000016803 001__ 16803
000016803 005__ 20180208210729.0
000016803 0247_ $$2DOI$$a10.1134/S0021364011150112
000016803 0247_ $$2WOS$$aWOS:000295682200010
000016803 037__ $$aPreJuSER-16803
000016803 041__ $$aeng
000016803 082__ $$a530
000016803 084__ $$2WoS$$aPhysics, Multidisciplinary
000016803 1001_ $$0P:(DE-HGF)0$$aSilkin, I. V.$$b0
000016803 245__ $$aThree- and Two-Dimensional Topogical Insulators in Pb2Sb2Te5, Pb2Bi2Te5, and Pb2Bi2Se5 Layered Compounds
000016803 260__ $$aHeidelberg [u.a.]$$bSpringer$$c2011
000016803 300__ $$a217 - 221
000016803 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000016803 3367_ $$2DataCite$$aOutput Types/Journal article
000016803 3367_ $$00$$2EndNote$$aJournal Article
000016803 3367_ $$2BibTeX$$aARTICLE
000016803 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000016803 3367_ $$2DRIVER$$aarticle
000016803 440_0 $$02963$$aJETP Letters$$v94$$x0021-3640$$y3
000016803 500__ $$3POF3_Assignment on 2016-02-29
000016803 500__ $$aRecord converted from VDB: 12.11.2012
000016803 520__ $$aThe electronic structure of ternary compounds Pb2Sb2Te5, Pb2Bi2Te5, and Pb2Bi2Se5, which have a layered structure that consists of nine-layer atomic blocks separated by van der Waals gaps, has been theoretically studied. It has been shown that all studied compounds are three-dimensional topological insulators. The possibility of the existence of a two-dimensional topological insulator has been found in ultrathin (0001) Pb2Sb2Te5 and Pb2Bi2Te5 films. Oscillations of the a"currency sign(2) topological invariant with an increase in the film thickness have been observed in the latter compound.
000016803 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000016803 588__ $$aDataset connected to Web of Science
000016803 650_7 $$2WoSType$$aJ
000016803 7001_ $$0P:(DE-HGF)0$$aKoroteev, Yu. M.$$b1
000016803 7001_ $$0P:(DE-HGF)0$$aEremeev, S. V.$$b2
000016803 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b3$$uFZJ
000016803 7001_ $$0P:(DE-HGF)0$$aChulkov, E. V.$$b4
000016803 773__ $$0PERI:(DE-600)1472906-4$$a10.1134/S0021364011150112$$gVol. 94, p. 217 - 221$$p217 - 221$$q94<217 - 221$$tJETP letters$$v94$$x0021-3640$$y2011
000016803 8567_ $$uhttp://dx.doi.org/10.1134/S0021364011150112
000016803 909CO $$ooai:juser.fz-juelich.de:16803$$pVDB
000016803 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000016803 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000016803 9141_ $$y2011
000016803 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000016803 915__ $$0StatID:(DE-HGF)0020$$aNo peer review
000016803 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000016803 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000016803 970__ $$aVDB:(DE-Juel1)131052
000016803 980__ $$aVDB
000016803 980__ $$aConvertedRecord
000016803 980__ $$ajournal
000016803 980__ $$aI:(DE-Juel1)PGI-1-20110106
000016803 980__ $$aI:(DE-Juel1)IAS-1-20090406
000016803 980__ $$aUNRESTRICTED
000016803 981__ $$aI:(DE-Juel1)IAS-1-20090406