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A comprehensive study is presented on the short-time dynamics in suspensions of charged colloidal
spheres. The explored parameter space covers the major part of the fluid-state regime, with colloid
concentrations extending up to the freezing transition. The particles are assumed to interact directly
by a hard-core plus screened Coulomb potential, and indirectly by solvent-mediated hydrodynamic
interactions. By comparison with accurate accelerated Stokesian Dynamics (ASD) simulations of
the hydrodynamic function H(q), and the high-frequency viscosity η∞, we investigate the accuracy
of two fast and easy-to-implement analytical schemes. The first scheme, referred to as the pairwise
additive (PA) scheme, uses exact two-body hydrodynamic mobility tensors. It is in good agreement
with the ASD simulations of H(q) and η∞, for smaller volume fractions up to about 10% and 20%,
respectively. The second scheme is a hybrid method combining the virtues of the δγ scheme by
Beenakker and Mazur with those of the PA scheme. It leads to predictions in good agreement with
the simulation data, for all considered concentrations, combining thus precision with computational
efficiency. The hybrid method is used to test the accuracy of a generalized Stokes-Einstein (GSE)
relation proposed by Kholodenko and Douglas, showing its severe violation in low salinity systems.
For hard spheres, however, this GSE relation applies decently well. © 2011 American Institute of
Physics. [doi:10.1063/1.3646962]

I. INTRODUCTION

Charge-stabilized systems of globular Brownian particles
are ubiquitously found over a large range of particle sizes,
from large, micron-sized colloids1–3 down to nanometer-sized
proteins.4–6 For many such systems, where van der Waals at-
tractions are to a good approximation negligible, the pair in-
teractions can be described to good accuracy by a hard-sphere
plus repulsive Yukawa (HSY)-type pair potential, of range
determined by the ionic strength of dissolved co- and coun-
terions. The HSY model spans the range from neutral hard
spheres, corresponding to zero screening length or vanishing
Yukawa potential strength, to long-range electric repulsion
occurring in low-salinity systems with large screening length.
In most applications of the HSY model to charged colloids,
the Yukawa-tail of the pair interaction is described by the
electrostatic part of the Derjaguin-Landau-Verwey-Overbeck
(DLVO) potential.7

In experimental data analysis and many theoretical ap-
plications, easy-to-implement analytic methods are on de-
mand that allow to calculate, with good accuracy, short-
time dynamic properties, such as diffusion coefficients and
high-frequency viscosities with a minimal computational
effort. Short-time diffusion properties are routinely mea-
sured in dynamic light scattering,8, 9 x-ray photon correlation
spectroscopy,2, 10 and neutron spin echo11, 12 experiments. The
high-frequency viscosity η∞ is probed experimentally using

a)Electronic mail: m.heinen@fz-juelich.de.

torsional viscometers, or on employing approximate gener-
alized Stokes-Einstein (GSE) relations, which relate η∞ to a
diffusion property.13, 14

Fast and accurate theoretical methods for calculating dy-
namic properties are valuable in particular for an extensive
data analysis, where different system parameters such as con-
centration, salt content, particle size and charge, pH-value,
and solvent properties, are considered in a broad range of
values.

We point out here that short-time dynamic properties are
of relevance not only in their own right. They are also required
as input to theories describing colloidal long-time dynamics
such as mode-coupling and dynamic density functional theory
approaches.

A particular challenge in the development of analytic
methods is the inclusion of the long-ranged, and for more con-
centrated systems non-pairwise additive, hydrodynamic inter-
actions (HIs), which essentially influence the dynamic prop-
erties in their short-time behavior. Due to their complexity,
the inclusion of HIs constitutes a severe bottleneck in Brow-
nian dynamics simulations. The account of many-body HIs
in analytic methods is only possible by introducing approxi-
mations. For this reason, it is of prime importance to assess
the overall accuracy of analytic methods, by the comparison
to precise benchmark results obtained from computationally
elaborate dynamic computer simulations.

In this paper, we discuss the pros and cons of two
easy-to-implement analytic methods of calculating short-time
dynamic properties, such as the wavenumber-dependent
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hydrodynamic function H(q), and the low shear-rate, high-
frequency limiting viscosity η∞. The first method, referred
to as the pairwise additive (PA) scheme, uses exact two-body
hydrodynamic mobility tensors including the lubrication
part, but it fully disregards three-body and higher-order
hydrodynamic contributions. The second scheme is a hybrid
method combing the virtues of Beenakker and Mazur’s
so-called δγ -scheme approach for H(q) (Refs. 15 and 16) and
η∞,17 with those of the PA scheme, and precise known results
for the special case of neutral hard spheres. The δγ scheme
accounts for many-body HI contributions in an approximate
way. We present the two methods in a self-contained way,
allowing for their easy implementation. Both methods
require the static structure factor, S(q), or equivalently the
radial distribution function (rdf) g(r), as the only input.
We calculate this static input using our recently developed
analytic modified penetrating-background corrected rescaled
mean spherical approximation (MPB-RMSA) scheme,18, 19

which allows for a fast and accurate evaluation of the HSY
pair-structure functions.

The accuracy of both methods for calculating H(q) and
η∞ is assessed through comparison with a large number of
simulation results, representative of the full fluid-state regime,
which we have obtained using accelerated Stokesian dynam-
ics simulations. The usefulness of the δγ scheme-based hy-
brid method is illustrated by testing the validity of three gen-
eralized Stokes-Einstein relations.

The paper is organized as follows. Section II explains the
essentials of the HSY model, and the MPB-RMSA method
of calculating S(q). The theoretical background on the short-
time dynamics of interacting colloidal particles is included in
Sec. III, and Sec. IV explains the employed methods of cal-
culating short-time dynamic properties. Our results for H(q),
η∞ and additional related short-time properties are summa-
rized in Sec. V. Section VI includes the test of GSEs, notably
that proposed by Kholodenko and Douglas. Our conclusions
are given in Sec. VII.

II. PAIR-POTENTIAL AND STATIC STRUCTURE

The present study is concerned with charged spherical
colloidal particles that interact directly via the HSY- type pair
potential,

βu(x) =
{∞ , x = r/σ ≤ 1,

γ e−kx

x , x > 1.
(1)

The coupling amplitude γ and the screening parameter k are
given by

γ = LB

σ

(
Zek/2

1 + k/2

)2

, (2)

k2 = LB/σ

1 − φ
(24φ|Z| + 8πnsσ

3). (3)

This constitutes the repulsive part of the DLVO potential.7

Here, β = 1/kBT, with Boltzmann constant kB, absolute
temperature T, colloidal hard-core diameter σ , solvent-
characteristic Bjerrum length LB = βe2/ε in Gaussian units,

proton elementary charge e, and solvent dielectric constant
ε. In the DLVO expressions in Eqs. (2) and (3), γ and k
are determined by the number concentration of monovalent
(salt) coions, ns, the effective colloid charge, Ze, and the
colloid volume fraction, φ. The square of k is a sum of two
contributions, namely, k2

c = 24φ|Z|LB/[σ (1 − φ)] and k2
s

= 8πnsσ
2LB/(1 − φ). The first one, k2

c , describes the
screening influence of monovalent counterions released from
the colloid surfaces, and the second one, k2

s , accounts for the
screening influence of monovalent electrolyte ions arising
from added salt. As shown in Refs. 20 and 21, the factor 1/(1
− φ) in Eq. (3) corrects for the free volume accessible to the
microions in presence of impermeable colloidal spheres.

In recent work,18, 19 we have introduced a semi-analytic
Ornstein-Zernike integral equation scheme22 for calculating
equilibrium pair-distribution functions, denoted as the MPB-
RMSA. This computationally highly effective method allows
for calculating the static structure factor, S(q), as a function of
the scattering wavenumber q, for particles interacting by the
HSY pair potential given in Eq. (1). For a detailed derivation
and validation of the MPB-RMSA, we refer to Refs. 18 and
19. In the limiting case of neutral hard spheres (HS), attained
for γ = 0 (Z = 0) or k → ∞ (very large ns), the MPB-RMSA
reduces to the analytic Percus-Yevick solution.24, 25

Most of the results on short-time properties discussed in
this work are for the parameters LB = 5.617 nm, σ = 200
nm, and Z = 100, representative of strongly charged col-
loidal spheres suspended in an organic solvent. Numerous
MPB-RMSA, Rogers-Young scheme,23 and MC simulation
results for S(q) and g(r) using these parameters are included in
Figs. 2, 3, and 4 of Ref. 18. These results cover basically the
whole fluid regime, with φ ranging from 10−4 to 0.15, and ns

from 0 to 10−4 M. For conciseness, and since these results for
S(q) and g(r) have been published already, we refrain from
replotting them in the present work.

III. SHORT-TIME DYNAMIC PROPERTIES

For characterizing the colloidal short-time regime, one
considers the momentum relaxation time, τB = m/(3πη0σ ),
the time scale τH = σ 2ρS/(4η0) of hydrodynamic vorticity dif-
fusion, and the interaction time τ I = σ 2/(4d0),26, 27 where m is
the mass of a colloidal sphere, d0 = kBT/(3πη0σ ) is the trans-
lational free diffusion coefficient for stick hydrodynamic sur-
face boundaries, and ρS and η0 are the mass density and shear
viscosity of the suspending Newtonian solvent, respectively.
For a coarse-grained time-resolution where t � τB ∼ τH, the
motion of a colloidal particle is erratic and overdamped. In the
present work we focus on the colloidal short-time regime τB

� t � τ I, during which a particle has moved a tiny fraction of
its size only. This allows for calculating short-time properties
using pure equilibrium averages.

Diffusion properties can be measured by a variety of scat-
tering techniques, which commonly determine the dynamic
structure factor,22

S(q, t) =
〈

1

N

N∑
l,j=1

exp{iq · [Rl(0) − Rj (t)]}
〉

, (4)
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as a function of scattering wavenumber q and correlation time
t. The brackets, 〈. . . 〉, denote an equilibrium ensemble aver-
age, including the thermodynamic limit N → ∞ and system
volume V → ∞, with n = N/V fixed, which characterizes a
macroscopic system. N is the number of colloid particles in
the scattering volume, q is the scattering wave vector, and
Rn(t) is the position vector pointing to the center of the nth
colloidal particle at time t. On the colloidal short-time scale,
S(q, t) decays exponentially according to8

S(q, t)

S(q)
= exp[−q2D(q)t], (5)

where D(q) is the wavenumber-dependent short-time diffu-
sion function. A statistical-mechanical expression for D(q)
follows from the generalized Smoluchowski equation in the
form of the ratio26–28

D(q) = d0
H (q)

S(q)
, (6)

of the hydrodynamic function

H (q) =
〈

kBT

Nd0

N∑
l,j=1

q̂ · μt t
lj (RN ) · q̂ exp{iq · [Rl − Rj ]}

〉
,

(7)
and the static structure factor S(q) = S(q, t = 0). Here, q̂ is the
unit vector in the direction of q, and μt t

lj (RN ) is a translational
mobility tensor linearly relating the hydrodynamic force on a
sphere j to the translational velocity of a sphere l. This mo-
bility depends in general on the instantaneous positions, RN ,
of all N particles through the specified hydrodynamic bound-
ary conditions. In this work, stick hydrodynamic boundary
conditions are assumed throughout. The positive-valued hy-
drodynamic function H(q) is a measure of the influence of
HIs on short-time diffusion. In the (hypothetical) case of hy-
drodynamically non-interacting particles, H(q) ≡ 1, indepen-
dent of q. The hydrodynamic function can be interpreted as
the reduced short-time generalized mean sedimentation ve-
locity measured in a homogeneous suspension subject to a
weak force field collinear with q and oscillating spatially as
cos(q · r). Hence,

lim
q→0

H (q) = Used

U0
≡ K (8)

is equal to the concentration-dependent (short-time) sedimen-
tation velocity, Used, of a slowly settling homogeneous sus-
pension of spheres in units of the sedimentation velocity, U0,
at infinite dilution.

The function H(q) can be expressed as the sum,

H (q) = dS

d0
+ Hd (q), (9)

of a q-dependent distinct part, Hd(q), which vanishes for
q → ∞, and a self-part equal to the reduced short-time
translational self-diffusion coefficient ds/d0. The diffusion co-
efficient ds is equal to the short-time slope of the mean-
squared displacement, W (t) = 1/6〈[R(t) − R(0)]2〉, of a col-
loidal particle.27

Two additional diffusion coefficients related to D(q) are
the short-time collective diffusion coefficient dc = d0K/S(q

→ 0), and the short-time cage diffusion coefficient dcge

= D(qm). These two coefficients characterize the decay rates,
respectively, of thermally induced concentration fluctuations
of macroscopic wavelengths, and of a wavelength related to
the size, 2π /qm, of the dynamic next-neighbor cage formed
around a particle.

So far only diffusion properties have been discussed. A
rheological short-time property is the high-frequency limiting
viscosity, η∞, which linearly relates the average deviatoric
suspension shear stress to the applied rate of strain in a
low-amplitude, oscillatory shear experiment with frequency
ω � 1/τ I. The statistical-mechanical expression for η∞ is29

η∞ = η0 +
3∑

α,β=1

〈
1

10V

N∑
l,j=1

μdd
lj αββα

(RN )

〉
, (10)

invoking the Cartesian components, μdd
lj αββα

, of the 3 × 3

× 3 × 3 dipole-dipole mobility tensor μdd
lj , that relates

the symmetric hydrodynamic force dipole moment tensor
of sphere l to the rate of strain tensor related to sphere j.
For stick hydrodynamic boundary conditions, η∞ = η0[1
+ 2.5φ + O(φ2)], where η0 is the solvent viscosity. The
O(φ2) contribution is due to particle interactions. Note here
that 〈. . . 〉 describes an equilibrium average with respect to the
unsheared system. Direct interactions affect η∞ only through
their influence on the equilibrium particle distribution.

The great difficulty in evaluating Eqs. (7) and (10) to
obtain H(q) and η∞, respectively, lies in the calculation of
the hydrodynamic tensors μt t

lj (RN ) and μdd
lj (RN ), and in the

associated many-particle average. Except for numerically
expensive simulations,14, 30–32 it is practically impossible to
gain numerically precise results for concentrated systems.
In searching for methods which allow to calculate H(q)
and η∞ to decent accuracy with moderate numerical effort,
one has to resort to approximate methods. Two of these
methods, namely, the so-called PA approximation, and the
δγ -scheme by Beenakker and Mazur supplemented by a
so-called self-part correction, are discussed in Sec. IV. The
methods are presented in a self-contained way to facilitate
their implementation by an interested reader. Both methods
have in common that they require S(q), or equivalently g(r),
as the only input. The pros and cons of both methods are
assessed in comparison to elaborate computer simulations.

IV. COMPUTATIONAL METHODS

A. Pairwise additive approximation

In the PA approximation, the N-particle translational mo-
bility tensors, μt t

lj (RN ), are approximated by the sum of two-
body mobilities according to

kBT

d0
μt t

lj (RN )

∣∣∣∣
PA

= δlj

⎡
⎣1 +

N∑
n�=l

a11(Rl − Rn)

⎤
⎦

+ (1 − δlj )a12(Rl − Rj ). (11)

The 3 × 3 mobility tensor 1 + a11 relates, for an iso-
lated pair of particles in a quiescent fluid, the force on
particle 1 to its own velocity. Correspondingly, a12 relates the
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force on particle 2 to the velocity of particle 1. The axial sym-
metry of the two-sphere problem allows to split the reduced
mobilities into longitudinal and transverse components,

δij 1 + aij (r) = xa
ij (r)r̂r̂ + ya

ij (r) [1 − r̂r̂] , (12)

where we use the notation from Ref. 33. The mobility compo-
nents xa

ij (r) and ya
ij (r) can be expanded analytically in powers

of σ /r = 1/x using recursion formulas.34

In a homogeneous fluid system, the ensemble average of
a function f depending on two particle coordinates can be ex-
pressed in the thermodynamic limit as

〈f (Rl − Rj )〉 = lim
V →∞

1

V

∫
V

drg(r)f (r). (13)

The combination of Eqs. (7), (11), and (13) leads to the fol-
lowing PA results for dS,

dS

d0

∣∣∣∣
PA

= 1 + 8φ

∫ ∞

1
dxx2g(x)

[
xa

11(x) + 2ya
11(x) − 3

]
,

(14)
and for the distinct part of the hydrodynamic function,

Hd (y)
∣∣
PA = −15φ

j1(y)

y
+ 18φ

∫ ∞

1
dxxh(x)

×
[
j0(xy) − j1(xy)

xy
+ j2(xy)

6x2

]

+ 24φ

∫ ∞

1
dxx2g(x)ỹa

12(x)j0(xy)

+ 24φ

∫ ∞

1
dxx2g(x)

[
x̃a

12(x) − ỹa
12(x)

]

×
[
j1(xy)

xy
− j2(xy)

]
. (15)

Here, y = qσ is the diameter-scaled wavenumber, jn is the
spherical Bessel function of first kind and order n, and h is the
total correlation function defined by h(x) = g(x) − 1.

We have introduced here the short-range mobility parts

x̃a
12(x) = xa

12(x) − 3/4x−1 + 1/8x−3, (16)

ỹa
12(x) = ya

12(x) − 3/8x−1 − 1/16x−3, (17)

which include all terms in the series expansion except for the
far-field terms up to the dipolar (Rotne-Prager) level, which
are subtracted off.

Analogous to the translational diffusivity tensors, the
dipole-dipole mobility tensors are approximated in the PA
scheme by their self and distinct two-body contributions
μdd (2)

11 (r), μdd (2)
12 (r), respectively. In hydrodynamically semi-

dilute suspensions, the high-frequency viscosity of colloidal
spheres at low shear-rate is then obtained from14, 35, 36

η∞
η0

= 1 + 5

2
φ(1 + φ) + 60φ2

∫ ∞

1
dxx2g(x)J (x), (18)

where the rapidly decaying two-body shear mobility function,
J(x), accounts for the two-body HIs. For stick hydrodynamic
boundary conditions, J (x) = 15/128x−6 + O(x−8).

For pair-distances x > 3, we use explicit analytic expan-
sions up to O(x−20), given in Ref. 34 for the two-body mo-

bility functions xa
ij and ya

ij , and the leading-order far-field ex-
pression, J(x) = 15/128x−6, for the shear mobility function.
Since the expansions in 1/x converge slowly at small separa-
tions, we employ accurate numerical tables for x < 3, which
in particular account for lubrication at near-contact distances.
The tables are based on recursion expressions and a lubrica-
tion analysis given in Ref. 33.

Using the zeroth-order concentration-expansion for the
rdf of hard spheres given by gHS(x) = �(x − 1) + O(φ), with
� denoting the unit step function, we have checked that our
PA code precisely reproduces the truncated virial expressions,

dHS
s

d0
= 1 − 1.8315φ + O(φ2), (19)

KHS = 1 − 6.546φ + O(φ2), (20)

ηHS
∞
η0

= 1 + 5

2
φ + 5.0023φ2 + O(φ3), (21)

which were obtained in Refs. 37–39 using a mobility series
expansion including terms up to O(x−1000), and a lubrication
correction.

All PA results for H(q) and η∞ discussed in this paper
are based on Eqs. (14), (15), and (18), with g(x) computed
in MPB-RMSA. Dynamical properties predicted by the PA
scheme are exact to linear order in φ. Thus, the PA scheme is
especially well-suited for hydrodynamically, but not necessar-
ily structurally, dilute systems. Charge-stabilized suspensions
at low salinity and concentration, where near-contact config-
urations are very unlikely, are prime examples of hydrody-
namically dilute, but structurally ordered systems, showing
pronounced oscillations in S(q) and g(r).

Moreover, the PA scheme can be used to check the accu-
racy of other approximate schemes, such as the (self-part cor-
rected) δγ scheme, in the low concentration regime. At larger
volume fractions, however, and for diffusion properties like dc

and K, where non-pairwise additive HIs are particularly influ-
ential, the PA approximation is bound to fail. Note that, while
in the present work particles with stick hydrodynamic bound-
ary conditions are considered, the PA scheme can be easily
generalized to porous particles, and particles with slip-stick
boundary conditions, simply by using the corresponding two-
body mobility functions given, e.g., in Ref. 34.

B. δγ -method by Beenakker and Mazur

Different from the PA scheme, which cannot be ap-
plied to concentrated systems, the renormalized concentra-
tion fluctuation (termed δγ ) expansion method of Beenakker
and Mazur15, 17 is applicable to fluid disordered systems also
at large values of φ, where three-body and higher-order HI
contributions are important. The δγ method is an effective
medium approach based on a partial resummation of many-
body HI contributions. While applicable to all φ, its results
for H(q) and η∞ reveal moderate inaccuracies at all concen-
trations, including the very dilute regime where the PA ap-
proach becomes exact. These inaccuracies can be partially
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traced back to the approximate expressions of μt t
lj (RN ) and

μdd
lj (RN ) used in the derivation of the δγ -scheme where, in

particular, lubrication corrections are disregarded. Higher or-
der terms in the δγ expansion require as input static corre-
lation functions of increasing order (pair, triplet, and so on)
with swiftly increasing difficulties in their evaluation.

In the present study, we use the easy-to-implement stan-
dard version of the δγ method for which (like for the PA
scheme) only S(q) is required as input, with the latter calcu-
lated here using the MPB-RMSA scheme. This is the zeroth-
order δγ approximation regarding H(q), and the second-order
δγ approximation regarding η∞.

The zeroth-order δγ scheme for H(q) has been applied
in the past both to neutral and charged colloidal particles, but
the second-order δγ scheme for η∞ was used so far for neu-
tral hard spheres only. To our knowledge, the present work
provides the first test of the δγ scheme for charged, Yukawa-
type particles.

The zeroth-order δγ -scheme expression for H(q) consists
of a microstructure-independent part,

ds(φ)

d0

∣∣∣∣
δγ

= 2

π

∫ ∞

0
dy

[
sin(y)

y

]2

· [1 + φSγ0 (y)]−1,

(22)
and a structure factor dependent distinct hydrodynamic func-
tion part,

Hd (y)
∣∣
δγ

= 3

2π

∫ ∞

0
dy ′

[
sin(y ′)

y ′

]2

· [1 + φSγ0 (y ′)]−1

×
∫ 1

−1
dμ(1 − μ2)[S(|q − q′|) − 1], (23)

where μ is the cosine of the angle between q and q′.40

The function Sγ0 (y), which should not be confused with the
static structure factor, is given in Refs. 15 and 40 as an infi-
nite sum of wavenumber-dependent contributions with inter-
related scalar coefficients γ

(n)
0 , n = 0. . . ∞. Numerical results

for γ
(n)
0 obtained from a computation truncated at n = 5 have

been given in Table I of the original paper by Beenakker and
Mazur.15 Taking advantage of the nowadays available com-
puting power, we have been able to extend these earlier com-
putations to more terms with truncations at n = 10 and 15.
However, our more accurate results for γ

(n)
0 differ from the

original results by Beenakker and Mazur by no more than 3%,
and the differences in Hd(y)|δγ , ds(φ)|δγ , and η∞|δγ are negli-
gible for all practical purposes.

The high-frequency limiting viscosity in the second-
order δγ -scheme is given by17

η∞
η0

∣∣∣∣
δγ

= 1

λ0 + λ2
, (24)

λ0 =
[

1 + 5

2
φγ̃

(2)
0

]−1

= 1 − 5

2
φ + 215

168
φ2 + O(φ3), (25)

λ2 = 30φ

4π

[
λ0γ̃

(2)
0

]2
∫ ∞

0
dy

j 2
1 (y/2)

[
S(y/σ ) − 1

]
1 + φSγ0 (y/2)

, (26)

where γ̃
(2)
0 = γ

(2)
0 /n = 1 + 167/84φ + O(φ2).

Insertion of the low-concentration form, SHS(y) = 1
− 24φj1(y)/y + O(φ2), of the static structure factor of neu-
tral hard spheres into Eqs. (22), (23), and (24) gives, after a
straightforward calculation, the first-order virial expansion re-
sults

dHS
s

d0

∣∣∣∣
δγ

+ O(φ2) = 1 − 131

56
φ ≈ 1 − 2.339φ, (27)

KHS
∣∣
δγ

+ O(φ2) = 1 − 411

56
φ ≈ 1 − 7.339φ, (28)

ηHS
∞
η0

∣∣∣∣
δγ

+ O(φ3) = 1 + 5

2
φ + 1255

168
φ2

≈ 1 + 5

2
φ + 7.47φ2, (29)

predicted by the δγ scheme. The magnitudes of the linear
virial coefficients of dHS

s /d0 and KHS, and of the quadratic
coefficient of ηHS

∞ /η0, overestimate the precise values given
in Eqs. (19), (20), and (21) by 28%, 12%, and 49%, respec-
tively. The effect of HIs on these quantities on the pair-level is
thus overestimated by the δγ scheme. Clearly, the PA scheme
is the method of choice when very dilute systems are con-
sidered. We note further that Hd

δγ (q → 0) = −5φ + O(φ2)
for hard spheres, a result quite close to the exact result
of Hd (q → 0) = −4.714φ + O(φ2). This indicates that the
zeroth-order δγ scheme is in general a better approximation
for the distinct part, Hd(q), of the hydrodynamic function than
for its self-part ds.

Interestingly enough, the first-order in φ result for Hd(q
→ 0) for hard-spheres predicted by the δγ -scheme, is iden-
tical to the one obtained from the Rotne-Prager (RP) approx-
imation of the HIs, where only the leading order monopole
and dipole terms in the 1/x expansion of μt t

lj are retained.
For hard spheres, the first-order virial expansion result, H(qm)
= 1 − 1.35φ, for the principal peak height of H(q) remains
valid to high accuracy up to the volume fraction φf = 0.494
at freezing,14 whereas in the RP approximation, peak values
of H(q) larger than one are predicted. The main reason for
this failure of the RP approximation lies in its prediction of
ds = d0 at all φ, whereas the actual ds of hard spheres is
significantly decreasing with increasing φ, down to the value
dHS

s (φf ) ≈ 0.2d0 at freezing.
In low-salinity charge-stabilized systems at low concen-

trations, where qmσ ≈ 2πσn1/3 � 1, the δγ -scheme gives
predictions for Hd(q) close to those by the RP approximation.
Indeed, these are precisely the systems where the RP approxi-
mation can be expected to perform well, explaining in part the
overall success of the δγ scheme in making reliable predic-
tions for the distinct part of H(q) of charge-stabilized systems.

C. Self-part corrected δγ -scheme

The key observation regarding the zeroth-order δγ ex-
pression for Hd(q), which depends on S(q) only, is that it gives
overall good results both for neutral and charged Yukawa-
type spheres. In contrast, the zeroth-order δγ expansion for
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ds in Eq. (22) depends on φ only, independent of the em-
ployed pair-potential. Comparison with accelerated Stokesian
Dynamics (ASD) simulation results,14 and experimental data
for ds for charged colloids,9, 41 shows that Eq. (22) is a decent
approximation of ds for neutral hard spheres only.

The self-diffusion coefficient, ds(φ), of charged spheres
is in fact larger than the one for neutral spheres at the same
φ,42 since for the latter near contact configurations are more
likely. Using leading-order far-field mobilities applicable to
strongly charged colloids characterized by qm ∝ φ1/3, one
finds for φ � 0.1 a power-law dependence of ds according
to ds/d0 � 1 − atφ

4/3,26, 42–45 differing qualitatively from the
regular hard-sphere virial result in Eq. (19). The coefficient
at � 2.5 − 2.9 in the fractional power law varies to a certain
extent with the particle size and charge.

For suspensions of strongly charged spheres, where
φ � 0.15, it has been shown9 that the PA result for ds in
Eq. (14) is in better agreement with ASD simulation results,
and experimental data, than the corresponding δγ -scheme
result based on Eq. (22). For larger concentrations φ � 0.15,
the PA scheme overestimates the slowing hydrodynamic
influence on ds, since it does not account for the shielding
of the HIs in pairs of particles by other intervening particles.
Hydrodynamic shielding is a many-body effect which lowers
the strength but not the range of the HIs. It should be
distinguished from the screening of HIs by spatially fixed
obstacles or boundaries which absorb momentum from the
fluid, thereby causing a faster than 1/r decay of the flow
perturbation created by a point-like force. The neglect of
hydrodynamic shielding (i.e., three-body and higher-order
HIs) by the PA scheme is more consequential for the sed-
imentation coefficient K than for ds. To the former, the PA
scheme is applicable to decent accuracy only up to φ ≈ 0.1,9

whereas for larger φ, the coefficient K becomes increasingly
underestimated. The coefficient ds, on the other hand, is less
sensitive to the neglect of higher-order HI contributions than
K or dc, since the leading-order far-field contributions to
xa

11(x) and ya
11(x) are of O(x−4), i.e., of shorter range than

the leading-order O(x−1) contributions to K.
As a simple improvement over the zeroth-order δγ

scheme for the H(q) of charged particles, which preserves its
analytic simplicity, we therefore use the self-part corrected
expression,

H (y)|δγcorr
= ds

d0

∣∣∣∣
PA

+ Hd (y)
∣∣
δγ

, (30)

with ds according to Eq. (14) and Hd(q) according to Eq. (23),
bearing in mind that [ds/d0]PA becomes less reliable for
φ � 0.15.

For the limiting case of neutral hard spheres at larger
φ, it is therefore preferential to use in place of [ds/d0]PA the
accurate expression,

ds

d0

∣∣∣∣
HS

≈ 1 − 1.8315φ(1 + 0.1195φ − 0.70φ2) (31)

which, for φ ≤ 0.5, agrees well with ASD (Ref. 14) and hy-
drodynamic force multipole46 results, with an accuracy better
than 3%. Note that the linear and quadratic order coefficients
in Eq. (31) have been selected identical to the numerically

precise values −1.8315 and −0.219 = −1.8315 × 0.1195,
for the respective virial coefficients given in Ref. 37. We have
determined the cubic coefficient in Eq. (31) from a best fit to
recent simulation results in Refs. 14 and 46. The coefficient
0.70 differs somewhat from the coefficient 0.65 in Ref. 46,
where simulation results only up to φ ≤ 0.45 were considered.

A self-part corrected version of the δγ scheme for H(q)
was used already in earlier applications, where ds was con-
sidered simply as an adjustable parameter,40 or in more re-
cent work determined using elaborate ASD simulations.14 For
practical purposes, however, it is far more convenient to use
the analytic ds corrections in Eqs. (14), (30), and (31). In the
present work, numerous ASD simulation results for H(q), ds,
and η∞ have been generated to provide precise benchmarks
for assessing the accuracy of the proposed self-part corrected
δγ scheme.

While the δγ scheme for H(q) has been used already for
charge-stabilized colloids, to our knowledge the application
of the δγ scheme for η∞ in Eqs. (24)–(26) was restricted
so far to colloidal hard spheres, where the predicted values
for η∞(φ) are in good agreement, for φ � 0.4, with experi-
ments and simulation data. In Subsection V C, we are going
to assess the performance of the δγ -scheme expression for
the η∞ of charged particles by comparison with ASD simu-
lation data. Our analysis shows that the second-order δγ con-
tribution, λ2(φ) < 0, to η∞/η0 is only weakly dependent on
the shape of the static structure factor. Moreover, the zeroth-
order contribution, λ0(φ) > 0, which is only dependent on
φ, dominates for small φ the contribution λ2 in magnitude.
As a consequence, the δγ -predicted values for η∞ change
only slightly when going from neutral to charged particles,
whereas simulations, and experiments,47 reveal significantly
smaller viscosity values in particular at low salinities. Thus,
the δγ -scheme result in Eqs. (24)–(26) applies to neutral hard
spheres only. However, for the interesting case of low-salinity
systems, where the viscosity differences to neutral spheres at
equal concentration are largest, the δγ scheme can be modi-
fied (corrected) in an ad-hoc way, according to

η∞
η0

∣∣∣∣
δγcorr

= 1 + 5

2
φ(1 + φ) − 1

λ0
+ 1

λ0 + λ2
. (32)

The motivation for this correction follows from the PA ex-
pression in Eq. (18): For a low-salinity system of strongly re-
pelling particles, one has the scaling rm ∝ φ−1/3 for the peak
position, rm, of the rdf, and g(r � rm) ≈ 0. Since J(x) is of
O(x−6), for these systems the integral in Eq. (18) is of O(φ3).
Hence, to quadratic order in φ, η∞ is determined basically
by the microstructure-independent contribution, 1 + 2.5φ(1
+ φ), according to Eq. (18).

In Eq. (32), we correct approximately for this limiting
behavior of η∞ by subtracting the structure-independent “self
part,” 1/λ0, from [η∞/η0]δγ , which renders the remainder of
O(φ2) small, while adding the term 1 + 2.5φ(1 + φ). As we
will show in Subsection V C, the so-corrected δγ scheme is
in very good agreement with the ASD viscosity data of low-
salinity systems, even up to the freezing transition concen-
tration. We point out here that Eq. (32) is restricted in its
applicability to the low-salinity regime of strongly repelling
particles. In contrast, the ds-corrected δγ -scheme for H(q) in
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Eq. (30) applies to HSY systems for any set of system param-
eters {γ , k, φ}, provided φ � 0.15, including the crossover
regime from neutral to deionized, highly charged particle sys-
tems. For neutral hard spheres, the (uncorrected) δγ scheme
for η∞ performs quite well.

The design of a simple, corrected δγ scheme which op-
erates well for arbitrary {γ , k, φ}, including systems of inter-
mediate salinity, is obstructed by the limited separability of
λ0 and λ2, and by significant many-body HI contributions for
more concentrated systems of nearly hard-sphere-like parti-
cles at high salinity. For small values φ � 0.1, the PA method
can be used to produce reliable predictions of η∞, for arbi-
trary salinities.

D. Accelerated Stokesian dynamics simulations

The simulation data for the H(q) and η∞ in HSY systems
explored in this work, have been generated using an ASD
simulation code. The details of the simulation method have
been explained in Ref. 30. It allows to simulate short-time
properties of a larger number of spheres, typically up to N
= 1000, placed in a periodically replicated simulation box,
allowing for improved statistics. Since short-time properties
are obtained from single-time equilibrium averages, we
have used equilibrium configurations generated using a
Monte Carlo simulation method for charged spheres and a
molecular dynamics algorithm for neutral hard spheres, with
the many-sphere HIs accounted for using the ASD scheme.
The computed hydrodynamic function, HN(q), shows a strong
system-size dependence, even when N is not small. We
therefore extrapolate HN(q) to the thermodynamic limit using
the finite-size scaling correction,48, 49

H (q) = HN (q) + 1.76S(q)
η0

η∞(φ)
(φ/N)1/3 , (33)

which, for q → 0 and q → ∞, includes the finite-size correc-
tions for K and ds, respectively. This finite-size correction for-
mula was initially proposed by Ladd for hard spheres,48, 50, 51

and has been subsequently applied also to charged spheres14

and solvent-permeable particles.31 As pointed out by Ladd,48

and explained by Mo and Sangani,49 η∞ is not critically
dependent on N so that finite size scaling extrapolation to N
→ ∞ is not needed (see also Ref. 32). The simulation results
discussed in Sec. V are obtained from averaging over 2000
configurations, for systems of typically N = 512 particles.

V. RESULTS

A. Diffusion properties of charged particles

In Fig. 1, theoretical and simulation results for H(q) are
shown for nine different systems with common system pa-
rameters LB = 5.617 nm, σ = 200 nm, and Z = 100, repre-
sentative of suspensions of highly charged colloidal spheres
in an organic solvent. The parameters φ and ns are varied, and
assume values consisting of all permutations of φ = 0.055,
0.105, and 0.15 and ns = 10−4, 10−5, and 10−6 M. To facil-
itate the comparison of the different systems, identical axes
scales are used in all nine panels, ordered with respect to φ,

which increases from top to bottom, and ns, decreasing from
left to right. Thus, the strength of the interparticle correlations
increases from left to right, and from top to bottom. Figure 1
serves for analyzing the accuracy of the corrected and uncor-
rected δγ schemes, and of the PA scheme, in comparison to
our finite-size corrected ASD results for H(q).

The results for H(q) obtained by all methods described in
Sec. IV, are included in Fig. 1. Open symbols represent ASD
simulation data, black dashed curves represent our PA results,
blue dotted curves represent the zeroth-order δγ scheme
results, and red solid lines indicate the self-part corrected δγ

scheme predictions. The black and orange horizontal lines in
each panel mark the reduced short-time self-diffusion coeffi-
cient, ds/d0 = H(q → ∞), obtained from the ASD simulations
and the PA scheme, respectively. As the only input to the three
analytic schemes, S(q) and g(r) of each system are obtained
using our MPB-RMSA code. Except for φ = 0.105, the MPB-
RMSA results for S(q) and g(r) have been shown already in
Figs. 3 and 4 of Ref. 18, and are therefore not included here.

The rightmost column of panels in Fig. 1 presents results
for three systems of strongly charged particles with a very
low residual, but experimentally still accessible, salt content.
In the most concentrated system in panel (i), where φ = 0.15
and ns = 10−6 M, a structure factor peak value S(qm) ≈ 2.5
is attained according to the MC simulations. The very same
peak value is predicted by the MPB-RMSA and RY integral
equation schemes. According to the empirical Hansen-Verlet
freezing rule, the system in panel (i) is pretty close to the
freezing transition point.52–54

The screening parameter k defined in Eq. (3) assumes
rather low values of 2.67, 3.24, and 3.68 for the systems
in panels (c), (f), and (i), with k2

c /k2
s = 1.1, 2.1, and 3.0,

respectively. The relatively large values for k2
c /k2

s in these
systems indicate that salt microions contribute little to
the electrostatic screening, which instead is dominated by
colloid-surface released counterions. Different from neutral
hard spheres, where H(qm) decreases linearly with increasing
φ, the hydrodynamic function peak heights of the three
low-salinity systems depend non-monotonically on φ, with
ASD values H(qm) = 1.13, 1.17, and 1.15 for the systems in
panels (c), (f), and (i), respectively. Such a non-monotonic
φ-dependence of H(qm) is typical for low-salinity systems, as
discussed in Refs. 14 and 55. The ASD results for the reduced
self-diffusion coefficient, ds/d0, and the corrected δγ -scheme
results for the sedimentation coefficient K in panels (c), (f),
and (i), follow closely the concentration-scaling predictions
ds/d0 = 1 − atφ

4/3 and K = 1 − asφ
1/3 given in Ref. 9, with

at = 2.63 and with as = 1.44. The fractional exponents 4/3
and 1/3 can be traced back to the φ1/3 scaling in low-salinity
systems, of the structure factor peak position, qm. Note here
that H(q) has its principal peak at a wavenumber practically
identical to the peak position of S(q).

We proceed in our discussion with the systems in
the leftmost column of panels. The salt concentration, ns

= 10−4 M, of these systems is so large that the neutral
hard-sphere limit is practically reached. The comparison with
the H(q) of genuine neutral hard spheres at volume fractions
equal to those in panels (a), (d), and (g), shows relative
differences of less than 6% in all three cases. The proximity
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FIG. 1. Hydrodynamic function, H(q), for charge-stabilized suspensions of volume fractions, φ, and salt concentrations, ns, as indicated in each panel. The
panels are ordered with respect to φ, which increases from top to bottom, and ns, which decreases from left to right. Open symbols: ASD simulation data. Black
dashed, blue dotted, and red solid curves: PA-scheme, δγ -scheme, and self-part corrected δγ -scheme results, respectively. In the latter scheme, the self-diffusion
coefficient has been calculated using the PA scheme according to Eqs. (30) and (14). Horizontal black and orange lines mark the values for ds/d0 obtained from
ASD simulation and PA-scheme calculations, respectively. Common system parameters are LB = 5.617 nm, σ = 200 nm, and Z = 100.

to genuine neutral hard-sphere systems is manifest also in
the large values, k = 18.5, 18.6, and 18.7, of the screening
parameter, and in the small ratios k2

c /k2
s = 0.01, 0.02, and

0.03, for the systems in panels (a), (d), and (g), respectively.
For the smallest considered concentration φ = 0.055 (top

row of panels in Fig. 1), the differences in the respective H(q)
predicted by the analytic methods and the ASD simulations
are very small. Since the PA scheme becomes exact at low
φ, this illustrates that, despite their overall inaccuracies, the
self-part corrected, and even the uncorrected δγ -scheme, can

be used to obtain good estimates of H(q) also for more dilute
suspensions.

With increasing φ, pronounced differences are observed
in Fig. 1 between the PA-scheme and ASD results for H(q).
This reflects the expected failure of the PA scheme in con-
centrated suspensions, where three-body and higher-order HI
contributions become influential. The deviations of the PA-
scheme results from the precise simulation data are most pro-
nounced for the peak value H(qm), which is overestimated by
the PA scheme, and in the sedimentation coefficient, K = H(q
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→ 0), which is underestimated. In fact, for the system in panel
(i), the PA prediction for K is just barely larger than zero,
turning to unphysical negative values when the volume frac-
tion surpasses φ = 0.154 at a fixed ns = 10−6 M. However,
the PA-scheme values for ds/d0 remain in very good agree-
ment with the ASD results, with a relative deviation of less
than 3.5% even at φ = 0.15. The values for ds/d0 predicted by
the uncorrected δγ scheme are generally in less good agree-
ment with the simulation data, clearly revealed in Fig. 1 by
the large-q offset of the corresponding H(q).

The self-part corrected δγ -scheme results for H(q) in
Fig. 1 (red solid lines) illustrate that this hybrid scheme com-
bines the good accuracy of the PA scheme regarding ds, and
of the δγ scheme regarding Hd(q). Indeed, the corrected δγ -
scheme results for H(q) are in overall good agreement with
the ASD simulation data for all considered systems, with the
largest deviation of 6% for H(qm) observed in panel (i).

In closing our discussion of Fig. 1, a short comment
is in order regarding the computational cost caused by
the considered methods of computing H(q). The fast and
accurate evaluation of S(q) and g(r) by the MPB-RMSA
method, in combination with the easily evaluable integrals
in Eqs. (14), (15), and (23), has allowed us to implement
a convenient graphical user interface code, running on a
standard desktop personal computer (PC). Using this code,
MPB-RMSA results for S(q) and g(r), and PA-, δγ -, and
self-part corrected δγ -scheme results for H(q), are obtained
in less than 1 second of central processing unit (cpu) time,
for a given set of input parameters {LB, σ , Z, ns, φ}. Thus,
all curves depicted in Fig. 1, except for the ASD simulation
data, have been obtained altogether in less than a minute on
a standard desktop PC. In comparison, the computation of
just one of the computer simulation curves in Fig. 1 required
on a standard desktop PC typically 5 h of cpu time for
generating 2000 equilibrated configurations (using our MC
method) and approximately 8 h of cpu time for computing
H(q) with the ASD scheme. The overall accuracy and fast
performance of the hybrid δγ scheme in Eqs. (30)–(32) make
this scheme well-suited for the real-time fitting of large sets
of experimentally recorded data for H(q) and D(q).56

B. Hybrid δγ scheme applied to neutral hard spheres

The main virtue of the ds-corrected (zeroth-order) δγ

scheme lies in its good applicability to charge-stabilized sys-
tems. However, it is interesting to assess in more detail its
performance in the limiting case of neutral hard spheres, in
particular when the values of H(q) at q = 0 and q = qm are
considered. Recall for hard spheres that the accurate expres-
sion for dHS

s in Eq. (31) should be preferentially used instead
of the approximate PA result for larger φ � 0.15. For neutral
spheres, higher-order HI contributions to ds begin to matter at
somewhat smaller concentrations than for charge-stabilized
particles, where near-contact configurations are unlikely.

In Fig. 2, numerically precise lattice Boltzmann50

and hydrodynamic force multipole simulation results31 for
KHS(φ) are compared with the predictions of all considered
analytical schemes. For φ � 0.35, the uncorrected δγ scheme

FIG. 2. Reduced short-time sedimentation coefficient, KHS, of neutral col-
loidal hard spheres. Open circles: Hydrodynamic force multipole simula-
tion data by Abade et al.31 Open squares: lattice Boltzmann simulation data
by Segrè et al.50 Black dashed line: PA-scheme result. Dashed-dotted red
line: uncorrected δγ -scheme result. Dashed orange line: self-part corrected
δγ -scheme result in Eq. (30), with [ds/d0]PA according to the PA-scheme
result in Eq. (14). Solid black line: self-part corrected δγ -scheme result,
using in place of [ds/d0]PA the, for hard spheres, more accurate expres-
sion [ds/d0]HS given in Eq. (31). Solid blue line: second-order virial result
KHS = 1 − 6.546φ + 21.918φ2 (see Ref. 38). The static structure factor in-
put was calculated using the analytic Percus-Yevick solution.

underestimates the simulation data, showing the opposite
trend of a slight overestimation for φ � 0.35. The corrected
δγ scheme with ds-input according to Eq. (31), on the other
hand, is in excellent agreement with the simulation data up to
φ ≈ 0.4, reflecting the accuracy of the δγ -scheme predictions
for Hd(q) also for neutral spheres.

For large volume fractions φ � 0.4, however, the distinct
part, KHS − dHS

s /d0, of the sedimentation coefficient is con-
siderably underestimated by the δγ scheme, to such an ex-
tent that the self-part corrected δγ scheme prediction for KHS

assumes unphysical negative values for φ � 0.45. Up to φ

≈ 0.2, the corrected δγ -scheme prediction for KHS, with dHS
s

obtained by the PA scheme, lies closer to the simulation data
than the uncorrected δγ -scheme result. This can be explained
by the precise account of (two-body) lubrication effects in
the PA-scheme, which are not included in the uncorrected δγ

scheme. At larger concentrations, however, the corrected δγ

scheme, with PA input for ds, increasingly underestimates the
sedimentation coefficient up to the point that, for φ � 0.31,
unphysically negative values for KHS are attained. This is a
consequence of the already noted many-sphere hydrodynamic
shielding effect, disregarded in the PA scheme, which lowers
the strength of the HIs without reducing their range, leading
to a larger self-diffusion coefficient than predicted on basis of
hydrodynamic pair-interactions alone. The neglect of shield-
ing effects by the PA scheme, both in the self- and distinct
parts of KHS, is the reason for the crossover of the PA curve
of KHS to negative values already at φ ≈ 0.21.

Regarding again Fig. 2, we finally note that the second-
order virial result, KHS = 1 − 6.546φ + 21.918φ2 + O(φ3),
derived in38 ceases to be applicable for φ � 0.15, where its
curve bends up to larger values. This is the reason why this
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FIG. 3. Hydrodynamic function peak value, H(qm), of neutral hard spheres.
Open circles: Hydrodynamic force multipole simulation results by Abade
et al.31 Open diamonds: ASD simulation data (see Ref. 14). Black dashed
line and dashed-dotted red line: PA-scheme and uncorrected δγ -scheme re-
sults, respectively. Dashed orange line: self-part corrected δγ -scheme re-
sult in Eq. (30), with [ds/d0]PA calculated using the PA-scheme result in
Eq. (14). Solid black line: self-part corrected δγ -scheme result, using in place
of [ds/d0]PA for hard spheres the more accurate expression [ds/d0]HS given
in Eq. (31). Dotted curve in violet: 1 − 1.35φ. The static structure factor input
was obtained using the analytic Percus-Yevick solution.

second-order virial result cannot be used, different from the
corresponding virial results for dHS

s , ηHS
∞ , and H HS(qm), to

construct analytic extrapolation formulas, valid for all con-
centrations up to the freezing transition.

We proceed by discussing the concentration dependence
of the peak value, H HS(qm), of the hydrodynamic function of
neutral spheres. As noted in Sec. III, H(qm) is related to the
short-time cage diffusion coefficient, dcge = d0H (qm)/S(qm),
characterizing the initial decay rate of density fluctuations of
wavelength equal to the next-neighbor cage size. Fig. 3 dis-
plays the decline of the hard-sphere H(qm) with increasing φ.
To excellent accuracy up to the freezing volume fraction, this
decline is described by the first-order virial result14

H HS(qm) = 1 − 1.35φ. (34)

Indeed, all the depicted ASD (Ref. 14) and hydrodynamic
force multipole31 values for H(qm) follow this line, indicating
that, for a so far unknown reason, all higher order virial con-
tributions cancel out. According to Fig. 3, the uncorrected δγ

scheme significantly underestimates H HS(qm) for φ � 0.35,
overestimating it instead for φ � 0.4. In contrast, the corrected
δγ -scheme result with the precise dHS

s according to Eq. (31),
is distinctly more accurate in that it only very slightly under-
estimates the linear decay in Eq. (34) for φ � 0.4. More-
over, for φ > 0.4, the positive-valued deviations from 1 −
1.35φ are substantially smaller than those of the uncorrected
δγ scheme.

The corrected δγ -scheme prediction for H HS(qm), with
ds calculated using the PA scheme, is a decent approxima-
tion up to φ � 0.15. Its bending over to smaller values occurs
for H HS(qm) at somewhat larger φ values than in the sedi-
mentation case, indicating that δγ -scheme results for Hd(q)
are more accurate at q = qm than at q ≈ 0. The curve for
H HS(qm) predicted by the PA scheme bends over to larger

values at a concentration φ ≈ 0.37 vastly beyond its range (φ
� 0.1) of applicability. The total neglect in the PA scheme of
many-body HIs beyond the pair level implies, at larger φ, an
underestimation of ds, but to a larger extent an overestima-
tion of Hd(qm). As a net result, H HS(qm) at large φ is strongly
overestimated by the PA scheme.

In summarizing our discussion of hard-sphere systems,
the key message conveyed by Figs. 2 and 3 is that the cor-
rected δγ scheme, with ds according to Eq. (31), describes
H HS(q) quite precisely for φ � 0.4. It can be applied to rea-
sonable accuracy even to larger φ values, with the exception
of small q values.

C. High-frequency viscosity

In this Subsection, we compare viscosity results obtained
by the various methods described in Sec. IV, for the two limit-
ing cases of deionized (low-salinity) charged-sphere and neu-
tral hard-sphere suspensions. Results for systems with inter-
mediate added salt are bracketed by these two limiting cases.

In Fig. 4, we display our viscosity results for neutral
hard spheres with those for two deionized suspensions of
highly charged spheres (CS) where ns = 0. Results by all the
methods in Sec.IV are shown. We point out that, in addition
to the CS system of Fig. 1 with parameters LB = 5.617 nm,
σ = 200 nm, and Z = 100 (referred to here as system CS-1),
whose ASD results for η∞ in Fig. 4 are indicated by filled
red circles, we additionally show viscosity results for another
zero-salt system where LB = 0.71 nm, σ = 50 nm, and Z = 70
(labeled CS-2), whose ASD data for η∞ are represented by
red diamonds filled in blue. The reason for including in Fig. 4
results for two different deionized systems, is that system
CS-1 freezes at φ ≈ 0.15, whereas system CS-2 stays fluid up
to φ ∼ 0.3, allowing us to test the predictions of our analytical
methods in a more extended volume fraction range. The ASD
simulation data for η∞(φ) for systems CS-1 and CS-2 merge
continuously, overlapping nearly perfectly within 0.1 < φ

< 0.15. This indicates that the limiting behavior of η∞ for
highly correlated charged spheres is practically reached in
both systems. Therefore, the depicted CS-results for η∞
were calculated in the analytic schemes using the parameters
of system CS-2 only. The deviations in η∞ for the two CS
systems are minuscule in all considered analytic schemes.

Consider first the performance of the PA scheme. By its
definition, the PA result for η∞ is in very good agreement with
the ASD simulation data at low φ, but the agreement becomes
poorer with increasing volume fraction. While the deviations
between the ASD and PA results for low-salt systems are very
small up to φ � 0.2, for neutral spheres significant differences
are visible already for φ � 0.1. These differences originate
from the fact that in charged-sphere suspensions, near-contact
configurations are disfavored by the electric repulsion, i.e.,
charged-sphere systems are hydrodynamically more dilute
than neutral sphere suspensions. Since higher-order HI
effects on η∞ in low-salinity charged systems are weaker, for
many such systems (including system CS-1), which freeze
already at φ � 0.2, the accuracy of the PA-scheme for η∞ is
sufficiently good in the whole fluid regime. Regarding H(q),
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FIG. 4. Reduced high-frequency viscosity, η∞/η0, as a function of φ, for a
suspension of neutral hard spheres (HS, in black), and two deionized charged-
sphere suspensions (CS-1 and CS-2, in red). The leading-order Einstein con-
tribution, 1 + 2.5φ, is subtracted off to expose the differences. Symbols: ASD
simulation results. Dashed lines: PA-scheme results according to Eq. (18).
Dotted lines: δγ -scheme results according to Eqs. (24)–(26). Solid lines: self-
part corrected δγ -scheme results according to Eqs. (32), (25), and (26). All
analytic schemes use the MPB-RMSA S(q) as input. The CS-1 viscosity re-
sults represented by red filled circles are ASD data for LB = 5.617 nm, σ

= 200 nm, and Z = 100. The ASD data for the more weakly charged, smaller
particles of system CS-2, with LB = 0.71 nm, σ = 50 nm, and Z = 70 are
indicated by red diamonds filled in blue. The parameters of system CS-2
have been used in the analytic calculations. The inset magnifies the details at
lower φ.

however, the PA-scheme predictions for charged spheres
deviate significantly from the ASD data already at φ = 0.105
(see again Fig. 1). At larger φ, and in contrast to the ASD
data, the PA scheme predicts only a slight enlargement of η∞
in going from charged to neutral spheres. The distinctly larger
values of η∞ for concentrated hard-sphere suspensions are
thus mostly due to near-field, many-body HIs which enlarge
the viscous dissipation. Overall, however, η∞ is rather insen-
sitive to the range of the pair potential, at least in comparison
to the static (zero frequency) viscosity which for concentrated
systems can become very much larger than η∞.57

The self-part modified δγ scheme for η∞, defined by
Eq. (32), agrees overall very well with the ASD data for
charged spheres in the whole fluid-state concentration regime.
Small deviations from the simulation data are noticed at low
φ values only. Regarding neutral hard spheres, a similar ob-
servation applies to the unmodified second-order δγ scheme,
which describes the ASD simulation data quite well up to φ

≈ 0.4. The slight overestimation of ηHS
∞ at lower φ can be

attributed to the non-exact treatment of two-body HI contri-
butions by the δγ scheme.

Overall, the high-frequency viscosity of charged-sphere
systems at low salinity is well captured by the modified
δγ -scheme in Eq. (32), and for neutral hard spheres by the
unmodified δγ scheme (up to φ ≈ 0.4). Different from the
self-part corrected δγ scheme for H(q), which makes reliable
predictions for arbitrary salinities, the modified δγ scheme
for η∞ applies to low-salinity systems only, and the unmod-

ified δγ scheme only to neutral hard spheres. The reasons for
this have been discussed already in Subsection IV C.

Before closing our discussion of η∞, it is of interest
to compare the numerical efforts required by the employed
methods. The computation of the 45 ASD data points for neu-
tral and charged spheres included in Fig. 4 required about
500 h of cpu time on a modern desktop PC. This large time in-
vestment should be compared to the few minutes computation
time on a comparable PC which were required for the results
by all considered analytic schemes, amounting to more than
one thousand data points on a dense mesh of φ values.

VI. RELATION BETWEEN VISCOSITY AND
DIFFUSION PROPERTIES

Having quite accurate analytic methods for short-time
properties at our disposal, we are in the position to analyze
possible relations between these properties in the whole fluid-
state concentration regime. Specifically, we want to test the
validity of two GSE relations,

D∗(φ)

d0
× η∞(φ)

η0
≈ 1, (35)

for D*(φ) = ds(φ) and D∗(φ) = dcge(φ). In addition, we
probe the validity of the Kholodenko-Douglas GSE (KD-
GSE) relation,58

dc(φ)

d0
× η∞(φ)

η0
×

√
S(q → 0, φ) ≈ 1, (36)

between the collective diffusion coefficient, dc = K/S(q
→ 0), η∞, and the square root of the isothermal osmotic com-
pressibility given by S(q → 0). In particular, the KD-GSE re-
lation has been used in various biophysical and soft matter
studies.59–62

All three considered GSE relations are exact at φ = 0
only. The approximate validity of a GSE relation in con-
centrated systems is an important issue in microrheological
studies, since this allows to infer a rheological property more
easily from a diffusion measurement. For testing the GSE
relations in Eqs. (35) and (36), we consider here again the
two limiting HSY cases of a low-salinity charge-stabilized
system and neutral spheres, since the differences in the
respective short-time dynamic properties are here largest.

For a precise test of the GSE relations in the case of hard
spheres, we take advantage of simple analytic expressions
available for all short-time properties appearing in Eqs. (35)
and (36), with the exception of K, for which we use the
quite accurate self-part corrected δγ -scheme result depicted
in Fig. 2. The analytic expressions for hard spheres, which
apply to excellent accuracy up to φ = 0.5, are Eq. (34) for
H HS(qm), Eq. (31) for dHS

s , and the generalized Saitô-type ex-
pression for ηHS

∞ ,32

ηHS
∞
η0

= 1 + 5

2
φ

1 + S

1 − φ(1 + S)
, (37)

where S = 1.001φ + 0.95φ2 − 2.15φ3. Moreover, we use the
precise formula57 for the structure factor peak height,

SHS(qm) ≈ 1 + 0.644φgHS(x = 1+), (38)
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FIG. 5. Test of the two GSE relations in Eq. (35), relating η∞ to ds

and dcge, respectively. Solid lines: (ds/d0) × (η∞/η0) vs. φ. Dashed lines:
(dcge/d0) × (η∞/η0) vs. φ. Black curves are hard-sphere results obtained
from Eqs. (31), (34), (37), and (38). Red and blue curves are corrected δγ -
scheme results for the low-salinity charged-sphere systems CS-1 and CS-2,
respectively, both assuming a residual salt content of ns = 10−6 M. The cor-
rected δγ -scheme results have been calculated using Eqs. (32), (25), and (26)
for η∞, and Eqs. (30) and (14) for ds and dcge = d0H (qm)/S(qm). As input
to all analytic schemes, MPB-RMSA results for S(q) have been used.

where gHS(x = 1+) = (1 − 0.5φ)/(1 − φ)3 is the Carnahan-
Starling contact value for the hard-sphere rdf. For SHS(q
→ 0) in Eq. (36), we employ the Carnahan-Starling equation
of state.22

In testing the GSE relations in Eqs. (35) and (36) for
low-salinity systems, for the diffusion properties we use the
self-part corrected δγ scheme, with ds calculated by the PA
scheme. For η∞ we use the corrected δγ scheme according to
Eq. (32).

The validity of the two GSE relations in Eq. (35) is ex-
amined in Fig. 5. A valid GSE relation is reflected by a hor-
izontal line of unit height. For neutral hard spheres (black
lines), the product (dHS

s /d0) × (ηHS
∞ /η0) is well approximated,

for all displayed φ, by its first-order in φ expansion given by 1
+ 0.67φ, showing a more than 20% violation of this GSE re-
lation for dHS

s when φ � 0.3.
Different from dHS

s , the GSE scaling for dHS
cge is approx-

imately satisfied with a maximal deviation from one of 8%.
Thus, for hard-sphere like colloidal particles available only in
amounts too small for a mechanical rheological experiment,
one can determine η∞ approximately from a dynamic scatter-
ing experiment measuring D(qm).

According to Fig. 5, in low-salinity systems of charged
particles, the GSE-relation for ds is overall of similar accu-
racy as that for hard spheres, although the deviations from
one are larger at smaller φ. The curves for (ds/d0) × (η∞/η0)
obtained for the two low-salinity systems coincide practically
for φ � 0.15. The downturn of these two curves at larger
φ � 0.18, indicated by the dotted curve continuations in
Fig. 5, is not shared by the ASD simulation data (cf., Fig. 25
in Ref. 14). This is an artifact of the PA scheme which, as dis-
cussed already in relation to Fig. 1, tends to underestimate ds

at larger φ.

FIG. 6. Test of Kholodenko-Douglas GSE relation in Eq. (36). Black curves:
neutral hard-sphere results based on the precise analytic result in Eq. (37)
for ηHS∞ , SHS(q → 0) according to the Carnahan-Starling equation of state,
and KHS calculated by the self-part corrected δγ -scheme Eq. (30), using in
place of [ds/d0]PA the, for hard spheres, more accurate expression [ds/d0]HS

given in Eq. (31). Red (dashed) and blue (dashed-dotted) curves are self-
part corrected δγ -scheme results for the low-salinity systems CS-1 and CS-2
(with ns = 10−6 M), respectively, using Eqs. (32), (25), and (26) for η∞, and
Eqs. (30) and (14) for dc = d0H(q → 0)/S(q → 0). As input to all analytic
schemes, MPB-RMSA results for S(q) have been used.

Different from neutral hard spheres, in low-salinity sys-
tems the GSE relation for dcge is manifestly violated already at
very low φ. The strong difference in the (dcge/d0) × (η∞/η0)
curves for the two considered low-salinity systems is due to
the different φ-dependence of their respective S(qm). The pro-
nounced decline of both curves at low φ is mainly triggered
by the sharp low-φ rise of S(qm) in low-salinity systems.

Kholodenko and Douglas58 have proposed the GSE rela-
tion in Eq. (36) using mode-coupling theory like arguments.
For neutral spheres at low φ, we can check this relation an-
alytically using the numerically precise second-order virial
expansion results for KHS in Ref. 38, ηHS

∞ in Ref. 39, and
SHS(q → 0) given by the Carnahan-Starling equation of state.
This leads to

dHS
C

d0
× ηHS

∞
η0

×
√

SHS(q → 0, φ) = 1 − 0.046φ

+1.3713φ2 + O(φ3),

(39)

where the first-order virial coefficient is indeed close to zero.
Using the analytic expressions for ηHS

∞ in Eq. (37), and KHS

calculated in the self-part corrected δγ -scheme with ds ac-
cording to Eq. (31), we can test the KD-GSE relation in fact
in the full fluid-state regime of neutral spheres. According to
the inset in Fig. 6, the KD-GSE for neutral spheres is valid
to decent accuracy up to φ � 0.4, with a maximal positive-
valued deviation from one at φ ≈ 0.3 of less than 18%. Strong
negative-valued deviations from one are observed for φ � 0.4,
where the KD-GSE relation ceases to be applicable to neutral
hard spheres.
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The corrected δγ -scheme results included in Fig. 6
demonstrate the striking violation of the KD-GSE relation,
when low-salinity systems of charged particles are consid-
ered. A clear violation of this relation is observed for all con-
centrations φ � 10−4 in the case of the low-salinity system
CS-1, and for φ � 10−2 in the case of system CS-2, where,
for both systems, a residual salt concentration of ns = 10−6

M has been assumed. The maximal (positive-valued) viola-
tion of the KD-GSE relation occurs roughly at a volume frac-
tion where the dc(φ) of charged spheres attains its maximum.
The maximum in dc(φ), in turn, is the result of a competi-
tion, with increasing φ, between decreasing compressibility
and decreasing sedimentation coefficient. The concentration
at the peak of dc(φ) is determined roughly from k2

c (φ) = k2
s .5

The downturn of the dcη∞
√

S(q → 0)/(d0η0) curve at large
φ, observable in Fig. 6 for neutral and charged spheres alike,
is triggered by the large-φ decline both of K and η∞.

VII. CONCLUSIONS

We have presented a comprehensive theoretical and com-
puter simulation study of short-time dynamic properties of
colloidal spheres, interacting by a HSY pair potential. In this
study, the accuracy of essentially analytic and very fast meth-
ods of calculating H(q), ds, and η∞ has been explored in
comparison with numerically expensive ASD simulation re-
sults, obtained as functions of volume fraction and added salt
content. We have been particularly concerned with the low
screening (low salinity) and infinite screening (i.e., neutral
sphere) limits of the HSY model.

The static pair functions S(q) and g(r), required as the
only input to the PA and (self-part corrected) δγ schemes,
have been determined using our recently developed MPB-
RMSA method. The PA scheme, which precisely (and only)
accounts for two-body HIs, is for arbitrary salt concentration
in excellent agreement with the simulation data for H(q), pro-
vided that φ � 0.1. With regard to the high-frequency vis-
cosity, the PA-scheme predictions are in good agreement with
the simulation data for volume fractions up to φ ≈ 0.1 for
neutral hard spheres, and up to φ ≈ 0.2 for strongly charged
spheres in the weak screening (low salinity) regime. At larger
φ, three-body and higher-order HIs become influential.

The self-part corrected δγ scheme for H(q) is in good
agreement with our ASD results for the hydrodynamic func-
tion of charged spheres at all considered φ and ns values.
When the self-part corrected δγ scheme is applied to neutral
hard spheres, using dHS

s according to Eq. (31), also H HS(q) is
predicted to very good accuracy even up to φ ≈ 0.4, including
the small-q region.

We have shown that the (second-order) δγ -scheme ex-
pression for η∞, given by Eqs. (24)–(26), is only applicable to
hard-sphere like systems (i.e., at large screening). Its predic-
tions for ηHS

∞ , however, agree well with the ASD data up to φ

� 0.4. At larger φ, it underestimates the high-frequency vis-
cosity. Based on arguments applying to low-salinity charge-
stabilized systems only, we have introduced in Eq. (32) a sim-
ple correction to the δγ -scheme result for η∞. This corrected
δγ scheme predicts to good accuracy the high-frequency vis-
cosity of low-salinity systems, even up to the freezing con-

centration. Different from the self-part corrected δγ scheme
for H(q) introduced in Eq. (30), which applies at any salt con-
centration under the condition that φ � 0.15, the corrected δγ

scheme for η∞ in Eq. (32) is valid at low salinities only. An
appropriately corrected δγ scheme for η∞, applicable for ar-
bitrary salinities, is still missing. Its development could be the
topic of a future study.

An interesting application of the hybrid δγ schemes for
H(q) and η∞ has been our validity tests of three approximate
generalized Stokes-Einstein relations linking η∞ to ds, dcge,
and dc, respectively. For an optimal test of these relations in
the special case of neutral hard spheres, precise analytic ex-
pressions for dHS

s , H HS(qm), SHS(qm), and SHS(q → 0) have
been used, valid in the whole fluid-state concentration range.
The key finding from our validity tests of GSE relations is the
strong dependence of their accuracies on the range and char-
acter of the particle interactions. The most striking example in
case is the Kholodenko-Douglas GSE relation, which applies
decently well to neutral spheres up to φ ≈ 0.4. The very same
relation, however, is strongly violated in low-salinity suspen-
sions already at very low volume fractions.

ACKNOWLEDGMENTS

M.H. acknowledges support by the International
Helmholtz Research School of Biophysics and Soft Matter
(IHRS BioSoft). A.J.B. acknowledges financial support from
SeCyT-UNC and CONICET. This work was under appropri-
ation of funds from the Deutsche Forschungsgemeinschaft
(DFG) (SFB-TR6, project B2).

1W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions
(Cambridge University Press, Cambridge, England, 1989).

2D. O. Riese, G. H. Wegdam, W. L. Vos, R. Sprik, D. Fenistein, J. H. H.
Bongaerts, and G. Grübel, Phys. Rev. Lett. 85, 5460 (2000).

3P. Holmqvist and G. Nägele, Phys. Rev. Lett. 104, 058301 (2010).
4J. Gapinski, A. Wilk, A. Patkowski, W. Häussler, A. J. Banchio, R. Pecora,
and G. Nägele, J. Chem. Phys. 123, 054708 (2005).

5M. Heinen, F. Zanini, F. Roosen-Runge, D. Fedunová, F. Zhang, M.
Hennig, T. Seydel, R. Schweins, M. Sztucki, M. Antalík, F. Schreiber, and
G. Nägele, “Viscosity and diffusion: Crowding and salt effects in protein
solutions,” Soft Matter (submitted).

6F. Roosen-Runge, M. Hennig, F. Zhang, R. M. J. Jacobs, M. Sztucki,
H. Schober, T. Seydel, and F. Schreiber, Proc. Natl. Acad. Sci. U.S.A. 108,
11815 (2011).

7E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic
Colloids (Elsevier, New York, 1948).

8P. N. Pusey, Liquids, Freezing and the Glass Transition (Elsevier, Amster-
dam, 1991).

9M. Heinen, P. Holmqvist, A. J. Banchio, and G. Nägele, J. Appl. Crystal-
logr. 43, 970 (2010).

10A. J. Banchio, J. Gapinski, A. Patkowski, W. Häussler, A. Fluerasu,
S. Sacanna, P. Holmqvist, G. Meier, M. P. Lettinga, and G. Nägele, Phys.
Rev. Lett. 96, 138303 (2006).

11W. Häussler and B. Farago, J. Phys. Condens. Matter 15, S197 (2003).
12C. Le Coeur and S. Longeville, Chem. Phys. 345, 298 (2008).
13T. M. Squires and T. G. Mason, Annu. Rev. Fluid Mech. 42, 413 (2010).
14A. J. Banchio and G. Nägele, J. Chem. Phys. 128, 104903 (2008).
15C. W. J. Beenakker and P. Mazur, Physica A 126, 349 (1984).
16C. W. J. Beenakker and P. Mazur, Physica A 120, 388 (1983).
17C. W. J. Beenakker, Physica A 128, 48 (1984).
18M. Heinen, P. Holmqvist, A. J. Banchio, and G. Nägele, J. Chem. Phys.

134, 044532 (2011).
19M. Heinen, P. Holmqvist, A. J. Banchio, and G. Nägele, J. Chem. Phys.

134, 129901 (2011).
20W. B. Russel and D. W. Benzing, J. Colloid Interface Sci. 83, 163 (1981).

Downloaded 16 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/PhysRevLett.85.5460
http://dx.doi.org/10.1103/PhysRevLett.104.058301
http://dx.doi.org/10.1063/1.1996569
http://dx.doi.org/10.1073/pnas.1107287108
http://dx.doi.org/10.1107/S002188981002724X
http://dx.doi.org/10.1107/S002188981002724X
http://dx.doi.org/10.1103/PhysRevLett.96.138303
http://dx.doi.org/10.1103/PhysRevLett.96.138303
http://dx.doi.org/10.1088/0953-8984/15/1/325
http://dx.doi.org/10.1016/j.chemphys.2007.09.042
http://dx.doi.org/10.1146/annurev-fluid-121108-145608
http://dx.doi.org/10.1063/1.2868773
http://dx.doi.org/10.1016/0378-4371(84)90206-1
http://dx.doi.org/10.1016/0378-4371(83)90061-4
http://dx.doi.org/10.1016/0378-4371(84)90081-5
http://dx.doi.org/10.1063/1.3524309
http://dx.doi.org/10.1063/1.3570956
http://dx.doi.org/10.1016/0021-9797(81)90021-7


154504-14 Heinen, Banchio, and Naegele J. Chem. Phys. 135, 154504 (2011)

21A. R. Denton, Phys. Rev. E 62, 3855 (2000).
22J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Aca-

demic, London, 1986).
23F. J. Rogers and D. A. Young, Phys. Rev. A 30, 999 (1984).
24J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).
25M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963).
26G. Nägele, Phys. Rep. 272, 215 (1996).
27J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Ams-

terdam, 1996).
28R. B. Jones and P. N. Pusey, Annu. Rev. Phys. Chem. 42, 137 (1991).
29P. Szymczak and B. Cichocki, J. Stat. Mech: Theory Exp. P01025

(2008).
30A. J. Banchio and J. F. Brady, J. Chem. Phys. 118, 10323 (2003).
31G. C. Abade, B. Cichocki, M. L. Ekiel-Jeżewska, G. Nägele, and E.
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