctions, quantum point contacts, atomic chains, and
organic molecules suspended between a pair of electrodes.'
In the field of theoretical study, various types of calculation
methods have been developed to simulate scattering wave
functions inside nanostructures and to investigate their electron
transport properties, including the nonequilibrium Green’s
function method,? the recursion transfer matrix method,? the
overbridging boundary matching method,* and the Lippmann-
Schwinger equation method.>’

The Lippmann-Schwinger equation method, which we are
focusing on here, was first developed by Lang and Williams
and applied to a study of atomic chemisorption on a metal
surface.® This method solves the integral equation of the
second-kind Fredholm type with respect to an unknown
scattering wave function 1 (r) under an effective potential
Ver(r), referred to as the Lippmann-Schwinger equation:

W (P) = brrlr) + / Gr.F)WVarr () dr,

(1
Viaig(r) = Vegp(r) — Vier(r).

Here ¢pyef(r), Viet(r), and G(r,r’) are the scattering wave func-
tion, potential, and retarded Green’s function of a reference
system, respectively. After several improvements, this is now
considered to be an accurate and rapid method for computing
scattering wave functions of a nanostructure between a pair of
electrodes and has been used for a number of investigations
on electron transport properties.”™'* One of the improvements
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is that by keeping the reference potential Vi(r) constant
over the plane perpendicular to the direction of electron
flow, the three-dimensional real-space representation of the
Lippmann-Schwinger equation (1) can be transformed into
the Laue representation, in which functions are expanded using
plane waves only in the directions perpendicular to electron
flow. Moreover, the resultant retarded Green’s function G(r, ")
can be written in a variable-separable form. On the basis of this
improvement, computational costs for numerical integration
in the Lippmann-Schwinger equation (1), which is the most
expensive part in terms of both memory consumption and
executing time, can be drastically reduced. The other improve-
ment is that the Green’s function in the Laue representation
can be obtained analytically if the reference potential Vie(r)
is selected as a simple function along the direction of electron
flow, e.g., a constant or rectangular function.'* In practical sim-
ulations of electron transport through nanoscale conductors,
rectangular reference potential is certainly appropriate, since
rectangular reference potential obviously approximates a pair
of bare electrodes without any nanostructures between them.
Indeed, rectangular reference potential works successfully in
several electron transport calculations.>°~!2

When rectangular reference potential is adopted for a long
conductor system such that a long nanowire or a large molecule
is sandwiched between a pair of electrodes, one may encounter
the numerical difficulty that a component that is a part of the
Green’s function in the variable-separable form diverges in
an exponential manner due to the appearance of evanescent
waves. This is obviously critical in practical computation
using the Lippmann-Schwinger equation method. Therefore,
to simulate electron transport properties of more realistic
large-scale systems, it is important to find an alternative
solution or an improvement to avoid the numerical collapse.

In this paper, we propose the procedure of regularization
and ratio expression for the Green’s function matrix elements
as a solution for avoiding the numerical collapse. The intro-
duction of the regularization and ratio expression successfully
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contributes numerical stability to practical computation while
avoiding an increase in computational cost, and we have
confirmed reasonable electron transport property even for a
long Al monoatomic chain with the length of 75.6 bohrs
without any numerical collapse.

This paper is organized as follows: Sec. II starts with
a concise description of the Lippmann-Schwinger equation
method. Then the variable-separable form of the Green’s
function and the numerical collapse incidental to the separable
form are stated. Next, we introduce a regularization and
ratio expression into the Green’s function matrix. In Sec. III
we demonstrate the numerical stability of the Lippmann-
Schwinger equation method adopting the regularization and
ratio expression. Throughout this paper, we use the bohr
unit for length (1 bohr = 0.529 A), Ry unit for cutoff energy
(1 Ry = 13.6 eV), and hartree unit for energy other than cutoff
energy (1 hartree = 27.2 eV).

II. LIPPMANN-SCHWINGER EQUATION METHOD

A Schrodinger-like equation under an effective one-
electron potential Vg(r) with respect to a scattering wave
function ¥ (r) is transformed into a Lippmann-Schwinger
Eq. (1), which includes a retarded Green’s function G(r,r’).>
The equation describes the notion that electrons in a reference
system are elastically scattered by the potential difference
Viie(r). For the determination of scattering wave functions of
a system using the Lippman-Schwinger equation method, two
different types of boundary condition have been conventionally
applied to a computational supercell, i.e., periodic boundary
conditions in the x and y directions and an open boundary
condition in the z direction normal to the electrode surface,
as shown in Fig. 1. In the simplest implementation, a part
deep in each semi-infinite electrode is approximated by a
jellium model' (solid parts in Fig. 1), which has a uniform
background positive charge distribution and hence a constant
potential.!® The atomic structure connecting the jellium parts
is treated as a perturbation, and the jellium system is then
regarded as a reference system. This treatment results in
the reference potential Vi.¢(7) being constant over the x-y plane
as Vier(r) = Vier(z). Owing to the one-dimensional reference
potential, the Lippmann-Schwinger equation expressed in
the three-dimensional real-space representation Eq. (1) can
be transformed into the Laue representation, which employs
a two-dimensional plane-wave expansion in the x and y
directions and a real-space expression in the z direction, i.e.,

W(l)(Z) — ¢r(é)t(z) + S/g(l)(z’z/) Z Vd(il;l/)(z/)w(l')(z/) dz,
l/

®)
V) = VO2) = Vier(@)810-

where / is the index of a plane-wave expansion component,
and S is the cross section of the supercell in the x and
y directions. ¥ (z), p{i(z), GV(z,2)), and Vd(ilf)(z) are the

ref
plane-wave expansion coefficients of unknown scattering
wave function, reference wave function, retarded Green’s
function, and potential difference in the Laue representation,

respectively. The reference wave function is obtained by
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FIG. 1. Schematic representation of a conventional system that
has been frequently used in electron transport calculations. An atomic
structure is sandwiched between a pair of bare electrodes of a jellium
model. The periodic boundary condition is applied in the x and y
directions (horizontal dashed lines), and the open boundary condition
is in the z direction (vertical dashed lines).

solving a one-dimensional Schrodinger-like equation under
the reference potential Vi¢(z) as

[AD + Vir@]#0) = E@D(2).

1 d? 1
S g0
2d12+2| |

(3)
AD =

where G is the two-dimensional wave-number vector of the
Ith plane-wave expansion component, and E is the energy
of electrons injected into the system through either of the
supercell boundary planes at z = z; and z = zy, which have
an open boundary condition. For simplicity of description, the
two-dimensional Bloch wave vector is not written explicitly.

The retarded Green’s function in the Laue representation,
G (z,7), also satisfies a one-dimensional differential equation
under the reference potential Vie(z):

(£~ (A0 + Ve()]6"@2) = 3 =) @)

Note that when reference potential Vie(z) is chosen so as
to be the same as the effective potential Ve(éf) (z) outside the
supercell boundary planes at z = z; and z = zy, potential
difference Vd(ft) (z) is zero outside the boundary planes (z < z;
and zy < z). Therefore, the integration range in Eq. (2)
becomes finite as the interval [z1, zy].

A. Separable form of the Green’s function
and numerical collapse

The retarded Green’s function in the Laue representation,
G®¥(z,7), is known to be written in a variable-separable
form;>!? i.e., each plane-wave expansion component of the
Green’s function is described as a product of a pair of
one-dimensional scattering wave functions yif)(z) and yg)(z),
which are injected into the reference system from deep in the
left and right electrodes, respectively, as follows:

YWy, <7

YW@, <z

1 2
O] N = _
g (Z’Z)_S {

o) &)
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Here W is Wronskian being independent of the z coordinate
and is defined by

Weo o W
woh =4

d )
0 0
e y2'(2) e v+ (2)

(6)

The Green’s function components yi)(z) satisfy the homo-
geneous differential equation (3) as

[AD + Vier(2) — E]yP(2) = )

Since reference potential Vi.(z) is assumed to be constant on

the supercell boundary planes at z = z; and z = z, the bound-

ary conditions of the solution yﬁ_f) (z) can be described as linear

combinations of injected, backscattered, and transmitted plane

waves. Therefore, the homogeneous differential equation (7)
is solved under the boundary conditions

0 0
(1) eifi'z 4 rﬁ)e—lkl T <z
( )= 0 ikdz ®)
et IN <2Z
and
O —ik"
e <171
0] —
- @)= —ik0z O ikDz ’ ©)
e "N 4 rletN IN < Z

Here kgl()N) is the wave number along the z direction at
the outside of the boundary plane z < z; (zy < z), and
KOy, = V2[E — Veer(zin))] — [GD2. The coefficients 7Y
and til) are the reflection and transmission coefficients for
the reference potential, respectively, and [r{|? + |£{|2
satisfied.

It is clear that the variable-separable form of the retarded
Green'’s function is highly advantageous for numerical integra-
tion of the Lippmann-Schwinger equation (2), because either
yﬁ) (z) or y(,l)(z) as a function of the variable z can be separated
from the Lippmann-Schwinger integration over the variable
7/, and the integration no longer depends on the variable z.
In numerical computation, the real-space z axis is divided into
fine grids z; for discretization, and hence, the Green’s function
in the separable form shown in Eq. (5) can be rewritten in a
matrix form:

=1is

O @ @ @ (OO
Y1+ y 1y+2 Yo YeN
@ @ @) O @
1 2 Y_1Yio y 2y+2 o Yo VeN

A0 _ L2
SWO

yg?lyﬁ?N yg?zygi?zv » Ny—(i)N

(10
where yi) ;= yi) (z;). To solve the simultaneous linear equa-
tions derived from the Lippmann-Schwinger equation (2),
conventional conjugate gradient solvers are not applicable
since the Green’s function matrix is not Hermitian but
symmetric. However, some types of the bi-conjugated gradient
method (BiCG) are still available.'”
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FIG. 2. An example of rectangular-shaped reference potential.
The z space is divided into three regions: left, center, and right regions,
which correspond to z < 71, 7L < Z < zg, and zg < z, respectively.

We introduce a simple rectangular function, as shown in
Fig. 2, for the one-dimensional reference potential Vi.¢(z):

\%3 Z<2ZL
Vit@ = Ve zo<z<zr. (11)
VR R <2

The introduction of the simple-shaped reference potential
offers several advantages for practical computation: One is
that the Green’s function components y:(é)(z) are analyti-
cally determined as described in the Appendix. The other
is that the rectangular reference potential tends to give
relatively faster convergence in a BiCG procedure when
solving the Lippmann-Schwinger equation as a set of si-
multaneous linear equations.'® Owing to the analytical form
of the Green’s function components yi)(z), the Wronskian
W® given by Eq. (6) can be represented in an analytical
form as

SIkS)kg)kg) zkﬁ)zLe—sz zRezkc)(zR 7L)

) _
Wi = W(l)

12)

with
Wy = (k¢ + k) (ke + &)
— (k= 1) (k) — k) e e 13)
where k(Ll) s k(cl), and kg) are the wave numbers along the z
direction in the left, center, and right regions of the rectangular

reference potential shown in Fig. 2, respectively. The wave
numbers are defined by

kl(f()c,m = \/2[E — Vuern] — IGV2. (14)

Note that when 2[E — Vi cr)] — |G?|? < 0, the wave number
k](f(c R) can be analytically continued to an imaginary number

0]
as kL(C’R) = lKL(C’R), where

Kg()c R) = \/|G(])|2 —2[E — Vi cryl- (15)

The introduction of the separable form of the Green’s func-
tion succeeded in drastically reducing computational costs,"
but it also raises the possibility of a numerical collapse that
frequently occurs for long conductor systems. The numerical
collapse occurs in the prefactor of the Green’s function in
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the separable form Eq. (10), in which the Wronskian W
appears as the denominator. When one treats a system with a
large separation between electrodes, the width of a rectangular
reference potential zg — zr. becomes large. Moreover, when
one takes the length of the two-dimensional wave-number
vector |G| large enough to retain the accuracy in plane-wave
expansion, the wave number in the z direction at the center
region, k. becomes a large imaginary number, as seen
in Eq. (15). According to the definition of the Wronskian
equation (12), the numerator goes to zero in an exponential
manner, while the denominator remains at a finite value of
(kc + k)(kc + kr)as seenin Eq. (13). Hence, as system length
increases, the Wronskian W with a high-order plane-wave
expansion goes to zero, and division by zero occurs in the
computation of the prefactor of the Green’s function Eq. (10).%°
Furthermore, when the system size is large as z; < —1 or
zy > 1, the Green’s function components yf(z) retain the
potential to diverge exponentially according to their definitions
Egs. (Al) and (A2). Therefore, with respect to using the
conventional separable form, sufficient cutoff energy in the
plane-wave expansion would not be available when treating
long conductor systems.

D, DyR_
DRy Ds
g . 1
T S| DiR 2Ry 3 DR, 3
N N
D11_[R+,j DzHR+,j
i=2 =3
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B. Regularization and ratio expression of the Green’s function
matrix elements

To avoid the above-mentioned numerical collapse in the
practical computation of electron-scattering wave functions
using the Lippmann-Schwinger equation method, we here
introduce regularization and ratio expression into the Green’s
function matrix. Except where it is important, we will
not explicitly write the index of the plane-wave expansion
components, /, in the following in order to avoid complication.

So that the Wronskian W causing the numerical collapse
does not explicitly appear in the Green’s function matrix, we
regularize the diagonal elements and describe the nondiagonal
elements by the ratio expression. If two quantities, D; and
R ; are introduced, defined by

2
Dj=37y-iy+i
_ i
R., = : (16)
Y+.,j-1
R*,j = y_Yj ,
Y—,j+1
the Green’s function matrix Eq. (10) can be rewritten as
1
DsR_,R_ Dy ]_[ R_;
j=N-1
2
D3R_; Dy l_[ R_;
j=N-1
2 17
D Dy [ R an
j=N—-1
N
Ds[[Re; - Dy
j=4

Note that the matrix elements in Eq. (17) are no longer in a separable form. However, computational cost for the matrix-vector
product operation is the same as the case of the variable-separable form, as mentioned later.
The diagonal elements of the Green’s function matrix, D;, which are defined by y. ; and W as Eq. (16), are analytically

rendered by

1 2k (kc+kr) 2k (ke—kr) ,2ikc(zr—z1) __ 2iky(z.—2;) )
ik14{1+[ wo T Tow, e o l]e L /} Zj<zL

L[(kc-‘rkL)(kc-‘rkR) + (kC_kL)(kC_kR)eZikc(ZR*ZL)

D _ ikc Wo Wo

+(kC+kL)(kC*kR)ezikc(ZR—Z,') 4 (ke =k )(ketkp) ike(z; —zL)]
W() WO

(18)

L <Zj <ZRr

1 2kg (kc+k 2kg (kc—k; 1 - ikn(z:—
K{1 + [ R(WC0+ L) + R(V!So L)EZIkC(ZR L) _ 1]€2lkR(4‘_/ zk)} R <2

As far as the wave number & cr) is a real number [see Eqs. (14) and (15)], exponential terms seen in Eq. (18) are just complex
numbers with the absolute value of 1. On the other hand, when the wave number ki (c ry is an imaginary number, these exponential
terms are real numbers and are not more than 1. It should be emphasized that no exponential divergence occurs in any diagonal
elements D;. Even if the wave number kc is a large imaginary number and the width of the rectangular reference potential
zr — 21 1s large, the denominator W still has a finite value of (k¢ + ki )(kc + kr), and therefore, division by zero or infinity
never occurs in the practical computation of the regularized diagonal elements D;.

115443-4



STABILIZED SCATTERING WAVE-FUNCTION ...

PHYSICAL REVIEW B 84, 115443 (2011)

In the same manner, the ratios R ; are also given in analytical forms by

2ikp (z—2j
pikih 1470 -2y

1+r+voe2ikL(zL—z/,1)

Z; <ZL

elikch (kc+kk)+(kc—kk)§fk’ki(zii?’j))
(kc+kr)+H(kc—kg)e™ "CRTZ-1
zkce"kC(YR*A’/‘—])efkR(Yf’TR)
(kek)+H(ke —k)e ™ CR =551
pikrh

and
eikLh

cheikc(zHl —21) pikLeL 7))
(k) +(ke —ky )e™ € Ei+173L)

ikch _(ketk)+(ke—ky)e i)
J= (ke+k)+ke—ky e CE+173L)

2k, yiki(zL—zj-1) pike(zj—z1) (kethr)+(ke —kg)e*CERTZ)
Wo 1+r+_0921kL(2L71f*‘)

Zj—1 <Z2L <Zj <Zr
L < Zj-1,3j <ZR (19)

AL <Zj-1 <ZR <Zj

IR < Zj-1

Zj+1 < ZL
Tj <ZL < Zj+1 < 2R

L <Zj,Zj+1 <ZrR . (20)

pikrh A7 g RO R

I+ o G 1-R)

Here £ is real-space grid separation in the z direction; ry o are
defined in the Appendix. One can easily see that these ratios
R. ; do not exponentially diverge, and their absolute values
are less than 1 if the wave number k) is a large imaginary
number.

We thus obtain the regularization and ratio expression of
the Green’s function elements to avoid the numerical collapse
discussed at the end of Sec. IT A. Indeed, the numerical collapse
never occurs in the improved Lippmann-Schwinger equation
method in which the regularization and ratio expression are
adopted because the Green’s function components, D; and
R ;, are well defined without diverging, i.e., their absolute
values are less than 1 if wave number kpcpr) is a large
imaginary number, as seen in Egs. (18)—(20). Now we are
ready to calculate electron transport through a long conductor
between a pair of electrodes.

Here we briefly state the computational cost of the improved
method. According to Eq. (2), the Green’s function matrix
operates on a vector obtained by the product of the potential
difference V;{E(z) and the scattering wave function ?)(z).
The product of the Green’s function matrix and the resultant
vector still costs O(N), though the Green’s function matrix
is no longer in a separable form. This is easily understood
as follows: Decomposing the Green’s function matrix Eq. (17)
into upper and lower triangular matrices, and a diagonal matrix,
the product of each matrix and a vector is evaluated with
computational costs of O(N). For details, see p. 189 in Ref. 21.

III. PERFORMANCE TEST

In this section, we present electron transport calculations
of long conductor systems using both the improved and
conventional Lippmann-Schwinger equation methods, and
demonstrate the potential strength of the improved method
discussed above. All of the calculations to be presented in
this section are carried out as follows: Using an electronic

2y ikn(zj41—20) gike(er—2)) etk ke —ky e L)
Wo 1+r_ ge” R j+17R)

AL <Zj <ZrR <Zj+1

IR < Zj

structure calculation method based on the real-space finite-
difference method,>"?> we calculate self-consistently the
ground electronic state of a conductor system including jellium
electrodes. The self-consistent potential and pseudopotential
information?® thus determined is transmitted to the electron
transport calculation codes based on the improved and con-
ventional Lippmann-Schwinger equation methods. In the test
we calculated scattering wave functions for the self-consistent
potential obtained from the electronic structure calculations.
For a performance test, we employ long and simple systems
with Al monoatomic linear chains. Figure 3 depicts a schematic
representation of the Al chain systems, in which an atomic
linear chain composed of N Al atoms is directly sandwiched
between a pair of Al jellium electrodes. The Wigner-Seitz
radius, which is the only parameter of the jellium model, is set
to 2.0 bohrs, corresponding to the valence electron density of
Al bulk. The number of atoms, N, changes to 3, 8, and 15 with
the chain lengths of 10.8, 37.8, and 75.6 bohrs, respectively,
in which the atom-atom distance is fixed to 5.4 bohrs.!*->*
The distance between an end atom and the nearest electrode
surface is also fixed at 2.6 bohrs.>!%24 Therefore, the width
of the rectangular reference potential zg — zr., which is one
of the essential parameters concerning numerical collapse in
the conventional Lippmann-Schwinger equation method, is
measured as 16.0, 43.0, and 80.8 bohrs for N = 3, &, and 15,
respectively. The supercell dimension in the x and y directions

!O 0:--0 O!

N Al atoms

FIG. 3. A schematic representation of the Al chain systems used
in the performance test. Spheres and black solid parts represent Al
atoms and jellium parts, respectively.
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is 15.3 x 15.3 bohrs?. The other important parameter kg) is
evaluated using Eq. (14), which is associated with the height of
the rectangular potential 0.48, 0.47, and 0.47 for N = 3, §, and
15, respectively. In the performance test, we calculate electron
transmission under the assumption of the zero-bias limit.
The two-dimensional cutoff energy of plane-wave expansion,
Eﬁ?), is taken to be 43.17 Ry. The real-space grid spacing
in the z direction is ~0.47 bohr, which corresponds to a
cutoff energy of 44.68 Ry in the conventional plane wave
method.

Using the conventional method for computing the Wron-
skian W according to Eq. (12), we regard exp(¢) as enough
small that division by zero can occur, when A =i k(cl)(zR —2zL)
is real and smaller than a threshold value A, (referred
to as cutoff condition in the following). Thus, plane-wave
expansion components of the Green’s function satisfying
the cutoff condition are excluded from the computation to
complete calculations. This exclusion of information results in
the reduction of two-dimensional cutoff energy of plane-wave
expansion, Eéﬁ?), because the wave number k(cl) is associated
with the two-dimensional wave number vector G, as seen in
Egs. (14) and (15).

Figures 4(a)-4(c) show electron transmissions as a func-
tion of energy of incident electrons for N =3, 8, and 15,
respectively. One transmission curve (black solid) is obtained
from the improved method, and the other two are obtained
from the conventional method with the cutoff conditions
Ayt = —100 and —200. The cutoff condition A = —100 is
looser and introduces a lower two-dimensional cutoff energy
Eéi?) than Ac, = —200, as shown in Table I. In the case
of N = 3, the electron transmissions shown in Fig. 4(a) all
behave the same, even for the looser cutoff condition of
Acye = —100. This is because the width of the rectangular
reference potential is still small enough, and essential plane-
wave expansion components of the Green’s function are not
excluded. Notably, these electron transmission curves are in
good agreement with those reported in previous studies using
a conventional Lippmann-Schwinger equation method”'” and
using the recursion transfer matrix method.?
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TABLE I. Two-dimensional cutoff energy of plane-wave expan-
sion, Eﬁ?), taken into account in the performance test using the
conventional method. Note that the cutoff energy is a function of the

energy of incident electrons, E, as seen in Eq. (14).

Ace = —100 Acye = —200

N E=-0.25 E=0.0 E=-0.25 E=0.0
3 38.49 Ry 38.99 Ry 43.17 Ry 43.17 Ry
8 4.85 Ry 5.35Ry 21.05 Ry 21.55 Ry
15 0.97 Ry 1.47 Ry 5.58 Ry 6.08 Ry

In the case of N =8 shown in Fig. 4(b), the electron
transmission for the looser cutoff condition of A, = —100
exhibits different behavior than the others; e.g., the transmis-
sion curve of Ay = —100 has the first onset at a higher

energy than the two other curves that behave in the same
way. This difference is caused by the exclusion of essential
plane-wave expansion components of the Green’s function,
which leads to the limitation of the two-dimensional cutoff
energy Eéﬁ? as seen in Table I. The cutoff energies for N = 8
and Ay = —100 are not sufficient to describe the scattering
wave functions of the Al chain system correctly.?® For the other
case with the stricter cutoff condition of A, = —200, the
electron transmission is coincident with that obtained by the
improved method, because the computation for A, = —200
still takes into account the two-dimensional cutoff energy of
the plane-wave expansion up to 21.05 Ry.

We now proceed to the model of the longest Al linear
chain, in which 15 Al atoms are in a line with a length of
75.6 bohrs. As seen in Fig. 4(c), the three transmission curves
all exhibit different behavior. Focusing on the change in the
transmission curves against the length of the Al chain, we
can see that the first onset of the transmission curves obtained
by the conventional method moves to the higher-energy side
when the chain length is increased, while that obtained by
the improved method retains its position. As mentioned in
the previous paragraph, the shift of the onset position is
associated with insufficiency of the two-dimensional cutoff

(a) Energy E (eV) (b) Energy E (eV) (c) Energy E (eV)
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FIG. 4. (Color online) Electron transmissions of Al monoatomic linear chains as a function of energy of incident electrons. (a)—(c) show
the electron transmissions for N = 3, 8, and 15, respectively. In each diagram the transmissions are calculated using the improved method
(black solid curve) and using the conventional method with two different cutoff conditions of A, = —200 (red dashed curve) and —100 (blue
dotted curve). For cutoff conditions, see main text. The transmission curves are vertically shifted for visibility. The energy is measured from

the Fermi level.
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energy Eﬁ?) . Table I shows that not enough cutoff energy
is taken into account for the two calculations using the
conventional method. This suggests that for the longest Al
chain system, the conventional method with not only the
looser cutoff condition A.,; = —100 but also the stricter cutoff
condition Ay = —200 no longer works accurately due to the
large separation between the electrodes. On the other hand,
the Lippmann-Schwinger equation method that adopts the
procedures of the regularization and ratio expression succeeds
in calculating electron transmissions properly. In addition, the
improved method is applicable to long conductor systems,
for which the conventional Lippmann-Schwinger equation
method has encountered numerical collapse.

IV. CONCLUSION

To avoid numerical collapse in practical computation of
electron transport property using the conventional Lippmann-
Schwinger equation method, we introduced the procedures
of the regularization and ratio expression of the retarded
Green’s function matrix elements. Due to this introduction,
the computation of the Green’s function no longer suffers
from numerical collapse. Hence, large and long atomic and
molecular structures sandwiched between a pair of electrodes
can be treated to determine the electron-scattering wave
functions using the improved Lippmann-Schwinger equation
method. Employing long Al monoatomic linear chains up
to 75.6 bohrs, we also demonstrated the numerical stability
of the improved Lippmann-Schwinger equation method by
adopting the regularization and ratio expression. Electron
transport calculation under a finite bias-voltage application
will be addressed in our future investigations.
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APPENDIX: ANALYTICAL SOLUTION OF EQ. (7) UNDER
A RECTANGULAR POTENTIAL

When a rectangular shape is selected as a one-dimensional
reference potential Vir(z), as shown in Fig. 2, the pair of
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solutions of the differential equation Eq. (7), y+(z), can be
obtained in analytical form as

etkLz + r+efikLz 7<7zL
yi(z) = qage* +bemikt 7 <z <z (Al
t+eikRZ ZR < Z
and
t_gfikLz 7 <7zL
y_(2) = Ja_e i 4 p ekt 7 <z <zp, (A2)
e*l‘kRZ + V,é'ikkz R < 2

where r4 and 7. are reflection and transmission coefficients,
respectively. Here a, and b are coefficients of the propagating
and backscattering waves or evanescent waves in the center
region of the rectangular potential. Owing to the simple
shape of the potential, these coefficients are all determined
analytically as

re = 2ky (kc + kr) n 2ky (k¢ — kR)ezikc(zR_zL) 1
W() WO
x 2k = p, Gk

= ki kc eikLZLe_ikRZReikC(ZR—ZL)’
Wo (A3)
ZkL(kC +kR) i/(LZL —ikaL
ay = ——r——ee ,
0
b, = 2ky (ke — kR)eikLZLe—ikCZLeZikCZR’
Wo

L 2kr(kc + k1) n 2kr(kc — kL)ezikC(zrzL) _1
W() WO
Xe—zikRZR = rfq()e_ZikRZRy

dkrkc
= —e€
Wo
_ 2k (ke + ki) e*ikRZReikCZR
Wo ’

ikize p—ikrzR pikc(zr—21)
9

_ (A4)

— ZkR(kC — kL) e*ikRZR eikCZRe*ZikCZL

Wo ’
where W is determined by Eq. (13), and k., k¢, and kg defined
as Eqgs. (14) and (15) are the wave numbers in the z direction
in the left, center, and right regions of the reference potential,
respectively.
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