001     16797
005     20240619083337.0
024 7 _ |2 pmid
|a pmid:22029321
024 7 _ |2 DOI
|a 10.1063/1.3646962
024 7 _ |2 WOS
|a WOS:000296516800034
024 7 _ |2 Handle
|a 2128/4637
024 7 _ |a altmetric:425052
|2 altmetric
037 _ _ |a PreJuSER-16797
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Physics, Atomic, Molecular & Chemical
100 1 _ |0 P:(DE-Juel1)VDB86654
|a Heinen, M.
|b 0
|u FZJ
245 _ _ |a Short-time rheology and diffusion in suspensions of Yukawa-type colloidal particles
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2011
300 _ _ |a 154504
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 3145
|a Journal of Chemical Physics
|v 135
|x 0021-9606
|y 15
500 _ _ |a M.H. acknowledges support by the International Helmholtz Research School of Biophysics and Soft Matter (IHRS BioSoft). A.J.B. acknowledges financial support from SeCyT-UNC and CONICET. This work was under appropriation of funds from the Deutsche Forschungsgemeinschaft (DFG) (SFB-TR6, project B2).
520 _ _ |a A comprehensive study is presented on the short-time dynamics in suspensions of charged colloidal spheres. The explored parameter space covers the major part of the fluid-state regime, with colloid concentrations extending up to the freezing transition. The particles are assumed to interact directly by a hard-core plus screened Coulomb potential, and indirectly by solvent-mediated hydrodynamic interactions. By comparison with accurate accelerated Stokesian Dynamics (ASD) simulations of the hydrodynamic function H(q), and the high-frequency viscosity η(∞), we investigate the accuracy of two fast and easy-to-implement analytical schemes. The first scheme, referred to as the pairwise additive (PA) scheme, uses exact two-body hydrodynamic mobility tensors. It is in good agreement with the ASD simulations of H(q) and η(∞), for smaller volume fractions up to about 10% and 20%, respectively. The second scheme is a hybrid method combining the virtues of the δγ scheme by Beenakker and Mazur with those of the PA scheme. It leads to predictions in good agreement with the simulation data, for all considered concentrations, combining thus precision with computational efficiency. The hybrid method is used to test the accuracy of a generalized Stokes-Einstein (GSE) relation proposed by Kholodenko and Douglas, showing its severe violation in low salinity systems. For hard spheres, however, this GSE relation applies decently well.
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Colloids: chemistry
650 _ 2 |2 MeSH
|a Computer Simulation
650 _ 2 |2 MeSH
|a Diffusion
650 _ 2 |2 MeSH
|a Models, Chemical
650 _ 2 |2 MeSH
|a Particle Size
650 _ 2 |2 MeSH
|a Rheology
650 _ 2 |2 MeSH
|a Suspensions
650 _ 2 |2 MeSH
|a Time Factors
650 _ 2 |2 MeSH
|a Viscosity
650 _ 7 |0 0
|2 NLM Chemicals
|a Colloids
650 _ 7 |0 0
|2 NLM Chemicals
|a Suspensions
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a colloids
653 2 0 |2 Author
|a diffusion
653 2 0 |2 Author
|a electric potential
653 2 0 |2 Author
|a fluids
653 2 0 |2 Author
|a freezing
653 2 0 |2 Author
|a hydrodynamics
653 2 0 |2 Author
|a rheology
653 2 0 |2 Author
|a suspensions
653 2 0 |2 Author
|a viscosity
700 1 _ |0 P:(DE-HGF)0
|a Banchio, A.J.
|b 1
700 1 _ |0 P:(DE-Juel1)130858
|a Nägele, G.
|b 2
|u FZJ
773 _ _ |0 PERI:(DE-600)1473050-9
|a 10.1063/1.3646962
|g Vol. 135, p. 154504
|p 154504
|q 135<154504
|t The @journal of chemical physics
|v 135
|x 0021-9606
|y 2011
856 7 _ |u http://dx.doi.org/10.1063/1.3646962
856 4 _ |u https://juser.fz-juelich.de/record/16797/files/4637.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/16797/files/FZJ-16797.pdf
|y Published under German "Allianz" Licensing conditions on 2011-10-19. Available in OpenAccess from 2011-10-19
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/16797/files/4637.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/16797/files/4637.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/16797/files/4637.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/16797/files/FZJ-16797.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/16797/files/FZJ-16797.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/16797/files/FZJ-16797.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:16797
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK505
|a DE-HGF
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 0
913 2 _ |0 G:(DE-HGF)POF3-551
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Functional Macromolecules and Complexes
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0520
|2 StatID
|a Allianz-OA
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|g ICS
|k ICS-3
|l Weiche Materie
|x 0
970 _ _ |a VDB:(DE-Juel1)131046
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a JUWEL
980 _ _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21