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Strong effects of the Faraday instability on suspensions ofrodlike colloidal particles are reported through measurements of the
critical acceleration and of the surface wave amplitude. Weshow that the transition to parametrically excited surfacewaves
displays discontinuous and hysteretic features. This subcritical behaviour is attributed to the shear-thinning properties of our
colloidal suspensions thanks to a phenomenological model based on rheological data under large amplitude oscillatoryshear.
Birefringence measurements provide direct evidence that Faraday waves induce local nematic ordering of the rodlike colloids.
While local alignment simply follows the surface oscillations for dilute, isotropic suspensions, permanent nematic patches are
generated by surface waves in samples close to the isotropic-to-nematic transition and above the transition large domains align
in the flow direction. This strong coupling between the fluid microstructure and a hydrodynamic instability is confirmed by
numerical computations based on the microstructural response of rodlike viruses in shear flow.

1 Introduction

Recently, the Faraday instability,i.e. the parametric instability
of a fluid layer submitted to vertical vibrations1, has appeared
as a useful experiment to probe the interplay between the mi-
crostructure of various complex fluids and a classical hydro-
dynamic instability2–13. Most previous experimental works
have focused on the effects of viscoelasticity on the instability
threshold3,8,10, on the subharmonic vs. harmonic response of
the surface waves4,11, and on the influence of the microstruc-
ture on the surface wave pattern9,11. In shear-thinning semidi-
lute solutions of polymers and of surfactant wormlike mi-
celles, these effects are generally rather small perturbations to
the classical instability of Newtonian fluids. However, much
stronger effects were found in a few other complex mate-
rials, namely clay suspensions5, shear-thickening cornstarch
suspensions6, and dilute shear-thickening wormlike micelles
12, where localized hysteretic finger-like structures, persistent
holes, and high-amplitude strip waves were respectively re-
ported. These original observations were qualitatively inter-
preted5,6 and quantitatively modelled12 as a strong feedback
of the surface waves on the fluid microstructure: the oscilla-
tory shear generated by small-amplitude perturbations triggers
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large variations of the shear rate-dependent viscosity that lead
to discontinuous transitions to large-amplitude waves.

Still, to the best of our knowledge, no direct experimen-
tal evidence for strong structural modifications induced by
Faraday waves has been reported. The aim of the present
study is to address this issue in suspensions offd virus, a rod-
like colloid that presents liquid crystalline phases14–16. These
viruses are known to easily align under minute external per-
turbations and the local organization of their microstructure
can be simply probed by visualizing the birefringence field
17,18. Here, three suspensions offd viruses at various concen-
trations, respectively deep into the isotropic domain, close to
the isotropic–nematic transition, and in the nematic phase, are
submitted to vertical vibrations. After a brief description of
the samples and of the experimental set up, we first report on
surface wave amplitude measurements that present a strong
hysteresis at the onset of the Faraday instability. This subcrit-
ical behaviour is accounted for by a simple model based on
the shear-thinning properties of our rodlike colloids. We then
move to birefringence experiments that reveal local nematic
ordering in vibrated suspensions that are initially isotropic at
rest. These measurements are successfully compared to nu-
merical simulations based on a Smoluchowski approach19,20.
Our results point to the existence of an out-of-equilibrium
phase transition induced by a hydrodynamic instability in sus-
pensions of rodlike colloids.
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2 Materials and methods

Our working fluids are suspensions offd viruses in a buffer
of 20 mM tris-HCl at pH=8.15 as described in Ref.18. The
fd bacteriophage is a nearly perfectly monodisperse rodlike
colloid of length 880 nm, diameter 6.6 nm, and persistence
length 2.2 µm. The number of elementary charges per unit
length is around 1 e−.nm−1 at pH=8.15. In order to screen the
electrostatic interaction between viruses, NaCl is added to the
buffer to obtain an ionic concentration of 20 mM. This system
presents various phases when the concentrationc of fd virus
is increased: isotropic, cholesteric, and smectic15,16. Because
the free energy between the cholesteric phase and a nematic
state is very low, we shall simply refer to the cholesteric phase
as nematic in the following. We consider suspensions either
in the isotropic or in the nematic phase by focusing on three
different samples: an isotropic suspension of concentration
c= 5.8 mg/mL well below the isotropic–nematic (I–N) phase
transition, an isotropic suspension of concentrationc = 11.3
mg/mL just below the I–N phase transition, and a nematic
sample of concentrationc= 13.6 mg/mL. When submitted to
an external shear,fd viruses tend to align in the shear direction.
Deep into the isotropic phase, this alignment causes a dramatic
decrease of the viscosity (shear-thinning behaviour)17, while
close to and above the I–N transition, more complex shear-
induced phenomena such as vorticity banding, tumbling, and
wagging have been reported18.

A dedicated set up (see fig. 1) was developed in order to
measure both the birefringence intensity and the amplitudeof
surface waves in a vertically vibrated layer offd suspension. A
parallelepipedic glass cell of length 72 mm, thickness 6 mm,
and height 8 mm (respectively corresponding to thex, y, and
z directions) is filled up to a heighth = 6 mm with the sus-
pension and vibrated by an electromagnetic shaker (Ling Dy-
namic Systems V406).

The driving acceleration is sinusoidal with amplitudea =
10–100 m.s−2 and frequencyf = 50–200 Hz. The suspen-
sion is thermostated atT = 20± 0.5◦C by a water circula-
tion beneath the cell. The cell is sealed by a PVC cover to
prevent evaporation and surface contamination. It is placed
between two polarizers and lit from the back. A fast CCD
camera (Mikrotron MC1310) captures the transmitted light at
∼ 1000 fps. For each value of the accelerationa and fre-
quency f , we wait for two minutes so that a steady state is
reached, after which two movies are recorded over twenty
driving periods (T = 20/ f ): (i) a first movie with aligned po-
larizers from which the amplitudeξ (x, t) is easily extracted
as a function of the horizontal positionx and timet and (ii) a
second movie under crossed polarizers in order to measure the
transmitted intensity fieldI(x,z, t) and to visualize the flow-
induced birefringence.† We checked that at the frequencies
under study, the rather large aspect ratio of our experimen-

(1)

(2)

(3) (4)

(5)

(6)

(7)
x

z

Fig. 1 Schematic of the set up. A parallelepipedic cell (1) sealed by
a plexiglass lid (2) and thermostated by water circulation (3) from a
thermostated bath (4) is vertically vibrated by an electromagnetic
shaker (5). The amplitude of the oscillation is recorded via an
accelerometer (6), while the temperature of the cell is measured with
a probe (7) and feedbacked to the water bath. Left: side view of the
cell.

tal cell 72/6& 10 always enforces a one-dimensional surface
wave pattern along thex direction. In all cases, the surface re-
sponse was observed to be subharmonic so thatξ (x, t) is well
described by:

ξ (x, t) = sin(kx)
∞

∑
n=0

ξncos

((

n+
1
2

)

ωt +ψn

)

, (1)

wherek is the wave number,ω = 2π f , and ξn (resp. ψn)
is the amplitude (resp. phase) of thenth harmonic. In our
experimentsξ0 ≫ ξn>0, so that we will only considern= 0 in
what follows.

3 Hysteresis and subcriticality of the Faraday
waves

Following classical protocols for detecting the onset of Fara-
day waves, we first determine the critical accelerationac, i.e.
the acceleration above which parametric waves first appear at
the fluid surface at a given driving frequencyf , by (i) increas-
ing the accelerationa by δa/a= 0.1% every two minutes and
noting the accelerationaup

c when the surface first destabilizes,
(ii) waiting for two more minutes for the surface to be fully
destabilized and (iii) decreasing the acceleration byδa every
two minutes until the surface becomes flat again, which de-
fines a second accelerationadown

c . A striking difference with
experiments in Newtonian fluids is the presence of a large hys-
teresis in the instability onset: in all threefd suspensions,aup

c

is about 4% greater thanadown
c . For comparison, in a New-

tonian fluid of similar viscosity, no hysteresis is detected, i.e.
aup

c = adown
c to within our precision of 0.1%.

The measurements of the surface wave amplitudeξ0 shown
in Fig. 2(a) for the more dilute sample reveal that this hystere-
sis is associated with a discontinuous transition: aboveaup

c ,
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Fig. 2 (a) Amplitudeξ0 of the surface waves versus driving
accelerationa in suspensions offd viruses vibrated atf = 100 Hz
for three different concentrations: (a)c= 5.8, (b) 11.3, and (c)
13.6 mg/mL. The black line in (a) is the best fit by Eq. (8) with
a0 = 42.9 m.s−2, ηs = 10−3 Pa.s,η1 = 5.9ηs, l3 = 1.17 mm, and
l5 = 1.3 mm. Dotted lines indicateaup

c (see text).

the wave amplitude jumps directly to several hundreds of mi-
crometers and drops abruptly to zero whena is reduced by
∼ 4%. As seen in Fig. 2(b) and (c), hysteresis is also observed
for the sample close to the I–N transition and for the nematic
sample. More precisely, the hysteresis gets more pronounced
as one gets closer to the I–N transition, and abruptly decreases
after the transition. This evolution withc is reminiscent of
that of the shear thinning properties of the sample19. In these
two concentrated samples, the hysteresis cycles also present
more complex features and are less reproducible so that in the
following we shall mostly focus on modelling the behaviour
of the dilute sample. In any case, these effects are charac-
teristic of a subcritical instability and can be attributedto the
shear-thinningbehaviour of our rodlike colloids. A simple ar-
gument relating shear-thinning to subcriticality is that asmall
perturbation of the surface may induce a shear rate that is large
enough to significantly decrease the local viscosity, giving rise
to a positive feedback on the perturbation and hence leadingto
finite wave amplitude at instability onset. As recalled above in
the introduction, such an argument was the basis for a recent
model by Epstein and Deegan12 who used piecewise linear
fits of the viscosity vs. shear rate curve to account for high-
amplitude strip waves in dilute wormlike micelle solutions. It
was also shown that shear-thinning leads to a hysteretic, dis-
continuous transition.

However, the model of Ref.12 was based on steady-shear
rheology whereas the flow induced by Faraday waves isos-
cillatory. Therefore, in the present study, we propose a sim-
ple alternative approach based on rheological measurements
under large amplitude oscillatory shear. Figure 3 shows data
recorded on the dilute sample using a standard rheometer (TA
Instruments AR2000N). It is seen in Fig. 3(a) that, whatever
the oscillation pulsationω, the modulus of the complex vis-
cosityη∗ as a function of the amplitude of the oscillatory shear

10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

γ
0
 (s−1) 

|η
* | (

P
a.

s)

.

(a)

10
0

10
1

10
2

10
−2

10
−1

ω (rad.s−1) 

η 1 (
P

a.
s) (c)

10
−2

10
−1

τ 1 (
s)

(b)

Fig. 3 (a) Modulus of the complex viscosity|η∗| vs. amplitudeγ̇0
of the oscillatory shear rate for the isotropic suspension at
c= 5.8 mg/mL. Colors refer to different oscillation pulsations:
ω = 1 (•), ω = 3 (•), ω = 10 (•), ω = 30 (•), andω = 100 rad.s−1

(•). The corresponding continuous lines are the best fits by Eq. (2)
with ηs = 10−3 Pa.s. (b) Characteristic timeτ1 and (c) viscosityη1
extracted from the fits by Eq. (2) versusω (◦) and their
extrapolations at 50 Hz (�) from quadratic fits in logarithmic scales
(red lines).

rateγ̇0 is well fitted by the Cross model21:

|η∗|(γ̇0) =
η1

1+(γ̇0τ1)m +ηs, (2)

whereτ1 is a characteristic time,m an exponent, andηs the
solvent viscosity taken equal to the water viscosity (ηs =
10−3 Pa.s). The coefficientη1 can be interpreted asη1 =
η0−ηs, whereη0 is the modulus of the zero-shear complex
viscosity atω. For all fits, we getm= 1.5±0.1 and the depen-
dence ofτ1 andη1 on ω is shown in Fig. 3(b) and (c) respec-
tively. Since most classical rheometers are limited to oscilla-
tion frequencies below about 10 Hz, we use quadratic fits in
logarithmic scales to extrapolate bothτ1 andη1 to 50 Hz,i.e.
to half the driving frequency used in the Faraday experiment
[see red lines and green symbols in Fig. 3(b) and (c)]. Finally,
in order to keep the analytical expressions tractable whilein-
cluding the above shear-thinning rheology, we shall thereafter
replace the exponentm= 1.5 by m= 2 in Eq. (2). We do not
expect this approximation to change the results qualitatively
but it should be noted that it sharpens the decrease of the vis-
cosity around the characteristic shear rateγ̇1 = 1/τ1 = 235 s−1

extrapolated at 50 Hz.
Coming back to Faraday waves, the oscillating shear rate at

the surface readṡγ = ξ0kcωeiωt/2/2, wherekc is the critical
wave number of the surface pattern (obtained by considering
half a mode in they direction22: kc =

√

k2+π2/l2. For the
dilute sample, amplitude measurements giveξ0 ≃ 6.10−4 m
and kc ≃ 1380 m−1 at f = 100 Hz, yielding|γ̇| ≃ 260 s−1.
This shear rate is comparable to the characteristic shear rate
γ̇1 [see Fig. 3(a)] so that a strong effect of Faraday waves on
the fluid viscosity is expected. At this stage, a model based on
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the numerical integration of the Mathieu equation could be de-
veloped following Ref.12. Here, however, we propose to stick
with analytical expressions by considering our shear-thinning
fluid as aneffective Newtonian fluid. More precisely, provided
the fluid layer is deep enough (kch ≫ 1) and the viscosity is
low enough (2ηk2

c/ω ≪ 1), which is indeed the case in our ex-
periments wherekch≃ 13 and 2ηk2

c/ω ≃ 0.06, the local shear
rate γ̇(z, t) = γ̇0(z)eiωt/2 is known to decrease exponentially
with the depthz:

γ̇0(z) =
ξ0kcω

2
ezkc , (3)

where−h≤ z≤ 0 by convention2. Using Eq. (2) withm= 2
yields thez-dependence of the viscosity:

|η∗|(z) =
η1

1+ γ̇0(z)2

γ̇2
1

+ηs. (4)

Next, we defineηeff, the viscosity of a Newtonian fluid which
dissipates the same energy as our colloidal suspension for a
given surface wave amplitudeξ0, as:

ηeff =

∫ 0
−∞ η(z)γ̇(z)2dz
∫ 0
−∞ γ̇(z)2dz

, (5)

wherekch≫ 1 was used to extend the integration from−h to
−∞. Introducing the characteristic amplitudeξc = 2γ̇1/(ωkc),
Eqs. (4) and (5) readily lead to:

ηeff = η1
ξ 2

c

ξ 2
0

ln

(

1+
ξ 2

0

ξ 2
c

)

+ηs. (6)

Finally, for Newtonian fluids, it is well known that the ampli-
tude of the surface wave should evolve with time as22:

τ
∂ξ0

∂ t
=

a−ac

ac
ξ0−

ξ 3
0

l2
3

−
ξ 5

0

l4
5

, (7)

where ac is the critical acceleration,(a− ac)/(acτ) is the
growth rate, andl3 and l5 are characteristic lengths linked to
the dissipation process. For Newtonian fluids of low viscos-
ity, it was also shown that the critical acceleration is propor-
tional to the viscosity22: ac ∝ ηeff. Therefore, at equilibrium
(∂/∂ t = 0), combining Eqs. (5) and (7) yields the relationship
betweena andξ0:

a=
a0

η1+ηs

(

η1
ξ 2

c

ξ 2
0

ln

(

1+
ξ 2

0

ξ 2
c

)

+ηs

)(

1+
ξ 2

0

l2
3

+
ξ 4

0

l4
5

)

,

(8)
wherea0 is the critical acceleration of the fluid at rest (i.e.
for ξ0 = 0) and corresponds to the accelerationaup

c measured
experimentally. Whenξ0 → 0, the second-order expansion of
the previous expression inξ 2

0 reads:

a= a0

(

1+
ξ 2

0

l2
3

−
η1

η1+ηs

ξ 2
0

2ξ 2
c
+

ξ 4
0

l4
5

+
η1

η1+ηs

ξ 4
0

3ξ 4
c

)

, (9)

so that the instability is supercritical for l3 <
ξc
√

2(1+ηs/η1) and subcritical otherwise. In other words,
whenξc is small enough or equivalently when shear-thinning
sets in at a low enough shear rateγ̇1, subcriticality and
hysteresis are expected in the Faraday instability. Figure2(a)
shows that Eq. (8) provides a good fit of the experimental
a(ξ0) data with only two free parameters,l3 and l5, sinceηs

is known, a0 is measured independently asaup
c , and η1 is

extracted from Fig. 3(c). Still, the predicted curve goes to
zero for an acceleration smaller than the experimentaladown

c .
We believe that the main reasons for this discrepancy are
the very simple form of Eqs. (4) and (5) along with possible
dissipation at the walls induced by the presence of a meniscus,
which is not taken into account in our simple model. We shall
come back to the two more concentrated samples in the next
section.

4 Birefringence measurements

The above model provides a link between hysteresis and
shear-thinning induced by the alignment of the rodlike col-
loids. This alignment is directly confirmed experimentallyin
Fig. 4 that reports the analysis of the transmitted intensity field
I(x,z, t) recorded over twenty driving periods with crossed
polarizers:† the minimum intensity and the time-averaged in-
tensity are presented in the first two rows while the last row
shows the amplitudeI1 of the first harmonic ofI(x,z, t), i.e.
of the component ofI that oscillates atω. In all cases, bright
spots are observed near the surface that are evidence of a lo-
calized alignment of thefd viruses. More precisely, as long as
the system remains far from a phase transition, the transmitted
intensity field can be interpreted using the “stress opticalrule”
23 according to which the birefringence∆n is proportional to
the shear stressσ , so thatI ∝ ∆n2 ∝ σ2. Therefore, at least
for the more dilute sample which is far from the I–N transi-
tion, the birefringence intensity should oscillate atω and the
amplitude of the first harmonic should read:

I1(x,z) = κ sin2(kx) |η∗(z)|2 γ̇2
0(z) , (10)

where κ is a constant that depends on the exact geometry
of the experiment, the optical set up, and the optical prop-
erties of the sample. Figure 5(a) shows that the transmit-
ted intensity indeed oscillates atω. Moreover, for the di-
lute sample,I1(x,z) can be predicted from the model de-
veloped above by inserting Eqs. (3) and (4) into Eq. (10).
We restrain ourselves to thez-dependence of the transmit-
ted intensity by calculating the average overx of the tem-
poral standard deviation of the transmitted intensityI(x,z, t):
δ I(z) =<

√

< (I(x,z, t)−< I(x,z, t)>t)2 >t >x (where<>i

denotes the average overi), which should be proportional to
|η∗(z)|2γ̇2

0(z). As seen in Fig. 5(b), this approach provides
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Fig. 4 From top to bottom: minimum of the transmitted intensity
min(I), time-averaged intensity〈I〉, and amplitudeI1 of the first
harmonic of the intensity recorded in suspensions offd viruses
vibrated atf = 100 Hz for three different concentrations:c= 5.8,
11.3, and 13.6 mg/mL from left to right. The white dotted lines
indicate the bottom of the cell. All movies were taken ata= aup

c .
Intensities are normalized by the maximum intensity of a given
movie.†

a good description ofδ I(z) with the constantκ as the only
free parameter. Also, when plotted versusz− ln(ξ0/ξc)/kc,
all curvesδ I(z) measured for different vibration amplitudes
collapse on the same curve. Incidentally, this also proves that
κ does not depend onξ0. More importantly, the results shown
in Figs. 4(left) and 5 for the more dilute sample are consistent
with Eq. (10) and accredit a scenario of shear-induced align-
ment in which the rodlike colloids simply orient periodically
according to the shear-rate field generated by the surface wave
pattern.

For samples close to or above the I–N transition, however,
the stress optical rule breaks down as the order parameter satu-
rates and the above approach is no longer justified. Still, inter-
esting new effects show up in Fig. 4(middle) for the sample at
c= 11.3 mg/mL. There, it is seen that the minimum intensity
is nonzero over a thin layer below the surface covering almost
the whole width of the sample. This layer also corresponds
to maxima in〈I〉 while it does not show inI1. This means
that the surface waves have generated apermanentbirefrin-
gence pattern below the surface with the same wavelength.† In
other words, just below the I–N transition, the sample keeps
the imprint of the surface wave pattern. The fact that the con-
tinuous component of the transmitted intensity becomes larger
for larger concentrations is also reflected in the smaller oscil-
lations of the relative amplitude reported in Fig. 5(a): in the
more concentrated samples, the oscillating component repre-
sents less than 5 % of the average intensity, about three times
smaller than for the dilute sample.

As for the most concentrated sample atc= 13.6 mg/mL, it
is easily checked from〈I〉 in Fig. 4(middle) that this nematic
phase presents some significant birefringence everywhere in
the sample. Moreover, although the effect is less spectacular
than for the sample atc = 11.3 mg/mL due to this natural
birefringence, a continuous pattern is also generated thatre-
flects the surface wave pattern. We interpret the build-up of
a continuous birefringence field as a trade-off between rota-
tional relaxation of the colloids and shear-induced alignment.
In steady state, the rodlike viruses align locally due to shear,
but close to the I–N transition, their large relaxation timepre-
vents them from reorienting between two oscillations so that
they remain aligned. This qualitative argument, which is de-
veloped more formally below, may also explain why the hys-
teresis cycles of the concentrated suspensions could not be
properly accounted for [see Fig. 2(b) and (c)]: since it takes
longer for the fluid to relax after alignment, our experimental
determination of the critical acceleration may not be accurate
enough leading to some irreproducibility inac.

5 Numerical analysis

A basic understanding of the virus alignment induced by Fara-
day waves can be obtained through numerical analysis follow-
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Fig. 5 (a) Normalized transmitted intensityI/〈I〉−1 versus timet
recorded at an intensity antinode in suspensions offd viruses
vibrated atf = 100 Hz for three different concentrations:c= 5.8
(red), 11.3 (green), and 13.6 mg/mL (blue), anda= 1.1aup

c . (b)
δ I(z) versusz− ln(ξ0/ξc)/kc recorded in the more dilute
suspension (c= 5.8 mg/mL) at 100 Hz and for different vibration
amplitudes (see text). The grey line represents Eq. (10) whereγ̇0(z)
is given by Eq. (3) and|η∗|(z) by Eq. (4). Except for the prefactor
κ , all the parameters are inferred from the rheological measurements
of Fig. 3.

ing the calculation by Dhont and Briels for rigid cylindrical
particles of lengthL and diameterD19,24. In short, this ap-
proach yields the temporal evolution of the orientational order
parameter tensorS based on the shear-rate field. One result
is that, in the isotropic phase (Lφ/D < 4), the linear com-
plex viscosityη∗(ω) follows the Oldroyd-B model, where the
characteristic variables depend on the solvent viscosityηs, the
volume fraction of rodlike particlesφ , their aspect ratioL/D,
and their rotational diffusion coefficient at infinite dilution Dr ,
according to:

η∗(ω) = η̃s+
η̃1

1+ iωτ
, (11)

η̃s = ηs

(

1+
αφ
4

)

, (12)

η̃1 =
3ηsαφ

4
, (13)

τ =

(

6Dr

(

1−
Lφ
5D

))−1

, (14)

with α =
2
5

(

2L
3D

)2 1
ln(L/D)

. (15)

It should be noted that the above expression is only valid in
the isotropic state and that extra care should be taken in the
nematic state by fitting the calculated viscosity. Under this
model, the sample is isotropic forLφ/D < 40/9 and nematic
for Lφ/D > 40/9. Moreover no direct comparison can be
made between rheological results from this model and experi-
mental ones as this model neglects the flexibility of the rodlike
colloids which becomes important at high frequency due to

Rouse modes, while at low frequency the particle diffusion is
neglected25. Still this calculation has proven useful to predict
the alignment of rigid rods under shear20, which we investi-
gate here.

In the limit of small amplitude (linear approximation) in
an horizontally unbounded cell, Ref.2 gives the numerical ex-
pression of the two-dimensional velocity fieldv(x,z) regime
knowing the complex viscosity of the sample. Using Eq. (11),
we first calculate thev(x,z) in the linear regime. We then de-
duce the shear rate field from which we calculate the local
order parameter tensorS following Refs.19,24 with only one
additional input, namely the amplitudeξ0 of the surface wave.

We also compute the birefringence intensityI from the or-
der parameterS:

I = I0
sin(2(β −θ))2(1−cos(2π l∆ν/λ ))

4
, (16)

with ∆ν =
4πν
18

(n̄2+2)2

n̄
∆α

√

(Sxx−Szz)2+4S2
xz, (17)

andθ =
1
2

arctan

(

2Sxz

Sxx−Szz

)

, (18)

where the input parameters are the orientation of the pair
of crossed polarizersβ , the sample thicknessl , the incident
light wavelengthλ = 575 nm chosen as yellow (although we
used white light experimentally), the normalized concentra-
tion ν = 4φ/(πD2L), the mean refractive index approximated
as the water index ¯n= 1.33, and the polarizability anisotropy
∆α = 1.5.10−25 m−3 deduced from Ref.26. For the calcula-
tions of Fig. 6, we takeβ = 45◦, l = 6 mm, andξ0 = 600µm
consistently with the experimental values.

From these numerical calculations, we extract the minimum
of the order parameterλ , the mean intensity〈I〉, and the am-
plitude of the first harmonicI1 of the intensity field (respec-
tively shown from top to bottom in Fig. 6) for three isotropic
suspensions (L/Dφ = 2, 4, and 4.44) and one in the nematic
phase (L/Dφ =4.67). The minimum of the order parameter
λ (x,z) (first row of Fig. 6) is calculated as the minimum dur-
ing an oscillation of the maximum eigenvalue ofS(x,z, t) and
should be equal to 1/3 for isotropic systems and greater than
1/3 in the case of an out-of-equilibrium I–N transition. Close
to the surface, a band is present whereλ > 1/3 with a period-
icity 2k. This is a clear indication of a phase transition induced
by the surface waves and is similar to the bright zones of the
minimum of intensity seen in Fig. 4. The various features of
the experimental birefringence pattern are qualitativelywell
captured. Especially, the width of the aligned band increases
when approaching the I–N transition. This is a signature of the
slowing down of the system at the I–N transition: as the relax-
ation time increases, the critical shear rate needed to align the
suspension decreases.

Although the qualitative features of Fig. 4 are well repro-
duced by the numerical calculations, significant discrepancies

6 | 1–8



z 
(m

m
)

Lφ/D=2
0

−1

−2

−3

−4

−5

−6

z 
(m

m
)

0

−1

−2

−3

−4

−5

−6

z 
(m

m
)

x (mm)
0 1 2

0

−1

−2

−3

−4

−5

−6

Lφ/D=4

0 1 2

x (mm)
0 1 2

Lφ/D=4.44

x (mm)
0 1 2

Lφ/D=4.67

x (mm)
0 1 2

I
1

1

0.8

0.6

0.4

0.2

0

<I>
1

0.8

0.6

0.4

0.2

0

λ−1/3

0.6

0.4

0.2

0

Fig. 6 From top to bottom: minimum of the order parameter minus
its isotropic valueλ −1/3, time-averaged birefringence intensity
〈I〉, and amplitudeI1 of the first harmonic of the intensity calculated
for three concentrations approaching the I–N transitionLφ/D = 2,
4, and 4.44, and a concentration in the nematic phaseLφ/D = 4.67.

are observed, most importantly the presence of higher orderof
birefringence (2π l∆ν/λ > π) resulting in a secondary maxi-
mum in the computed intensity field that is absent in the ex-
periment. This intensity peak marks the end of higher order
birefringence. At the position where this maximum occurs,
one hasλ = 1/3. Therefore, at this point, the sample is not
permanently aligned. Since all the prefactors entering∆ν are
well known (see Eq. 17), we conclude that the order param-
eter S is different in the experiment and in the calculation.
Many reasons can lead to this discrepancy. As already men-
tioned, the rheology deduced from Refs.19,24 differs from the
experimental rheological behaviour which leads to different
velocity profiles. The calculation also supposes that the defor-
mations remain small (linear hypothesis). As such, we should
haveξ0k ≪ 1 which is not the case in our experiments where
ξ0kc ≃ 1. Thus, in order to reach quantitative agreement, non-
linear terms related to the finite amplitude of the surface waves
should be taken into account while calculating the velocity
field. Finally, the presence of a meniscus at the edge of the cell
can damp the velocity. Still, the basic calculations presented
in Fig. 6 strongly support our interpretation of the experimen-
tal observations in terms of a localized isotropic-to-nematic
transition triggered by the Faraday instability.

6 Conclusion

The present study has unveiled a strong effect of the Fara-
day instability on suspensions of rodlike colloidal particles.
By measuring the surface height profile, we have shown that
the transition to parametrically excited surface waves displays
discontinuous, hysteretic features. We first linked this sub-
critical behaviour to the shear-thinning properties of ourcol-
loidal suspensions thanks to a phenomenological model based
on rheological data under large amplitude oscillatory shear.
We have further provided evidence that Faraday waves induce
local nematic ordering of the rodlike colloids through bire-
fringence measurements. While local alignment simply fol-
lows the surface oscillations for dilute, isotropic suspensions,
permanent nematic patches are generated by surface wave in
samples close to the isotropic-to-nematic transition. Above
the I–N transition nematic domains align in the flow direction.
Such a strong coupling between the fluid microstructure and
a hydrodynamic instability was confirmed by numerical com-
putations. These results clearly differ from what was already
observed in semidilute wormlike micelles8 where the pattern-
ing of the birefringence intensity came from stretching of the
micellar network without any phase transition.

Although more experiments are needed to fully understand
the behaviour of rodlike colloids in complex shear fields, our
results show that localized isotropic-to-nematic phase transi-
tions can be induced in temporally stable structures with the
same spatial organization as the surface instability pattern.
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This may open new paths of research, both experimental and
theoretical, as well as potential applications, in which a com-
plex system is structured at a mechanically or hydrodynami-
cally controlled length scale intermediate between the meso-
scopic size of the microstructure and the macroscopic size of
the container.

Acknowledgments: The experiments were performed while
the authors were at Centre de Recherche Paul Pascal (CRPP).
We wish to thank the “Cellule Instrumentation” of CRPP
for technical advice and design of the experiment as well as
E. Grelet, S. Lerouge, and J. Dhont for enlightening discus-
sions.

References

1 M. Faraday,Philos. Trans. R. Soc. Lond., 1831,52, 319–
340.

2 S. Kumar,Phys. Fluids, 1999,11, 1970–1981;Phys. Rev.
E, 2002,65, 026305.

3 F. Raynal, S. Kumar, and S. Fauve,Eur. Phys. J. B, 1999,9,
175–178.

4 C. Wagner, H. W. M̈uller, and K. Knorr,Phys. Rev. Lett.,
1999,83, 308–311.

5 O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches, and J.
Fineberg,Phys. Rev. Lett., 1999,83, 3190–3193.

6 F. S. Merkt, D. I. Goldman, E. C. Rericha, and H. L. Swin-
ney,Phys. Rev. Lett., 2004,92, 184501.

7 P. Huber, V. P. Soprunyuk, J. P. Embs, C. Wagner, M.
Deutsch, and S. Kumar,Phys. Rev. Lett., 2005,94, 184504.

8 P. Ballesta, and S. Manneville,Phys. Rev. E, 2005, 71,
026308;J. Non-Newtonian Fluid Mech., 2007,147, 23–34.

9 A. V. Kityk, and C. Wagner,Europhys. Lett., 2006,75, 441–
447.

10 P. Ballesta, and S. Manneville,Europhys. Lett., 2006,76,
429–435.

11 C. Cabeza and M. Rosen,Int. J. Bifurcation Chaos, 2007,
17, 1599–1607.

12 T. Epstein and R. D. Deegan,Phys. Rev. E, 2010, 81,
066310.
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Johner, C. Martin, and R. Weber,J. Chem. Phys., 1993,98,
4920–4928.

18 M. P. Lettinga and J. K. G. Dhont,J. Phys.: Condens. Mat-
ter, 2004,16, S3929–S3939.

19 J. K. G. Dhont and W. J. Briels,Colloid Surface A, 2003,
213, 131–156.

20 B. Lonetti, J. Kohlbrecher, L. Willner, J. K. G. Dhont,
and M. P. Lettinga,J. Phys.: Condens. Matter, 2008,20,
404207.

21 M. M. Cross,J. Colloid Sci., 1965,20, 417–437.
22 S. Douady,J. Fluid. Mech., 1990,221, 383–409.
23 J. P. Decruppe and A. Ponton,Eur. Phys. J. E, 2003,10,

201–208.
24 J. K. G. Dhont and W. J. Briels,J. Chem. Phys., 2003,118,

1466–1478.
25 D. C. Morse,Macromolecules, 1998,31, 7044–7067.
26 K. R. Purdy, Z. Dogic, S. Fraden, A. Rühm, L. Lurio, and
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