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In order to study the dynamics of colloidal suspensions with viscoelastic solvents, a simple meso-
scopic model of the solvent is required. We propose to extend the multiparticle collision dynamics
(MPC) technique—a particle-based simulation method, which has been successfully applied to study
the hydrodynamic behavior of many complex fluids with Newtonian solvent—to shear-thinning vis-
coelastic solvents. Here, the normal MPC particles are replaced by dumbbells with finite-extensible
nonlinear elastic (FENE) springs. We have studied the properties of FENE-dumbbell fluids under
simple shear flow with shear rate γ̇ . The stress tensor is calculated, and the viscosity η and the
first normal-stress coefficient �1 are obtained. Shear-thinning behavior is found for reduced shear
rates � = γ̇ τ > 1, where τ is a characteristic dumbbell relaxation time. Here, both η and �1 dis-
play power-law behavior in the shear-thinning regime. Thus, the FENE-dumbbell fluid with MPC
collisions provides a good description of viscoelastic fluids. As a first application, we study the flow
behavior of a colloid in a shear-thinning viscoelastic fluid in two dimensions. A slowing down of
the colloid rotation in a viscoelastic fluid compared to a Newtonian fluid is obtained, in agreement
with recent numerical calculations and experimental results. © 2011 American Institute of Physics.
[doi:10.1063/1.3646307]

I. INTRODUCTION

During the last decades, the research areas of colloids,
polymers, membranes, and liquid crystals, which were previ-
ously largely independent, have been integrated into the single
field of soft matter. Their common property is high sensitivity
to external stimuli, which suggests that thermal fluctuations
play a major role in such systems. Under non-equilibrium
conditions, soft matter systems exhibit both viscous and elas-
tic characteristics—they are viscoelastic.1 Prominent exam-
ples for such a behavior are polymer melts and solutions.2, 3

The properties of soft matter systems are mainly deter-
mined by their mesoscopic structure. Due to the large separa-
tion of length and time scales between the atomic scale of the
solvent and the mesoscale of the solute, the simulation of the
dynamical behavior of soft matter is particularly challenging.
Traditional molecular dynamics simulations are often inap-
propriate because of the unaffordable simulation time, espe-
cially when hydrodynamics needs to be taken into account.
For a colloidal suspension in a viscoelastic solvent, e.g., pro-
teins in a cell, or spherical or rod-like colloids dispersed in
polymer solutions,4–7 the situation is even more complex. The
solvent itself is now a complex fluid too. To be able to address
and unravel dynamical and rheological properties of such
complex systems requires a simplified mesoscopic model of
a viscoelastic solvent, preferentially in combination with a
mesoscopic hydrodynamic simulation technique, such as the
multiparticle collision dynamics (MPC) approach.8, 9

a)Author to whom correspondence should be addressed. Electronic mail:
g.gompper@fz-juelich.de.

The MPC technique is a particle-based simulation
method with a high computational efficiency, which was re-
cently introduced by Malevanets and Kapral.10 The MPC al-
gorithm consists of alternating streaming and collision steps.
Both, thermal fluctuations and hydrodynamic interactions are
inherently included in the MPC approach. MPC has been
shown to describe the dynamics of Newtonian fluids very
well, and has been successfully applied to the study of the
hydrodynamic behavior of various complex fluids.8, 9

In this article, we propose an extension of the MPC
technique to shear-thinning viscoelastic fluids by replacing
the point particles of simple MPC with dumbbells of finite
extensibility. A dumbbell is a maximally coarse-grained
but very effective model of a polymer, as the dumbbell
can orient and stretch—reflecting the entropic properties of
a polymer—under non-equilibrium conditions.3, 11, 12 The
MPC approach has been used previously to study the flow
behavior of harmonic dumbbells.13 As has been shown, a
fluid consisting of harmonic dumbbells only captures the
viscoelastic behavior of a Maxwell fluid well.13 The main
advantage of harmonic dumbbells is that the integration of the
equations of motions in the streaming step can be performed
analytically, hence, the full efficiency of the MPC approach
for point particles is conserved. Although the shear-induced
orientation and elongation in shear flow are well reproduced,
the shear-thinning behavior cannot be captured naturally with
harmonic dumbbells. However, various studies have shown
that the shear-thinning behavior of viscoelastic fluids can be
well reproduced by finite-extensible nonlinear elastic (FENE)
dumbbells in solution.3, 12 A similar idea to employ FENE
dumbbells as a mesoscale model for viscoelastic fluids in
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dissipative particle dynamics (DPD) simulation was pursued
in Ref. 14. The simulations show a non-zero normal stress
difference, but only very weak shear-thinning behavior. This
DPD model was recently extended to mixtures of FENE
dumbbells and standard DPD particles.15

The article is organized as follows. In Sec. II, the FENE
dumbbell fluid in combination with MPC is introduced. Prop-
erties of this fluid in simple shear flow are investigated in
Sec. III, in particular, the orientation, stretching, and tumbling
of individual dumbbells (see Sec. III A) and the rheology of
the dumbbell fluid (see Sec. III B), as a function of shear rate.
This model for a shear-thinning viscoelastic fluid is then em-
ployed in Sec. IV to study the rotation of a colloidal particle
in shear flow. The results are summarized in Sec. V.

II. MODEL AND METHOD

A. Multiparticle collision dynamics

A simple MPC fluid comprises N point particles of mass
m, which are characterized by their positions r i and velocities
vi , with i = 1, . . . , N . In two dimensions, the particles are
distributed randomly within a simulation box of size Lx × Ly

with number density ρ = N/(LxLy). Their dynamics consists
of alternating streaming and collision steps. In the streaming
step, the particles move ballistically and their positions evolve
according to

r i(t + h) = r i(t) + vi(t)h (1)

during a time interval h, which is called the collision time. In
the collision step, fluid particles exchange momentum locally
by a stochastic process. This is achieved by first sorting all
particles into the cells of a square lattice with lattice constant
a. Then, the particles within a cell interact with each other si-
multaneously such that mass and momentum are conserved.
Different collision rules have been suggested, which, in ad-
dition, either conserve energy10 (a microcanonical approach
called stochastic rotation dynamics) or keep the temperature
constant16, 17 (a canonical approach called Andersen thermo-
stat (MPC-AT)). The MPC-AT approach has the additional
advantage that it can be extended to conserve angular momen-
tum in each cell during the collision step, a feature which has
been shown to be relevant for studies of rotating droplets and
colloids.18 Since we are interested in the behavior of rotating
colloids, see Sec. IV, we employ here an Andersen thermostat
with angular momentum conservation (MPC-AT+a), where
the velocity of particle i after the collision is given by18

vi(t + h) = vc + vran
i −

∑
j∈cell

vran
j /Nc

+m�−1
∑

j∈cell

{rjc × (vj − vran
j )} × r ic.

(2)

Here, Nc is the number of particles in a cell, vc and rc are
the velocity and position of the center of mass of all particles
in a cell, respectively, r ic = r i − rc is the position of parti-
cle i relative to the center of mass of the cell, and � is the
moment-of-inertia tensor of the particles in the cell. Finally,

the velocities vran
i are chosen from a Maxwell-Boltzmann dis-

tribution with temperature T . To ensure Galilean invariance,
a random shift of the lattice is applied before every collision
step.19, 20

An important feature of MPC is that the dynamics is well
defined for any choice of collision time, and transport coeffi-
cients and viscosity can be well tuned by controlling the col-
lision time.8, 9 In particular, the regime of low Reynolds num-
bers, characteristic for most soft-matter systems, is obtained
for small collision times, so that the mean free path is much
smaller than the cell size a.21, 22 Analytical expressions for the
viscosity and other transport coefficients for the MPC-AT+a

method have been derived in Ref. 23.

B. FENE Dumbbells

To extend the MPC method to simulations of viscoelastic
solvents, we augment the simple MPC method by connecting
two MPC particles by the FENE potential:3

U (R) = −k

2
R2

0 ln

[
1 −

(
R

R0

)2
]

. (3)

Here, R is the bond vector between the two particles of a
dumbbell, R = |R|, R0 is the maximum allowed elongation,
and k is the spring constant. Usually, b = kR2

0 is defined as
the FENE parameter.3 The dynamics of the FENE dumbbells
can be simply integrated into a MPC simulation. During
the streaming step, the motion of each dumbbell is updated
according to the velocity Verlet algorithm with a time interval
�td . Here, it is important to emphasize that each dumbbell
moves independently from all others during the streaming
step. Then, in the collision steps, the two point particles of
a dumbbell interact with other dumbbell particles as simple
MPC particles, i.e., in the collision step, the FENE potential
plays no role, and all particles take part in the collision step in
the same way as in a simple MPC fluid. The same approach
has been used in Ref. 13 for harmonic dumbbells. As there are
only collisional interactions between dumbbells in the simu-
lation, the system corresponds to a dilute polymer solution.

C. Shear flow and stress tensor

Lees-Edwards boundary conditions24 are applied to im-
pose simple shear flow, with flow in the x direction and a shear
gradient in the y direction, with the shear rate γ̇ = dvx/dy.
The calculation of rheological properties is based on the sys-
tem’s stress tensor σαβ (where α and β are the Cartesian co-
ordinates). Recently, expressions for the stress tensor σαβ of
a MPC fluid have been derived in Ref. 25, both in thermal
equilibrium and under shear flow conditions. For the FENE-
dumbbell fluid, this approach yields

σαβ = − 1

V

N∑
i=1

m〈(vi,α − v̄α)(viβ − v̄β)〉t

− 1

V h

N∑
i=1

〈�pi,αri,β〉t − 1

V

N/2∑
j=1

〈Fj,αRj,β〉t , (4)
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where 〈· · ·〉t denotes time average, V is the volume of the sim-
ulation box, and v̄ = γ̇ yex is the ideal velocity of an imposed
shear-flow field. � pi is the change in momentum of particle
i in a collision, which is given by

� pi = m(vi − v̂i), (5)

where v̂i and vi are the velocities of particle i before and after
the collision process, respectively. The last term accounts for
the contribution of the bonds of the dumbbells, where Fj is
the force within dumbbell j (pointing in the same direction as
the bond vector Rj ). Alternative routes to calculate the stress
tensor of a MPC fluid have been proposed in Refs. 26 and 27.

Once the stress tensor is known, the shear viscosity η and
the first normal-stress coefficient �1 can be calculated as

η = σxy/γ̇ , (6)

�1 = (σxx − σyy)/γ̇ 2. (7)

We will present our result as a reduced viscosity, which is
defined as

ηr = η − ηs

η0 − ηs

, (8)

where η0 is the zero-shear viscosity of the system and ηs is
the viscosity of a simple MPC solvent. For the MPC-AT+a

version of MPC in two dimensions, the analytical result17, 23

ηs = ρ

[
hkBT

m

(
ρ

ρ − 1
− 1

2

)
+ a2

24h

ρ − 7/5

ρ

]
(9)

has been derived, where kB is the Boltzmann constant.

D. Simulation parameters

In the remainder of this paper, the simulation data are
displayed in reduced units, with lengths measured in units of
the lattice constant a, time in units of τ0 = a

√
m/kBT , and

shear rates in units of 1/τ0. This corresponds to the parameter
choice m = 1, a = 1, and kBT = 1. In these units, the mean
free path of MPC point particles (without FENE interactions)
equals the collision time h. If not mentioned otherwise, we
employ the following set of parameters. The average num-
ber density of MPC particle is set to ρ = 10 and the colli-
sion time is set to h = 0.02. Such a small h ensures that the
system is in a fluid-like region with low Reynolds number.21

The spring constant of the FENE dumbbells is taken to be
k = 0.2 and their maximum extension R0 = 6.32, which cor-
responds to b = 8. The time interval to update FENE dumb-
bells is set as �td = 0.002. On very rare occasions, if overex-
tension occurs (for the highest shear rate considered, γ̇ = 0.2,
this happens with a probability of 5 × 10−6), the dumbbell is
replaced by a new one with an elongation slightly smaller than
the maximum extension. The system size is Lx = Ly = 50 if
not stated otherwise.

Shear flow is characterized by the dimensionless shear
rate (or Weissenberg number) � = γ̇ τ , where the characteris-
tic time τ of a harmonic dumbbell is defined as τ = ζ/(4k), in
analogy to Ref. 3, with ζ being the friction coefficient. Using
the Einstein relation ζ = kBT /D, where D is the monomer

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-15 -10 -5  0  5  10  15
 8

 10

 12

v x ρ
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FIG. 1. Velocity (�) and density (�) profiles in simple shear flow as a func-
tion of position y in the gradient direction. The shear rate is γ̇ = 0.01, the
density of MPC particles is ρ = 10, and the collision time is h = 0.02. The
spring constant of the FENE dumbbell is k = 0.2, and the FENE parameter
is b = 8.

diffusion coefficient, we find13

τ = kBT /(4Dk). (10)

For D, we use the diffusion coefficient of a point particle in
a simple MPC-AT+a fluid, which in d dimensions is given
by23

D = kBT h

m

(
ρ

ρ − (d + 1)/2
− 1

2

)
(11)

for sufficiently large ρ. For the standard parameters given
above, we obtain τ = 92τ0. Note that τ is half of the dumbbell
bond-vector relaxation time.

III. FENE-DUMBBELL FLUID IN SIMPLE SHEAR FLOW

A. Dumbbell orientation, stretching, and tumbling

The velocity and density profiles of a FENE-dumbbell
fluid under shear flow are shown in Fig. 1. A linear velocity
profile is obtained, as expected. The density is constant, which
demonstrates that the homogeneous distribution of the MPC
particles is not altered by the shear-flow field.

We first investigate the conformational and dynamical
properties of an individual dumbbell in a FENE-dumbbell
fluid under shear flow. As illustrated in Fig. 2 by density plots,
the dumbbell orientation and stretching increases with in-
creasing shear rate. For a low shear rate of � = 0.092, the dis-
tribution of the end-points is essentially isotropic and cannot
be distinguished easily from the equilibrium distribution. For
the intermediate shear rate � = 0.92, the distribution func-
tion exhibits a preferred direction, with an orientation angle of
about 30◦ with respect to the flow direction, comparable to a
harmonic dumbbell.13 Finally, for the high shear rate � = 9.2,
the dumbbell strongly aligns with the flow direction and the
finite extensibility limits further stretching.

This behavior can be made more quantitative by calcu-
lating the average dumbbell orientation and the average end-
to-end distance R. As shown in Fig. 3, the dumbbell exten-
sion is almost independent of the shear rate for � ≤ 0.5. For
larger shear rates, R increases and gradually saturates in the
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-3.2  0  3.2
-3.2

 0

 3.2 Γ = 0.092

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6 Γ = 0.92

-3.2  0  3.2
-3.2

 0

 3.2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-3.2  0  3.2
-3.2

 0

 3.2 Γ = 9.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

FIG. 2. Density distribution of dumbbell monomers relative to the dumb-
bell’s center of mass (arb. units) for the indicated reduced shear rates � = γ̇ τ .
The other parameters are the same as in Fig. 1. The maximum extension is
R0 = √

b/k = 6.325. The integrated probability is the same in all three plots.

asymptotic limit due to the FENE potential. Simultaneously,
a shear-induced alignment occurs, which we characterize by
the inclination angle θ determined by

tan(2θ ) = 2〈Gxy〉
〈Gxx〉 − 〈Gyy〉 , (12)

i.e., θ is the angle between the major axis of the radius-of-
gyration tensor Gαβ = RαRβ/4, with Cartesian coordinated
α, β, and the flow direction. In the weak-flow regime, θ ap-
proaches the equilibrium value of 45◦ for � → 0, and tan(2θ )
shows a power-law behavior

tan(2θ ) ∼ �−1 for � < 1, (13)

in agreement with theoretical predictions.28 At shear rates
� > 1, tan(2θ ) is expected to exhibit a crossover to the
asymptotic power-law decay28

tan(2θ ) ∼ �−1/3 for � 
 1. (14)

10-1

100

101

10-1 100 101

 0.4

 0.6

 0.8

 1

ta
n2

θ

R
/R

0

Γ

-0.5

-1.0

FIG. 3. Extension R/R0 (•) and inclination tan(2θ ) (�) as a function of the
reduced shear rate �. The other parameters are the same as those in Fig. 1.
The numbers indicate the exponents of power-law regimes.
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FIG. 4. Probability distribution of the dumbbell extension for various shear
rates � = 0 (�), 0.92 (+), 1.84 (�), 4.6 (•), and 9.2 (�). The solid line is
obtained from the Boltzmann factor with the FENE potential. The other pa-
rameters are the same as in Fig. 1.

The simulation data in Fig. 3 for the largest investigated shear
rates are in the crossover regime, and follow an effective
power law �−0.5.

It is also interesting to consider the effect of shear flow
on the end-to-end distance distribution of the dumbbells,
which is displayed in Fig. 4. At thermal equilibrium, finite-
extensibility effects are weak and the distribution is very well
described by the Gaussian distribution of a harmonic dumb-
bell. The peak at R/R0 < 0.5 switches to a peak at R/R0

> 0.5 when � � 4. Simultaneously, the maximum extensibil-
ity becomes relevant. However, a shoulder in the distribution
functions near the equilibrium extension Req remains promi-
nent even for higher shear rates.

Our simulations also provide information about the dy-
namical behavior of dumbbells under shear flow. It is well
known that polymers exhibit a tumbling motion in shear
flow.29–36 Here, we discuss the rotational dynamics in terms
of the average rotation frequency ω of a dumbbell, which is
calculated as

〈ω〉t = 〈L/I 〉t , (15)

where I = mR2/2 is the moment of inertia and L

= m(RxdRy/dt − RydRx/dt) is the angular momentum.37

The results are displayed in Fig. 5. At low shear rates, the re-
lation ω = γ̇ /2 applies,38 as expected. With increasing shear
rate, ω/γ̇ decreases and reaches a power-law regime

ω/γ̇ ∼ �−0.5. (16)

A similar scaling behavior has been found in the non-
equilibrium molecular dynamics simulations of polymer
chains in Ref. 37.

B. Rheology of FENE-dumbbell fluids

We calculate the reduced viscosity ηr of FENE dumb-
bell fluids with Eqs. (8) and (9). The results are shown in
Fig. 6 as a function of the reduced shear rate. The reduced
viscosity remains constant in the weak flow regime, � ≤ 1.
In this regime, the viscosity η itself is well described by the
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10-1

100

10-1 100 101

ω
/γ

Γ

⋅
-0.5

FIG. 5. Reduced rotation frequency ω/γ̇ of dumbbells as a function of re-
duced shear rate �. The other parameters are the same as those in Fig. 1. The
green and black dashed lines indicate the asymptotic behavior for small and
large reduced shear rates, respectively.

approximate analytical expression derived in Ref. 13. As the
shear rate increases beyond � = 1, however, ηr starts to de-
crease quickly and then follows a power-law behavior

ηr ∼ �−α (17)

with the exponent α ≈ 0.6. Thus, the shear-thinning behav-
ior of polymer suspensions is well reproduced by our model.
The exponent α is well in the range reported by experiments
and simulations.3, 28, 31, 36, 39, 40 For example, α is found to be
0.52 in the experiment by Teixeira et al.31 Theoretical calcu-
lations predict the exponent α = 2/3 in the asymptotic limit
of infinitely large shear rates.3, 28, 41

Theoretical studies of the FENE model by Warner42

suggest that the viscosity of FENE-dumbbell suspensions
is determined by the parameter b. We, therefore, examine
the viscosity of our FENE-dumbbell fluid with different
spring constants but the same FENE parameter. As shown
in Fig. 7(a), the results indeed fall onto the same master

10-1

100

10-2 10-1 100 101 102

η r

Γ

-2/3

FIG. 6. The reduced viscosity ηr as a function of the reduced shear rate
�. The parameters are the same as Fig. 1. The solid line shows a fit to the
Carreau-type function (18) with the parameters μ = 0.60, q = 1.38, and
�0 = 3.24, the dashed line indicates the asymptotic scaling law for high
Weissenberg numbers.
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Γ

K=0.05
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K = 0.2

10-1

100
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η r

Γ

b = 8
b = 18
b = 50
b = 200

(a)

(b)

FIG. 7. The reduced viscosity ηr as a function of the reduced shear rate � for
dumbbells with (a) same FENE parameter b = 8 but different spring constant
k; (b) same spring constant k = 0.2 but different FENE parameters. Dashed
lines show fits to the Carreau-type expression (18) with the parameters μ

= 0.60, q = 1.38, and �0 = 3.24 for b = 8, �0 = 4.40 for b = 18, �0
= 8.27 for b = 50, and �0 = 27.5 for b = 200.

curve. Simulations with different b parameters show different
shear-thinning behaviors over a considered range of shear
rates (see Fig. 7(b)); the shear-thinning behavior becomes
weaker with increasing b, in agreement with the predictions
of Ref. 42. Theory suggests that the shear-thinning behavior
will vanish as b → ∞, which corresponds to harmonic
dumbbells.42 In addition, our simulation results are well
described by the Carreau-type expression39

η = η0[1 + (�/�0)q]−μ/q . (18)

An important feature of viscoelastic fluids is that normal-
stress differences are non-zero, which accounts for the
well-known rod climbing and extrusion swelling effects of
polymers.2 However, it is very difficult to determine normal-
stress differences, both in experiments and simulations. We
determined the first normal stress coefficient �1 (see Fig. 8).
�1 is essentially independent of the shear rate in the low-
flow regime (� ≤ 1). In the regime � > 1, where the viscosity
shows shear-thinning behavior, �1 also decreases in a power-
law fashion as

�1 ∼ �−β. (19)
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FIG. 8. The reduced coefficient of the first normal stress difference as a func-
tion of the reduced shear rate �. The other parameters are the same as those
in Fig. 1. The solid line is a guide to the eye, the dashed line indicates the
asymptotic scaling law.

Within the accuracy of the simulations, the exponent is close
to β ≈ 4/3, in agreement with theoretical predictions3, 28 for
polymer systems as well as a broad range of simulations as
discussed in Ref. 36.

C. FENE-dumbbell fluids in three dimensions

The model introduced in Sec. II can easily be general-
ized to three spatial dimensions. In the simulations, we study
a system of size Lx = Ly = Lz = 30 with density of MPC
particles ρ = 10, collision time h = 0.02, spring constant of
the FENE dumbbell k = 0.2, and FENE parameter b = 8.

Results for the viscosity as a function of the shear rate
are shown in Fig. 9. Shear thinning is found for reduced shear
rates � > 1, very similar as observed for the two-dimensional
systems in Sec. III B. In fact, a more detailed comparison
of the data of Figs. 6 and 9 shows that the shear-thinning

10-1

100

10-2 10-1 100 101 102

η r

Γ

-2/3

FIG. 9. The reduced viscosity ηr as a function of the reduced shear rate
� in three dimensions. The parameters are collision time h = 0.02, density
ρ = 10, spring constant k = 0.2, and FENE parameter b = 8. The solid line
shows a fit to the Carreau-type function (18) with the parameters μ = 0.60,
q = 1.38, and �0 = 3.61, the dashed line indicates the asymptotic scaling
law for high Weissenberg numbers.

curves are nearly the same, as can be seen from the param-
eter values in the Carreau fits. This similarity is not a coinci-
dence, because hydrodynamic interactions should play a mi-
nor role only,36, 43 and dumbbells are mostly aligned in the
shear-gradient plane in the shear-thinning regime.

IV. COLLOID DYNAMICS UNDER SHEAR FLOW

The results of Sec. III demonstrate that FENE-dumbbell
fluids provide a good description of viscoelastic solvents. As
a first application to more complex systems, we now inves-
tigate the dynamical behavior of a colloid in shear flow, by
comparing Newtonian and viscoelastic solvents.

Early experiments in the 70s of the last century indi-
cated that there is no difference between the behavior of
spherical particles suspended in Newtonian and viscoelastic
fluids.44–46 It is well known that the rotation frequency ωs of
a sphere in a Newtonian solvent is identical to γ̇ /2 in the
absence of inertia, Brownian motion, and gravity, and with
no-slip boundary conditions.38 However, the theoretical anal-
ysis by D’Avino et al.,5 based on constitutive equations (Bird-
Carreau, Maxwell, Phan Thien-Tanner, and Giesekus models)
for the stress tensor, suggests a reduced rotation frequency
ωs/γ̇ < 1/2 in a viscoelastic solvent, which is supported by
recent experiments.6

In our simulation, a colloid in two dimensions is modeled
as a circular ring consisting of Nm = 48 monomers of mass
M = ρ each. Monomers are connected by the springs with
the potential

Us = ks

2

∑
i

(|r i+1 − r i | − l)2, (20)

where l is the equilibrium bond length. A bending potential

Ub = kb

2

∑
i

(r i+2 − r i+1)(r i+1 − r i) (21)

is added to favor a circular shape. The equilibrium bond
length is set equal to the collision cell size a. The resulting
circle has a radius of Rcol = 7.64a. The spring constant ks

 0

 0.2

 0.4

 0.6

10-3 10-2 10-1

ω
/γ

γ

⋅

⋅

h=0.02, ρ=10
h=0.02, ρ=50
h=0.01, ρ=10
h=0.01, ρ=50

FIG. 10. Reduced rotation frequency ωs/γ̇ of a colloid in a Newtonian fluid
with indicated collision time h and particle density ρ. The size of the simula-
tion box is Lx = 120, Ly = 80.
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FIG. 11. Snapshot of dumbbell conformations in shear flow near a colloidal
particle (blue circle). Only a fraction of 0.6% of dumbbells is shown. The
reduced shear rate is � = 23.5 (γ̇ = 0.1). Note that the dumbbells in the
interior of the colloid are not stretched. The parameters are collision time h

= 0.01, density ρ = 50, spring constant k = 0.2, and FENE parameter b = 8.
The system size is Lx = 120, Ly = 80.

is chosen rather large to avoid stretching of bonds,47 and the
bending rigidity kb is chosen such that the eccentricity of the
ring is smaller than 0.1 (for all considered shear rates). To en-
sure a perfect circular confirmation even for high shear rates,
extra harmonic springs with spring constant ks and equilib-
rium bond length l′ = 15.3 are introduced between beads 1
and 25, 4 and 28, etc. Thus, the colloid model resembles the
wheel of a bicycle.

Our motivation for using a ring with connected point
particles to model the colloid instead of a hard sphere with
no-slip boundary conditions is two-fold. First, this approach
is technically simpler and computationally more efficient.

10-1

100

100 101

ω
s/

γ

Γ

⋅

Viscoelastic
Newtonian

FIG. 12. Reduced rotation frequency ωs/γ̇ of a colloid in a viscoelastic and
Newtonian fluid, respectively. The parameters are the same as in Fig. 11.
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FIG. 13. Streamlines in Newtonian fluids with (a) γ̇ = 0.01, (b) γ̇ = 0.1,
and in viscoelastic fluids with (c) � = 2.35 (γ̇ = 0.01), (d) � = 23.5
(γ̇ = 0.1). The parameters are the same as in Fig. 11.

Second, it has been shown in Ref. 13 for harmonic dumbbells
that the equilibrium monomer density near a hard wall is re-
duced by a factor of two compared to the monomer density
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far from a wall. The same argument applies for FENE dumb-
bells. This density reduction might lead to artifacts such as
an increased slip near the surface. In contrast, the monomer
density in equilibrium is completely homogeneous for the
connected point-particle model.

For the coupling of such a colloid to the MPC fluid, we
adopt the well-established method for polymers, in which
the monomers are included in the collision step.8, 9, 48 In the
streaming step, the equations of motion for the monomers are
integrated by the velocity Verlet algorithm, but with a smaller
time step �tcol = 0.0001 than that for the FENE dumbbells
because of the stiffer potentials.

We first examine the behavior of a colloid under shear
flow in a Newtonian fluid. The rotation frequency of the col-
loid is calculated according to Eq. (15) with moment of inertia
I = NmmR2

col . Results are shown in Fig. 10. In the low shear-
rate regime, the reduced rotation frequency is ωs/γ̇ = 0.5,
in agreement with theoretical predictions. However, in the
higher shear-rate regime, ω/γ̇ drops below this value. The
reduction of ω/γ̇ may be caused by inertia or by compress-
ibility effects. The inertia effects of the fluid49, 50 can be char-
acterized by the colloidal Reynolds number Re

Re = γ̇ R2
col

ν
, (22)

where ν = η/(mρ) is the kinematic viscosity; they should be
negligible for Re � 1. For the simulation results of Fig. 10,
obtained with ρ = 10 and h = 0.02, we obtain Re = 0.32 for
γ̇ = 0.01 and Re = 3.2 for γ̇ = 0.1. Evidently, the inertia ef-
fect cannot be ignored for shear rates γ̇ � 0.02. The Reynolds
number can be reduced at a constant shear rate by increas-
ing the kinematic viscosity ν. In MPC simulations, this is
achieved by reducing the collision time step h. The compress-
ibility of the fluid can be reduced by increasing the particle
density ρ. Therefore, we examine systems with smaller time
step h = 0.01, or higher fluid number density ρ = 50, or both.
The effect of higher density is small, so that we can rule out
compressibility effects. However, the results for smaller h are
close to the theoretical expectation ω/γ̇ = 1/2, see Fig. 10,
i.e., inertial effects are sufficiently suppressed.

We investigate next the rotation of a colloid under shear
flow in the viscoelastic solvent described in Sec. III. A snap-
shot of a typical dumbbell arrangement in the vicinity of the
colloid is shown in Fig. 11. Results for the rotation frequency
are compared in Fig. 12 with those of a Newtonian solvent.
For small shear rates, � = γ̇ τ < 1 (with the characteristic
time τ = 235.4 of the viscoelastic fluid for the employed
parameter set), the rotation dynamics is identical and inde-
pendent of the shear rate. However, for � > 1, a significant
slowing down of the rotation frequency is observed for the
viscoelastic solvent (see Fig. 12), in agreement with recent
experimental result.6 Since the kinematic viscosity of FENE-
dumbbell fluid is larger than that of a Newtonian MPC fluid,
inertial effect in the viscoelastic solvent is negligible. The
slowing down is thus clearly caused by viscoelastic effects.

For any Re, a freely suspended circular colloid in shear
flow (equivalent to a cylinder in three dimensions, with the
cylinder axis perpendicular to the flow-gradient plane) in a
Newtonian fluid exhibits a region of closed streamlines near

-20
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 20

-20  0  20

-20

 0

 20

-20  0  20

-20
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 20

-20  0  20

(a)

(b)

(c)

FIG. 14. Net velocity fields v − videal and corresponding streamlines of (a)
a Newtonian fluid with shear rate γ̇ = 0.01, (b) a viscoelastic fluid with
� = 2.35 (γ̇ = 0.01), and (c) a viscoelastic fluid with � = 23.5 (γ̇ = 0.1).
Parameters are ρ = 50, h = 0.01, and for the viscoelastic case k = 0.2, and
b = 8. The blue circle indicates the position and size of the colloid.

the colloid surface. For Re = 0 (Stokes flow), this region is
known to extend to infinity in the flow direction; furthermore,
the streamlines are both fore-aft and up-down symmetric.51

For Re > 0, reverse flow zones appear near the centerline
through the colloid axis, which are separated from the closed
streamlines by two stagnation points (see Fig. 13(a)). The
stagnation points move closer to the colloid surface and the
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FIG. 15. Reduced rotation velocity ω/γ̇ of FENE dumbbells spatially re-
solved in the vicinity of a colloid in shear flow for the shear rates (a) � = 2.35
(γ̇ = 0.01) and (b) � = 23.5 (γ̇ = 0.1). The other parameters are ρ = 50,
h = 0.01, k = 0.2, and b = 8.

extension of the reverse regions increases with increasing
Re (see Fig. 13(b)), in agreement with previous numerical
results.50

In contrast, for a viscoelastic fluid the streamlines are
quite different. Figure 13(c) shows streamlines of a viscoelas-
tic fluid with the same low shear rate as that in Fig. 13(a).
The extension of the inner region is much larger than that of
the Newtonian fluid and the reverse regions disappear. For the
higher shear rate, Fig. 13(d) shows that the shape of the inner
region gets distorted and the fore-aft and up-down symmetries
of the streamlines are broken.

We would like to emphasize that there is, of course, a
smooth crossover from Newtonian to viscoelastic behavior
depending on the relative magnitude of viscous and elastic
contributions to the fluid stress tensor.

Another way to visualize the difference of the flow be-
havior of Newtonian and viscoelastic fluids around a circular
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FIG. 16. Average extension R of FENE dumbbells spatially resolved in the
vicinity of a sphere in shear flow for the shear rates (a) � = 2.35 (γ̇ = 0.01)
and (b) � = 23.5 (γ̇ = 0.1). The other parameters are ρ = 50, h = 0.01, k

= 0.2, and b = 8.

colloid is to consider the disturbance flow, which is obtained
by subtracting the simple shear-flow field v̄ideal = γ̇ yex from
the full velocity field v̄.50 Results are shown in Fig. 14. For
low-Reynolds-number Newtonian fluids, the colloid induces
a flow similar in shape but opposite in direction to the exten-
sional component of v̄ideal , with some vorticity due to finite
Re (see Fig. 14(a)), in agreement with previous results.50 For
viscoelastic fluids, the disturbance flow for small shear rates
looks similar to that of Newtonian fluids, but with suppressed
vorticity (see Fig. 14(b)). For larger shear rates, the distur-
bance flow becomes much more parallel to the flow direction
(see Fig. 14(c)).

Not only is the rotational dynamics of a circular colloid
affected by the dynamics of the viscoelastic solvent, vice
versa the dynamics and conformations of the dumbbells of
the solvent are also affected by the presence of the colloid.
We consider the local rotation velocity and extension of
dumbbells in the vicinity of a colloid in shear flow. Results
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for the local rotation velocity are shown in Fig. 15. In the
low shear-rate regime, there are four regions, roughly along
the diagonals in the xy-plane (see Fig. 15(a)), where the
dumbbells rotate faster than those in the bulk state. These
regions extend over a distance comparable to the colloid
diameter. In the high shear-rate regime, the picture looks
quite different (see Fig. 15(b)). The regions with rotational
velocities considerably different from that of the bulk are
now much more confined to the close vicinity of the colloid,
the region of higher rotation velocity is essentially on both
sides of the colloid in the flow direction (see Fig. 15(b)).

The spatially resolved dumbbell extension around a col-
loid is shown in Fig. 16. At low shear rates, higher extension
is found on the side where the flow departs from the colloid,
whereas dumbbells are compressed when they flow toward
the colloid. For higher shear rates, the dumbbell extension is
quite uniform, with asymmetric streaks roughly parallel to the
flow direction.

V. SUMMARY AND CONCLUSIONS

We have studied FENE-dumbbell fluids with multiparti-
cle collision dynamics as a mesoscale hydrodynamics model
for shear-thinning viscoelastic fluids. The fluid stress tensor
has been calculated for a fluid in simple shear flow, and the
viscosity and the first normal stress coefficient have been de-
termined as a function of the shear rate. The shear-thinning
behavior of dilute polymer solutions has been well repro-
duced. There are different explanations on the origin of shear
thinning, such as excluded-volume interaction, the finite ex-
tensibility of polymers, or hydrodynamic interactions.11, 52

The comparison of our results for FENE-dumbbell fluids and
those for harmonic-dumbbell fluids of Ref. 13—in both cases
with collisional interactions only—shows that shear thinning
is determined by the finite dumbbell extensibility, in agree-
ment with previous analytical results for dumbbells in di-
lute solution.2, 3, 28 The MPC simulations correctly provide the
conformational properties and dynamic information of dumb-
bells under shear.

In contrast to the pronounced shear thinning of FENE-
dumbbell fluids in MPC simulations, DPD simulations of sim-
ilar fluids14 show only a very weak shear-thinning behavior.
A possible reason for the weak shear thinning in DPD might
be that the contribution of the FENE interactions to the zero-
shear viscosity is relatively small, comparable in magnitude
to the viscosity of the monomer fluid (as can be inferred from
the study of mixtures of normal DPD particles and dumb-
bells in Ref. 15). Note that we present the relative change
of the shear viscosity rather than the total viscosity. Data for
the total zero-shear viscosity of the harmonic-dumbbell fluid
with MPC have already been presented in Ref. 13 (and are
essentially identical for FENE dumbbells); these data show
that the contribution of the FENE interactions in our case is
about one order of magnitude larger than the contribution of
the monomer fluid for spring constant k = 0.2, and increases
linearly with 1/k.

To demonstrate the benefit of our model for studies of
more complex fluids, such as colloids suspended in a vis-
coelastic solvent, we have investigated the dynamic behavior

of a circular colloidal particle (in two dimensions) in New-
tonian and viscoelastic fluids under shear flow. In a Newto-
nian fluid, the rotation frequency agrees with theoretical ex-
pectations in the low-Reynolds-number regime very well. In
a viscoelastic fluid, the rotation frequency is significantly re-
duced for shear rates γ̇ τ > 1, where τ is the relaxation time
of the dumbbells. This result confirms the slowing down ob-
served in a recent experiment.6 Our simulations also demon-
strate that the introduction of dumbbells changes the flow
field around a colloid. The extension of the region with closed
streamlines around the colloid is much larger for a viscoelas-
tic fluid than in the Newtonian case. At high shear rates, the
fore-aft and up-down symmetry is broken. Furthermore, the
simulations show that the extension and rotation frequency
of the dumbbells acquires a spatial dependence near the
colloid.

In conclusion, we have shown that the FENE-dumbbell
fluid in combination with the multiparticle collision dynam-
ics technique provides a very promising approach to study the
behavior of colloids, polymers, or membranes in shear-
thinning viscoelastic solvents.
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