001     16696
005     20180208201529.0
024 7 _ |2 DOI
|a 10.1002/pssb.201147090
024 7 _ |2 WOS
|a WOS:000295972900005
024 7 _ |2 ISSN
|a 0370-1972
037 _ _ |a PreJuSER-16696
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Al-Zubi, A.
|b 0
|u FZJ
|0 P:(DE-Juel1)130498
245 _ _ |a Modeling magnetism of hexagonal Fe monolayers on 4d substrates
260 _ _ |c 2011
|a Weinheim
|b Wiley-VCH
300 _ _ |a 2242 - 2247
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
|x 0370-1972
|0 4914
|y 10
|v 248
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Mapping the total energies obtained from first principles calculations to model Hamiltonians is a powerful technique to explore the magnetic ground state of a system. We analyze the applicability of this approach in the presence of highly polarizable substrates, e. g. for an ultrathin Fe layer on Pd(111), Rh(111), Ru(0001), or Tc(0001). We find that the traditionally accepted model Hamiltonians (Heisenberg plus nearest neighbor higher-order spin Hamiltonians) are not sufficient to capture the magnetic interactions in these systems and examine new terms that can be included to improve the description. Challenges for this technique are exemplified by the double-rowwise antiferromagnetic (AFM) ground state predicted for Fe/Rh(111). (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a density functional theory
653 2 0 |2 Author
|a magnetic structures
653 2 0 |2 Author
|a model Hamiltonians
653 2 0 |2 Author
|a thin films
700 1 _ |a Bihlmayer, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)130545
700 1 _ |a Blügel, S.
|b 2
|u FZJ
|0 P:(DE-Juel1)130548
773 _ _ |0 PERI:(DE-600)1481096-7
|a 10.1002/pssb.201147090
|g Vol. 248, p. 2242 - 2247
|p 2242 - 2247
|q 248<2242 - 2247
|t Physica status solidi / B
|v 248
|x 0370-1972
|y 2011
856 7 _ |u http://dx.doi.org/10.1002/pssb.201147090
909 C O |o oai:juser.fz-juelich.de:16696
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|g PGI
|x 0
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)130890
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21