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Recombination via tail states in polythiophene:fullerene solar cells
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State-of-the-art models used for drift-diffusion simulations of organic bulk heterojunction solar cells based

on band transport are not capable of reproducing the voltage dependence of dark current density and carrier

concentration of such devices, as determined by current-voltage and charge-extraction measurements. Here, we

show how to correctly reproduce this experimental data by including an exponential tail of localized states into the

density of states for both electrons and holes, and allowing recombination to occur between free charge carriers

and charge carriers trapped in these states. When this recombination via tail states is included, the dependence of

charge-carrier concentration on voltage is distinctly different from the case of band-to-band recombination and

the dependence of recombination current on carrier concentration to a power higher than 2 can be explained.

DOI: 10.1103/PhysRevB.83.115209 PACS number(s): 84.60.Jt, 73.61.Ph, 72.80.Ng, 72.20.Jv

I. INTRODUCTION

The most promising candidates for future generations

of low-cost, thin-film solar cells that can be processed on

flexible substrates1–6 in roll-to-roll processes are two very

different material systems: amorphous and microcrystalline,

hydrogenated silicon on the one side and polymer:fullerene7,8

solar cells on the other side. On first sight, the two technologies

seem to be quite different, with the traditional semiconductor

Si with decades of research experience on the one side and

with the emerging field of polymer optoelectronics on the

other side. It has been proposed to distinguish between two

distinct types of solar cells, namely, organic or excitonic solar

cells and conventional bipolar solar cells, from an inorganic

absorber material.9–11 In organic solar cells, photon absorption

first leads to the generation of excitons, which will then be

separated at a heterointerface into free electrons and holes. The

relevance of excitons in the process chain between photons and

free charge carriers is a fundamental difference between or-

ganic materials with their inherently lower dielectric constants

than inorganic absorbers. For optimized organic solar cells,

however, the exciton diffusion process is no longer a limiting

factor.12,13 Instead, the shape of the current-voltage curves

and the efficiencies seem to depend primarily on nonradiative

recombination processes14,15 and on the mobilities of the

charge carriers just as in the case of inorganic solar cells. These

recombination and transport processes are in turn heavily

influenced by the intrinsic disorder in the electronic processes

within organic semiconductor films. To understand, optimize,

and predict the performance of organic bulk-heterojunction

solar cells, a suitable theoretical description of the charge

transport and recombination processes for use in macroscopic

device simulations would be required that takes into account

effects of disorder and charge trapping as well as suitable

recombination processes and that is capable of reproducing

dark and illuminated current-voltage curves. Such a descrip-

tion is currently not available for organic solar cells, but it is

well established for disordered inorganic absorber materials

as the above-mentioned amorphous and microcrystalline,

hydrogenated silicon.

This paper shows that the consideration of trapping

and recombination via exponential tails in the valence

and conduction band of polymer-fullerene solar cells al-

lows us to reproduce experimental data on the current-

voltage curve under illumination and in the dark of a poly

(3-hexylthiophene) (P3HT): 1-(3-methoxycarbonyl)propyl-1-

phenyl-[6,6]-methano fullerene (PCBM) bulk heterojunction

solar cell. In addition, we show the consistency of the

model with charge-extraction16,17 measurements determining

the charge-carrier concentration under illumination and in

the dark. While the inclusion of charge trapping has been

frequently proposed to explain the charge-carrier depen-

dence of mobility18–20 and recombination coefficient21,22 in

organic solar cells, the recombination via tail states has

only recently23–27 been considered to be of relevance for

the description of such devices. Here we show the crucial

importance of tail-state recombination for the description

of experimental data, especially of the ideality factor under

illumination and in the dark.

II. FUNDAMENTAL THEORY

For a macroscopic simulation of a semiconductor diode in

steady state, three coupled differential equations have to be

solved. These equations are the Poisson equation,

�ϕ = −
ρ

ε
, (1)

relating the electrical potential ϕ to the space charge ρ and the

dielectric constant ε, and the drift diffusion equations for the

electrons and holes,

−
1

q

dJn(x)

dx
= −Dn

d2n(x)

dx2
− Fµn

dn(x)

dx

= G(x) − R(x,n,p), (2)

1

q

dJp(x)

dx
= −Dp

d2p(x)

dx2
+ Fµp

dp(x)

dx

= G(x) − R(x,n,p), (3)

where x is the spatial coordinate normal to the cell surface,

n and p are the concentrations of free electrons and holes,

respectively, Jn and Jp are the electrical electron and the

hole current densities, and G and R are the generation and
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recombination rates of free charge carriers. The diffusion

constants Dn,p are assumed to be connected via the simple

Einstein relation (Dn,p = µn,pkT /q) to the electron and hole

mobilities µn and µ and the thermal voltage kT/q. We will

later discuss the implications of deviations from the Einstein

relation.

The boundary condition for the electrical potential is

ϕ(d) − ϕ(0) = Vbi − V, (4)

defining the potential difference between the potential ϕ(d) at

the back contact and ϕ(0) at the front contact as a function of

the built-in voltage Vbi and the applied voltage V. The boundary

conditions for the currents and the carrier concentrations at

both contacts are

Jn(0) = qSnf [n(0) − n0(0)] , (5a)

Jp(0) = qSpf [p(0) − p0(0)] , (5b)

Jn(d) = qSnb [n(d) − n0(d)] , (5c)

Jp(d) = qSpb [p(d) − p0(d)] , (5d)

where Snf,b is the surface recombination velocity for electrons

at the front or back, respectively, while Spf,b is the analogous

quantity for the holes. Equations (1)–(5) allow us to calculate

the local carrier concentrations and the electrostatic potential

as a function of applied voltage V and incident photon flux.

From the carrier concentrations, the currents follow either by

using Eq. (5) or by integrating Eqs. (2) and (3), such that a

complete current-voltage curve under illumination or in the

dark is simulated.

Up to now, we reviewed the features of most of the available

drift-diffusion simulators that are commonly used for solar-cell

modeling in general. Effective-medium models based on the

theory outlined above have been routinely used to model not

only inorganic thin-film solar cells but also organic bulk hetero-

junction solar cells. In the case of the bulk-heterojunction solar

cell, the lowest unoccupied molecular orbital (LUMO) of the

acceptor and the highest occupied molecular orbital (HOMO)

of the donor are considered in an analogous way to the

conduction and valence band in an inorganic solar cell. Despite

the fact that the bulk heterojunction architecture consists

of a blend of two different materials, drift-diffusion-based

effective-medium approaches are still very useful to interpret

device measurements, as has been shown numerous times.28–35

The basic differences between the models typically used

for disordered inorganic solar cells, on the one hand, and

organic solar cells, on the other hand, are the choice of

generation rate G and recombination rate R. While for

inorganic solar cells, the generation rate simply follows

from the optical properties of the device such as absorption

coefficient and thickness, the generation rate for free carriers

in organic solar cells is often assumed to be field dependent,

according to different models as described in Refs. 36–40.

This electric-field-dependent generation rate is rationalized

with the field-dependent dissociation of the charge-transfer

(CT) state exciton at the heterointerface between a donor and

acceptor molecule in a bulk heterojunction solar cell. However,

recent experimental data shows that for typical organic bulk

heterojunction solar cells based on P3HT:PCBM, the field

dependence of free carrier generation cannot have a major

effect on the current-voltage curve,41–43 while Monte Carlo

simulations showed that in good cells the field dependence

of geminate recombination is small in the relevant range

of electric fields.44 Thus, in our simulations we neglect the

field dependence of the generation rate and use a spatially

independent rate.

Despite the complexity of the generation rate usually

assumed in device simulations of organic solar cells, the

recombination rate, however, is mostly assumed to follow very

simple equations, namely, direct electron-hole recombination

with a prefactor given by the Langevin theory. These assump-

tions lead to a recombination rate given by39

R =
q(µn + µp)

ε

(

np − n2
i

)

, (6)

where ni is the intrinsic carrier concentration. The form of

the recombination rate in Eq. (6) ensures that there is no

recombination when there are no (optically or electrically

created) excess carriers available, i.e., when np = n2
i . The

field-dependent generation rate combined with the simple

Langevin recombination rate was sufficient to reproduce the

experimental results for the current-voltage (J-V) curve under

illumination. However, the J-V curve in the dark cannot be

reproduced with these assumptions. The dark current density

Jd is a direct measure of the spatially integrated recombination

rate, and it can be written as

Jd = q

∫ d

0

R(x)dx + qSnn(0) + qSpp(d) (7)

for the case when the electron contact is at x = d and the hole

contact is at x = 0. The dark ideality factor,

nid =
q

kT

dV

d ln(Jd )
, (8)

follows from the slope of the dark J-V curves in the voltage

range where they are neither dominated by shunt or series

resistances. Typical values are in the range 1 < nid < 2.

However, the values for nid are typically considerably larger

than 1, meaning that they cannot be explained anymore by

simple direct recombination as assumed in Eq. (6), which

would lead to nid = 1. Recently, various measurements of

the carrier-concentration-dependent recombination rate16,45–50

have suggested an empirical form of the recombination rate

according to

R = k(n)np = k0n
λnp, (9)

with λ > 0. Such a recombination rate resembles Auger

recombination, which leads to dark ideality factors nid < 1

(see Appendix A).

The failure of all recombination models typically used

for the simulation of organic solar cells to reproduce the

observed dark ideality factors motivates the search for more

appropriate models. One possible source for such models is the

literature51 on disordered inorganic solar cells. As shown in

Fig. 1, the above-mentioned amorphous and microcrystalline

silicon solar cells have similar J-V curves in the dark and

similar dark ideality factors as a typical organic solar cell

with a P3HT:PCBM absorber layer. The reason why models

developed for thin-film silicon solar cells are capable of repro-

ducing the experimental dark ideality factors is the inclusion of

localized subband-gap states that are due to defects or disorder
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FIG. 1. (Color online) Comparison of experimental dark current-

voltage curves (symbols) of an organic solar cell based on a

P3HT:PCBM absorber with two representative thin-film silicon solar

cells. All three cells show a clear diode behavior with noninteger

dark ideality factors. The solid lines for the two silicon solar cells are

one-diode fits to determine the ideality factor, and the solid line in

the case of the P3HT:PCBM cell is a simulation using the parameters

detailed in Table I, column 2.

and that are actively involved in recombination.52–54 Thus,

even in completely defect-free organic solar cells, the inherent

disorder in molecular packing and molecular environment

should lead to subband-gap states that could contribute to

charge-carrier recombination. In the following, we will show

how inclusion of exponential tail states occupied by nonmobile

or trapped charge carriers and recombination via these states

allows us to reproduce experimental data that cannot be

reproduced by only assuming free carriers in bands.

In addition to an exponentially decaying tail, in thin-film

silicon solar cells it is common to include a distribution of

deep trap states and to allow recombination between free

carriers and such deep states. This is also a possible mechanism

for organic solar cells, as suggested, e.g., by Street et al.55

However, it is not taken into account here, since it increases the

number of parameters, and since it can be shown easily that any

data that can be modeled by including both tail recombination

and recombination via deep states can also be reproduced by

a model including tail recombination only.

Figure 2 presents an overview over the effect of tail states

on transport and recombination. There are four processes that

take place. For the valence-band tail states, we have (i) the

capture of an electron by a trapped hole (or a positively charged

valence-band tail state) with a capture rate coefficient given by

β+
n ([β] = cm3/s), (ii) the capture of a hole by an unoccupied

(i.e., neutral) valence-band state with a capture rate coefficient

given by β0
p , (iii) the capture of a hole by a negatively charged

conduction-band state with a capture rate coefficient given by

β−
p , and (iv) the capture of an electron by an unoccupied (i.e.,

neutral) conduction-band state with a capture rate coefficient

given by β0
n .

The idea behind the tail recombination model is that the

recombination of free carriers via tails is modeled with an

effective recombination rate that takes the rate equations for

recombination, trapping, and detrapping into account and

calculates the net recombination rate. The transport model

is a multiple trapping model, i.e., transport is affected by the
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FIG. 2. Schematics visualizing the definition of the four capture

rate coefficients for capture and recombination via tail states. From

left to right, the capture rate coefficients describe (i) recombination of

an electron with a trapped hole in the valence-band tail, (ii) trapping

of a hole by a neutral valence-band tail state, (iii) recombination of a

free hole with a trapped electron in a conduction-band tail state, and

(iv) trapping of an electron by a neutral conduction-band tail state.

Note that the unit of all capture rate coefficients is cm3 s−1.

trapping and detrapping processes. The effect of the multiple

trapping model on the effective mobility is that it becomes

implicitly carrier concentration dependent since only a small

part of the total charge carriers contribute to the transport. The

terminology of free carriers is traditionally used in disordered

inorganic solar cells, however, it might be misleading in the

case of the transport via localized states in organic semicon-

ductors. Here, free means that these carriers are sufficiently

far away from midgap that the Boltzmann approximation can

be used to calculate their concentration for the whole range of

voltages studied (V < Voc at 1 sun) and that their mobility is

nonzero. All other states are tail states, which are assumed to be

completely localized and whose occupation probability has to

be calculated with the Shockley-Read-Hall (SRH) formalism

and not with Boltzmann approximation. The approximation

involved is that the transition between free and trapped carriers

is abrupt. Reference 56 shows that this approximation only

affects the temperature dependence of the current-voltage

curve, while it has only the effect of a constant scaling factor

for the mobility when temperature is kept constant.

The recombination rate used to simulate semiconductors

with exponential tail states follows from SRH statistics57,58 as

a function of the electron and hole capture rate coefficients βn,p,

of the energy-dependent density NCBT/NVBT, of conduction-

valence band states, given by the exponential decay of the tail

defined by the Urbach energy EUC and EUV for both tails.

Note that SRH statistics imply that recombination requires

at least one free carrier, i.e., there will be no recombination

between trapped electrons and trapped holes. Instead, one

recombination process consists of trapping of a free electron

and recombination of this trapped electron with a free hole or

vice versa of a trapped hole with a free electron. The recombi-

nation rate is expressed as an integral from valence-band edge

EV to the conduction-band edge EC over the density of tail

states and the recombination efficiency ηR, which follows from

the detailed balance between capture and emission processes.

The complete equation for the recombination rate RCBT via
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conduction-band states is given by59

RCBT =
∫ EC

EV

NCBT(E)ηR(E)dE

=
∫ EC

EV

NC0 exp

(

E − EC

EUC

)

np − n2
i

(n + NC exp[(E − EC)/kT ])/β−
p + (p + NV exp[(EV − E)/kT ])/β0

n

dE, (10)

where NC0 is the density of tail states per energy interval

at the conduction-band edge. The total recombination rate to

be inserted in Eqs. (2) and (3) is then R = RCBT + RVBT,

where the recombination rate RVBT via valence-band tail states

follows from a similar equation as given by Eq. (10). Note that

the capture rate coefficients β−
p , β0

n for the conduction-band tail

and β0
p , β+

n for the valence-band tail are often expressed as the

product of thermal velocity vth and capture cross sections σn,p.

However, to consider thermal velocity vth and capture cross

section as individual parameters does not have any benefit60

for the description of thin-film solar cells. Thus, we only use

capture rate coefficients in the following, which have the unit

cm3 s−1.

Note that the recombination via these tail states is expected

to be predominantly nonradiative, as indicated by the low

luminescence yield measured by Vandewal et al.14,61 However,

the measured light emission may very well originate from

recombination via tail states, which has implications for the

modeling and interpretation of luminescence as shown for the

case of microcrystalline silicon.62

Recombination rates as given by Eq. (10) are known

to reproduce typical dark ideality factors 1 < nid < 2, as

observed in both organic and inorganic p-i-n type solar

cells. Thus, in contrast to the commonly used Langevin

recombination according to Eq. (6), the mathematical form of

Eq. (10) has the potential to describe dark J-V curves of organic

solar cells. However, it is not necessary to completely abandon

the picture of diffusion-limited recombination. Instead, the

capture rates that involve the capture of a hole by an electron

trapped in a conduction-band tail state or the capture of an

electron by a hole trapped in a valence-band tail state are

expected to follow a similar relation as the recombination

between a free electron and a free hole. Thus, the Langevin

theory would predict the capture rate coefficients,

β+
n =

qµn

ε
, (11)

for the capture of a free electron by a hole trapped in a valence-

band tail state and

β−
p =

qµp

ε
, (12)

for the capture of a free hole by an electron trapped in a

conduction-band tail state.

III. TAIL-STATE RECOMBINATION VERSUS

RECOMBINATION OF FREE CARRIERS

While the influence of disorder on transport in organic

semiconductors is well known, the influence of disorder on

recombination is less frequently discussed. Thus, we want to

show in the following how the dark ideality factor changes

when we go from a situation dominated by recombination

between carriers far away from the quasi-Fermi levels to a

situation dominated by recombination via tail states. To visu-

alize the effect of the capture rates on the voltage-dependent

recombination in organic solar cells, we make simulations

using the model described above and the parameters as given

in the first column of Table I. We vary the two capture rate

coefficients β+
n and β−

p which are responsible for recombina-

tion and keep the value of the capture cross sections for carrier

trapping constant. In addition to tail-state recombination, we

also allow for direct recombination between free carriers with

a recombination rate R = k(np − n2
i ). We simulate both dark

and illuminated current-voltage curves and determine the dark

ideality factor from the slope of the dark J-V curve using

Eq.(8) at every voltage. We then average the dark ideality

factors for voltages 0.1 V < V < 0.6 V and call the resulting

value the apparent dark ideality factor.

Figure 3 shows the open-circuit voltage Voc and the apparent

dark ideality factor resulting from these simulations. The

open-circuit voltage for low capture rates is limited by direct

recombination and approaches an arbitrary value of Voc that

is given by the chosen generation rate and recombination

coefficient for direct recombination (Voc = 857 mV). For

higher capture rates, the tail-state recombination becomes

dominant and decreases Voc.

FIG. 3. (Color online) Simulated open-circuit voltage and dark

ideality factor of a cell with tails (tail slope EU = 80 meV for both

tails) to show the influence of the two capture rate coefficients for

recombination. If these rates are low, there is only trapping but no

recombination via the tail states. It is obvious that in this case the

dark ideality factor approaches 1 again, since in this case direct

recombination would take over. For higher capture rate coefficients,

open-circuit voltage decreases and ideality factor increases up to

nid = 1.6. For higher capture rate coefficients, the true ideality factor

is difficult to determine since the series resistance becomes dominant

at higher forward voltages.
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TABLE I. Parameters used for the simulations, presented in Fig. 3 (first column) and in Figs. 4, 6, and 7. Note that the mobilities given

are band mobilities and apply only to the untrapped fraction of the charge-carrier population. The value of the drift mobility that applies to the

general charge-carrier population is substantially smaller than the band mobility, when a multiple trapping model is used. A multiple trapping

model is used, when the capture rate coefficients β, the Urbach energies EUC,V, and the densities NC0, NV0 of tail states per energy interval at

the mobility edge are all nonzero, as in the second column.

Cell in Fig. 3 Cell with tail rec. Cell with dir. rec. Cell with Auger rec.

µn (cm2/V s) 10−3 7.3 × 10−4 1.7 × 10−4 8 × 10−5

µp (cm2/V s) 10−3 7.1 × 10−4 3 × 10−5 1.6 × 10−5

NC (cm−3) 1020 1020 1021 1021

NV (cm−3) 1020 1020 1021 1021

NC0 (cm−3 eV−1) 1020 3.5 × 1020 0 0

NV0 (cm−3 eV−1) 1020 4.7 × 1018 0 0

EUC (meV) 80 47 0 0

EUV (meV) 80 115 0 0

β+
n (cm3 s−1) Variable 1.1 × 10−11 0 0

β0
p (cm3 s−1) 10−10 2.3 × 10−10 0 0

β−
p (cm3 s−1) Variable 5.2 × 10−13 0 0

β0
n (cm3 s−1) 10−10 2.6 × 10−10 0 0

Eg (eV) 1.1 1.1 1.1 1.1

d (nm) 150 150 150 150

k (cm3 s−1) 2.2 × 10−14 0 7.7 × 10−13 0

Cauger (cm6 s−1) 0 0 0 2.7 × 10−30

S (cm/s) 0 105 105 105

ϕb (meV) 0 0 0 0

G (cm−3 s−1) 1.8 × 1022 3.85 × 1021 3.85 × 1021 3.85 × 1021

εr 3.8 3.8 3.8 3.8

Rs (
 cm2) 0 6.8 5.8 4

The apparent dark ideality factor approaches unity for low

capture rates as expected for a solar cell where recombination

is limited by direct recombination. The dark ideality factor

increases to a value ∼1.6, which is the true dark ideality

factor (not influenced by series resistances) for tail-state

recombination with the assumed Urbach energy EU = 80 meV.

For even higher capture rates, the charge transport is hindered

and the finite resistance of the absorber layer leads to a voltage

drop already at voltages below 0.6 V. Thus, the apparent dark

ideality factor is now influenced by the series resistance from

the absorber layer itself and starts to increase above 2. This

value, however, is no longer an indication of the recombination

mechanism. Note that the dark ideality factor rises above 1 for

much lower capture rates than the Voc decreases below the limit

given by direct recombination. This is due to the fact that the

recombination mechanism with the higher dark ideality factor

(i.e., tail-state recombination) becomes relevant at lower bias

voltages first and affects the open-circuit voltage only for even

higher capture rates.

In this example, using the Langevin theory to determine the

capture rates leads to a low open-circuit voltage Voc = 460 mV

as compared to the band-gap energy Eg = 1.1 eV, which is an

indication that the Langevin theory is indeed too pessimistic,

also for the definitions given by Eqs. (11) and (12).

IV. SIMULATION OF CURRENT-VOLTAGE CURVES

It is well known from experimental and theoretical work on

thin-film silicon diodes that SRH recombination via tail states

produces noninteger dark ideality factors in the observed range

1 < nid < 2.63,64 Thus, given the relatively large amount of

unknown parameters the tail-recombination model contains, it

is hardly surprising that it is possible to fit experimental dark

J-V curves of a P3HT:PCBM bulk heterojunction device.65

A more meaningful test of the potential appropriateness

of the model is to compare dark and illuminated J-V curve

as well as the illumination-dependent open-circuit voltage

in experiment and simulation using always the same set of

parameters. Thus, we simulated these three characteristics

using the software ASA
66 and three different models for

recombination, namely, the model with tails, a model with

direct recombination, and a model with Auger recombination.

ASA was chosen for this purpose due to its numerical robustness

and speed and because it is easily controlled by external

software. In this case the parameter optimization was done

with MATLAB using a downhill simplex algorithm67,68 that

calls ASA with a different set of parameters in each loop

of the algorithm. The algorithm simultaneously minimizes

the error in light and dark J-V curves as well as the dark

charge-extraction measurements, which will be discussed in

Sec. V. The parameters determined in this way are detailed

in Table I and are the same for all Figs. 4(a)–4(c). Obviously

the parameters should all be determined experimentally and

not by fitting to J-V curves. However, our intention is not to

determine an adequate parameter set for a certain type of solar

cell but to test the consistency of the discussed models with

experimental data.

Figure 4(a) shows the experimentally determined dark

current-voltage curve (open squares) and the fit by the three

models. As expected, models based on Auger recombination
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FIG. 4. (Color online) Comparison of experimental and simulated

data on (a) the dark current-voltage curve, (b) the illuminated current-

voltage curve, and (c) the illuminated current at reverse bias vs the

open-circuit voltage measured at different illumination intensities.

The simulations are preformed using three models with different

assumptions for the recombination mechanism (tails, direct, Auger).

Only recombination via tail states explains the two semilogarithmic

plots (a), (c) from which the dark and light ideality factors follow.

The light J-V curve at one intensity (b) is well reproduced by all

models, so only the tail recombination model is shown to improve

clarity. Parameters for the simulations are detailed in Table I.

or direct recombination are not capable of reproducing dark

ideality factors nid > 1 and fail to reproduce the experimental

data for low voltages, where the diode behavior is visible. For

higher voltages, where the curves are dominated by the series

resistance, all models fit the experiment well.

Figure 4(b) shows the experimental dark and illuminated

J-V curve (open symbols) on a linear scale. The solid lines

represent the fit of the tail-recombination model only. Such a

good fit to the illuminated J-V curve is reproduced similarly

well by all three models, and thus only the fit from one model

is shown.

Figure 4(c) shows the illumination-dependent open-circuit

voltage from experiment and as simulated by all three models.

As a measure of the illumination intensity, the current density

at V = −2 V is plotted on the ordinate. Such a depiction allows

determining the light ideality factor nid,l, which we define here

in analogy to Eq. (8) by

nid,l =
q

kT

dVoc

d ln [J (−2V )]
. (13)

The result for the light ideality factor and in the dark is

practically identical. The experimental light ideality factor

nid ≈ 1.6 is well reproduced by the simulation with SRH

recombination via tail states, while direct or Auger recom-

bination models cannot produce light or dark ideality factors

nid > 1 (see Appendix A).

V. ANALYSIS OF CHARGE-EXTRACTION

MEASUREMENTS

During dark charge-extraction measurements a voltage is

applied to a solar cell before the device is short circuited and

the current transient is measured.16 The integral of the current

transient is then the extracted charge, which consists of all

trapped and free excess charge carriers that can be extracted

before they would recombine. Charge extraction (CE) can also

be measured under illumination. In this case, the device is held

at a certain voltage, e.g., the open-circuit voltage, and the light

is switched off at the same time as the device is short circuited.

In Ref. 16, CE measurements under illumination and in the

dark are presented. The cell used for these measurements was

the same as the one used for Fig. 4. The first main conclusion

of Ref. 16 was that, both in the dark and under illumination,

the current density scales with

J ∝ nδ
av, (14)

with δ ≈ 2.6, where nav is the average carrier concentration

obtained from the CE experiment. In addition, the experiments

showed a dependence of carrier concentration versus voltage

that followed the relation

nav = n0 exp (γV ) , (15)

with γ = 9.3 V−1 under illumination and γ = 7.4 V−1 in the

dark. Of course, for self-consistency, the factors δ and γ must

be consistent with the observed light or dark ideality factor nid.

So for voltages where the J-V curve shows a diode behavior

and is not limited by series resistance effects,

d ln (J )

d ln (nav)

d ln (nav)

dV
= δγ =

q

nidkT
(16)

must hold. Note that current density J and voltage V in Eq. (16)

can be interpreted either as dark current density and applied

voltage or as the saturated current density under illumination

and reverse bias and the corresponding open-circuit voltage.

For the value γ = 9.3 V−1 under illumination, δ ≈ 2.6, and

kT/q = 25.8 mV, the resulting light ideality factor is nid,l =
1.6, showing the self-consistency of this data. Any reasonable

macroscopic model describing the device physics should be

able to explain all three slopes, nid, γ , and δ.

On first sight, the values nid > 1 and δ > 2 seem to

be inconsistent (cf. Appendix C). While δ > 2 suggests,
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for example, a recombination mechanism with a functional

dependence of recombination rate on carrier concentration

similar to Auger recombination, Auger recombination or also

direct recombination between free carriers is inconsistent with

the observed dark and light ideality factors. If both nid and

δ seem to be inconsistent, it is advisable to have a closer

look at the remaining factor γ , which defines the product

of nid and δ. The dependence of carrier concentration and

voltage must therefore deviate from our expectations. In a

p-i-n device with a built-in field, the general dependence

is difficult to obtain except by numerical simulations, since

the carrier concentration is strongly position dependent. The

electron concentration, e.g., is high at the electron extracting

contact and decreases strongly toward the opposite contact

due to the built-in electric field in the device. However, this is

only true for low voltages and not for open-circuit conditions

at reasonably high light intensities. In this case, the built-in

voltage is low and the voltage drops mainly in the region close

to the contacts, where the space charge, i.e., q |n − p| is large.

However, in the largest part of the absorber, n ≈ p and the

carrier concentrations will only weakly depend on position.

Thus, our first expectation would be that both electron and

hole concentrations are proportional to exp(qV/2kT). At room

temperature, this leads to a slope γ = 19.3 V−1, which is a

factor of 2 higher than observed.

To understand why the slope γ is reduced compared to

expectations, we carried out simulations of the average excess

carrier concentration as a function of open-circuit voltage for

a model with direct recombination and for a model with tail

recombination and trapping in tails. The parameters are the

same as used for Fig. 3 (first column in Table I), except that

the capture rate coefficients for recombination, which were

varied for Fig. 3, are kept constant at β = 1011 cm3/s for

both carrier types and that the generation rate is varied. The

average excess carrier concentrations are calculated such that

the equilibrium carrier concentration is subtracted from the

carrier concentration under illumination. In case of the model

with trapping in tail states, the trapped carriers are included in

this calculation. Thus, we assume here that most excess carriers

from tail states are extracted faster than they recombine.

Figure 5(a) shows the average carrier concentration as

a function of open-circuit voltage for both models in a

semilogarithmic plot. The main difference between both

models is that the model with tails seems to have a rel-

atively constant slope, while the slope for the model with

direct recombination is increasing toward higher open-circuit

voltages. Figure 5(b) shows the slope γ , revealing that the

direct recombination model indeed leads to a monotonously

increasing slope that converges at γ = 1/2kT ≈ 19.3 V−1,

while the tail recombination model leads to a relatively

constant slope with 6 V−1 < γ < 8 V−1. The constant increase

of the direct recombination model follows from the position

dependence of the carrier concentration, which is more

pronounced for the case without trapping. The additional

trapped charge allows the bands to bend more strongly at

the periphery of the absorber so that the carrier concentrations

are more homogenous throughout the absorber also for lower

voltages. More importantly, however, the trapped charge has

a different dependence of carrier concentration on voltage,

which mostly depends on the value of the tail slopes. For

FIG. 5. (Color online) (a) Simulated average carrier concentration

(free and trapped) as a function of voltage for a simulation with

and without tail states and (b) the corresponding derivatives γ =
d ln (nav)/dV oc. Without tails, the slope γ saturates at γ = 1/(2kT),

as expected for the case n ≈ p and both having a weak position

dependence. Due to the different voltage dependence of the trapped

charge, the slope is relatively constant for the simulation with tails

and considerably lower than without tails.

high Urbach energies EU ≫ kT , the increase of the sum of

trapped and free carrier concentrations with voltage will be

slow, leading to a slope γ<10 V−1 as observed. The main

conclusion of our investigations up to now is that light and

dark ideality factors considerably larger than 1 are explained

only assuming SRH recombination (for instance via tail states),

while a relatively constant and slow increase of the logarithm

of carrier concentration with voltage with γ<10 V−1 requires a

considerable amount of trapped charge. Both features together

automatically lead to a current scaling with average carrier

concentration nδ
av with δ > 2. However, this should not be

misinterpreted as a recombination rate according to Eq. (9),

where n and p denote free carrier concentrations.

Figure 6 shows the CE experiments on the P3HT:PCBM

cell in the dark plotted both as (a) carrier concentration versus

voltage and as (b) current density versus carrier concentration.

The tail recombination model fits relatively well in both cases.

It should be noted that in this case one of the two plots is

redundant since a good fit of the dark J-V and either Figs. 6(a)

or 6(b) automatically implies a good fit of the other part. With

the same reasoning it becomes clear that a model with direct

or Auger recombination can only reproduce one of the two

depictions of the CE experiments well. Since it is impossible

to reproduce the carrier density versus voltage plot in Fig. 6(a)

and the current density versus carrier density plot in Fig. 6(b) at

the same time, the fit for Auger and direct recombination was

only done with the current density versus carrier density plot.

Here, the fit is relatively accurate, with Auger recombination

coming close to the expected slope.
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FIG. 6. (Color online) Comparison of experiment (symbols) and

simulation for the CE measurements in the dark. For the simulations,

again three recombination models have been used. Only the tail

recombination model is capable of reproducing the (a) voltage

dependence of the carrier concentration, while all models reproduce

the (b) carrier dependence of the dark current density well.

Figure 7 shows a similar picture for the CE experiment

under illumination. These experiments were not part of the

fitting routine because this would have led to an enormous

increase in computing time. Nevertheless, the simulations

in case of the current density versus carrier density plot

(b) fit relatively well in all cases, while the carrier density

versus open-circuit voltage plot (a) shows strong deviations

for direct and Auger recombination. Again, this is an expected

outcome since Figs. 7(a) and 7(b) are connected by the

intensity-dependent open-circuit voltage as shown in Fig. 4(c).

VI. ANALYTICAL APPROXIMATIONS

AND POLARONIC EFFECTS

Since this paper focuses on recombination at open-circuit

conditions, where the carrier concentrations are reasonably

homogenous, zero-dimensional simulations help to better

understand the relation between the observable slopes when

plotting current density, carrier concentration, and voltage

against each other and the tail slope. If the tail slope is

larger than kT, the concentration of trapped carriers scales

approximately with69

nt ∝ n
kT

EUC . (17)

Thus, for the simplified case of a totally symmetric device,

when both electron and hole concentration increase with half

FIG. 7. (Color online) Experimental vs theoretical CE data

obtained under open-circuit conditions under different illumination

levels. Similar as for the dark CE measurements (Fig. 6), the carrier

density vs voltage relation is only reproduced assuming trapped

charge and recombination via tail states, while the slope of current

density as a function of carrier density is roughly reproduced by all

three recombination models.

of the voltage or quasi-Fermi level splitting, the concentration

of trapped carriers scales with

nt ∝ exp

(

qV

2EU

)

, (18)

where EU = EUC = EUV is the tail slope of conduction- and

valence-band tail. The parameter γ is subsequently given by

γ = 1/(2EU). (19)

Thus, typical values of γ of slightly below 10 for P3HT:PCBM

indicate tail slopes of approximately EU ≈ 2kT.

If we assume that recombination takes place between free

electrons and trapped holes or the other way round, then

recombination scales with

R ∝ npt ∝ exp

(

qV

2kT

)

exp

(

qV

2EU

)

= exp

(

qV

kT

[

1

2
+

kT

2EU

])

. (20)

With the definition of the ideality factor, we arrive at63

nid =
(

1

2
+

kT

2EU

)−1

. (21)
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From the scaling of the recombination rate with carrier

concentration,

R ∝ npt = nEU/kT ntpt = n
EU/kT +1
t , (22)

we determine the analytical approximation for the slope δ =
EU/kT + 1. Thus, it becomes clear that δ > 2 as observed in

various experiments is easily explained by tail recombination

with EU > kT . For recombination via any type of deep states

(be it tail states or deep defects), we can state that, according

to Eq. (16), slopes δ > 2 can be explained by tail slopes EU >

kT nid.

All the analytical relations detailed above are only valid for

a perfectly symmetric device. If we calculate the tail slope from

the measured values of γ and nid using Eqs. (19) and (21), we

obtain different values, namely, ∼50 meV from γ = 9.3 V−1

and ∼100 meV from nid = 1.6. One possible explanation for

this discrepancy is that the tail slopes are strongly asymmetric

implying that the analytical relations do not hold anymore.

This explanation has been used for the fits (cf. Table I), but

it does not have to be the correct explanation. Other possible

explanations might be (i) a more complicated density of states

with additional deeper states that affect recombination and

increase the ideality factor but that are too deep to be extracted

during the CE experiment, or (ii) polaronic effects.

To analyze the impact of polaronic effects on the slopes

γ and nid, we combined the idea of the SRH statistics with

a rate equation according to Marcus theory. The processes

at the basis of SRH statistics are CT reactions. Consider the

electron trapping process labeled β0
n in Fig. 2. In the traditional

application of SRH statistics, this represents the capture of a

free electron by an immobile trap state. In this context the

capture rate coefficient is related to the thermal velocity of the

free charge carrier. In the context of organic semiconductors,

where charges are significantly more localized, it is more

helpful to imagine this process as the transfer of an electron

from a site with high energy to a site with a lower energy. This

sort of CT reaction is often described using rate equations

from Marcus theory.70 This does not fundamentally affect the

relevance of SRH statistics, but it does change the rates used to

describe electron capture and electron emission. In particular,

in traditional SRH the downhill processes (electron capture

and hole emission) are independent of the energy difference

between the trap level and the respective band edge, whereas

the uphill processes (electron emission and hole capture) are

decelerated by the factor exp(−�E/kT) to comply with a

detailed balance, where �E is the energetic difference between

the trap and the respective band edge. The rates in classical

SRH theory are thus basically Miller-Abrahams hopping rates.

In Marcus theory uphill and downhill processes are described

by the same equation,

β =
β0√
λkT

exp

(

−
[�E − λ]2

4λkT

)

, (23)

where β0 is a prefactor depending on the wave-function overlap

of the two states and λ is the reorganization energy. Note that

Eq. (23) is detailed balance compatible as well, because it can

be written as

β = β00(λ,�E2) exp

(

−�E

2kT

)

, (24)

FIG. 8. (Color online) (a) Ideality factor nid and (b) slope

γ = d ln (nav)/dV as a function of tail slope EU (same for the

conduction- and valence-band tail) for normal SRH statistics (solid

line), for Marcus-type hopping rates combined with SRH statistics

(dashed lines, for two different reorganization energies λ), and for

the analytical approximations Eqs. (19) and (21) (open circles).

While the ideality factor is considerably larger at a given tail

slope for the Marcus-type hopping rates than for the normal SRH

statistics, the slope γ is roughly the same. Note that the analytical

approximations are only valid for EU > kT and give unreasonable

values for EU < kT .

i.e., the ratio of uphill to downhill rates is proportional to

exp(−�E/kT) as for the normal SRH statistics.

Figure 8 compares the normal SRH statistics with the one

with Marcus-type rates and the analytical approximations

[Eqs. (19) and (21)]. The simulations were done in zero

dimensions using symmetric parameters for electrons and

holes. Here transport is not relevant, but the zero-dimensional

simulation with normal SRH statistics fit very well to

one-dimensional drift diffusion simulations at open circuit.

Figure 8(a) compares the ideality factor as a function of

tail slope for conduction- and valence-band tails. While the

simulation with the normal SRH statistics fits very well to

the analytical approximation of van Berkel et al.63 [Eq. (21)],

the simulation with the combination of Marcus theory and

SRH statistics produces higher ideality factors. In addition, the

lower the reorganization energy λ, the higher are the ideality

factors.

Figure 8(b) shows that the voltage dependence of the carrier

concentration is hardly affected by the choice of the rates or

the value of the reorganization energy. For typical tail slopes

of 50 meV needed to explain the voltage dependence of carrier

concentration (γ ), the experimentally observed ideality factor

of 1.6 is reached for reorganization energies ∼0.4 eV.

Thus, there are several possible explanations for the ex-

perimental observations that all share some common features:
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(i) There have to be states below the interfacial band gap

which affect transport and recombination. (ii) SRH statistics

can be used to calculate the recombination rates, which implies

that recombination takes place between a more mobile carrier

and trapped carriers. However, current-voltage curves and CE

measurements alone are not sufficient to exactly determine

the density of states. Thus, other methods for a more detailed

determination of the subgap density of states are necessary.

VII. ALTERNATIVE INTERPRETATIONS OF nid > 1

The reasoning of this article is based heavily on the

explanation of the dark and light ideality factor of the

P3HT:PCBM solar cell under investigation with SRH re-

combination. This conclusion could be questioned if there

are alternative, plausible explanations for the larger-than-1

ideality factor. One explanation that has been suggested for

higher ideality factors71,72 in disordered semiconductors is the

Einstein relation,

Dn,p = µn,pkT /q, (25)

which does not hold anymore, when the Fermi energy Ef

comes close to the peak of the energy-dependent charge

concentration. In the case of a Gaussian density of states or

exponential band tails, a large amount of charge may be well

below the peak of the Gaussian density of states or below the

band gap in the case of the exponential tails. In these cases

Eq. (25) has to be replaced by a generalized Einstein relation

that reads (e.g., for electrons)73

Dn = µn

n

q dn
dEf

= µn

1

q d ln n
dEf

. (26)

Reference 71 describes the calculation of d ln n/dEf

or d ln n/dV for a Gaussian density of states and for

exponential bands. As in the case of SRH recombination,

the ideality factor increases above unity in case the electron

concentration does not increase as in a perfect (not disordered

or degenerate) crystal with n ∝ exp(qV /kT ) (for n ≪ p) or

n ∝ exp(qV /2kT ) for n = p. So as illustrated in more detail

in Appendix B, both SRH recombination and the approach

described in Ref. 71 result in ideality factors above 1, since in

both cases the concentration of either electrons or holes scales

with voltage in a different way as a nondegenerate carrier

population in a band would do. The differences of both models

are then rather minor and deal with the question of how to

treat the thermalization of carriers below the band gap. While

Ref. 71 assumes the same Fermi level for all states, the SRH

theory includes the calculation for the occupation of tail states,

which leads to an occupation function having a mathematical

form that is similar to a Fermi-Dirac distribution with two

quasi-Fermi levels for electrons in the conduction-band tail

and two Fermi levels for holes in the valence-band tail.74

VIII. LIMITATIONS OF THE MODEL AND DIRECTIONS

FOR FURTHER WORK

Since all simulations were carried out with a commercial

solar-cell simulator (ASA), the model is restricted to the options

available in this software. Thus, there are a number of effects

that are not taken into account and simplifications that have

to be made. The shape of the density of states for the trapped

charge is assumed to decay exponentially into the band gap.

Drift-diffusion simulations with Gaussian band tails cannot be

made with ASA.

In addition, the model is completely one dimensional and

does not explicitly take the morphology of the device into

account. A particular problem is that trapping of carriers

may happen everywhere in the device, while recombination

only takes place at the donor-acceptor heterointerfaces. This

can be taken into account by choosing different capture rate

coefficients for trapping and for recombination.

The model distinguishes between free and trapped carriers,

where the free ones have a constant band mobility and the

trapped carriers are completely immobile. Thus, the effective

mobility depends implicitly on the ratio of free to trapped

carriers. The assumption of an abrupt mobility edge is certainly

wrong for any disordered solar cell. However, in the case

of amorphous silicon it does not affect the result since the

transport of the mobile carriers is much more efficient than the

transport of the carriers close to the Fermi level. For organic

solar cells this difference might not be large enough, and the

effect of a nonabrupt mobility edge might have to be included

in future work.

Although the model can reproduce ideality factors 1 <

nid < 2, any larger ideality factors that are sometimes observed

cannot be explained directly. One possible explanation of

this behavior is the recombination of two carriers that are

both trapped. In this case the concentrations of both partners

involved in recombination have a voltage dependence that is

not described by Boltzmann approximations. Such tail-to-tail

or tail-to-defect recombination is not taken into account in

ASA, assuming that recombination involving one free carrier

should be dominant because the free carrier will more easily

find a trapped one for recombination. For p-i-n type solar cells

with ideality factors nid > 2 this assumption is possibly wrong,

which means that tail-to-tail recombination should be included

in drift-diffusion models.

Another shortcoming of the present interpretation of the

CE data is the assumption that all charge in the tails is

collected. To investigate this assumption further, it would be

necessary to develop experimental methods to determine the

energy-dependent lifetime of the carriers in the tails in order to

calculate a demarcation energy that separates collected from

uncollected carriers.

IX. CONCLUSIONS

The disordered nature of organic solar cells requires a more

complex approach to model recombination in these devices

than would be necessary for crystalline semiconductors. Here,

we find that a recombination model typically used for thin-

film silicon solar cells is sufficient to reproduce the voltage

dependence of carrier concentration and recombination current

in a P3HT:PCBM solar cell. The main feature of the model

is the inclusion of SRH recombination via a distribution of

states in the band gap. Effectively, the recombination no longer

takes place between two free carriers whose concentrations

are determined by Boltzmann approximations, but instead, the

recombination takes place between free electrons and trapped

holes or vice versa. The concentration of trapped electrons or
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holes is then no longer determined by Boltzmann statistics but

instead by SRH statistics, and has a distinctly different voltage

dependence than expected for free carriers. This voltage

dependence of carrier concentration is the key to explain both

the charge extraction measurements and the observed ideality

factors above unity. In particular, the inclusion of disorder

provides a simple explanation why recombination increases

with more than the square of the carrier concentration while the

ideality factor is above unity at the same time. These two results

are contradictory in the absence of disorder. Future work

needs to address the detailed experimental determination of the

unknown parameters describing trapping and recombination

in subband-gap states and especially of the density of states

below the interfacial band gap.
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APPENDIX A: IDEALITY FACTOR IN CASE OF DIRECT

AND AUGER RECOMBINATION

In the following, we will show analytically why the ideality

factor for direct recombination is always 1 and for Auger

recombination 2/3 < nid < 1. The ideality factor is always

determined from the dark J-V curve in the voltage range

where low mobility and series resistance effects have no effect

on the dark J-V curve, or from the illumination-dependent

open-circuit voltage. In the latter case it is not important

whether mobilities and external series resistances are high

or low, since there is no current flowing (except for the

surface recombination current75–77). Thus, in order to derive

the ideality factor, we can assume that the quasi-Fermi levels

are flat, because we restrict ourselves to low voltages or open-

circuit situations. Direct recombination is the recombination

of free electrons and free holes in the definition of “free” used

in the paper, which is that the concentration of free electrons

and holes is calculated with the Boltzmann approximation,

meaning that np ∼ exp(qV/kT). For direct recombination, the

recombination current density is then

J = q

∫ d

0

k
(

np − n2
i

)

dx = qkn2
i d

[

exp

(

qV

kT

)

− 1

]

.

(A1)

Thus, the ideality factor is 1, i.e., J scales with exp(qV/kT),

because both the electron and hole concentration scale with

voltage according to Boltzmann statistics.

In the case of Auger recombination, we distinguish between

the case where one of the carrier concentrations is much larger

than the other, and the case where they are roughly identical.

For n ≫ p, e.g., the recombination current density is

J = q

∫ d

0

C(n2p + p2n) dx ≈ qCn2
i nd

[

exp

(

qV

kT

)

− 1

]

.

(A2)

Usually, the voltage dependence of the majority-carrier con-

centration (here n) is small, so the ideality factor will be

nid � 1. For the case n ≈ p, the Auger recombination current

density is

J = q

∫ d

0

2Cn3 dx ≈ q2Cn2
i d

[

exp

(

3qV

2kT

)

− 1

]

, (A3)

leading to an ideality factor nid = 2/3. The case described

by Eq. (A2) corresponds to a typical dark J-V curve, while

the latter case better explains the behavior under open-circuit

conditions.

APPENDIX B: IDEALITY FACTOR FOR SRH

RECOMBINATION EXPLAINED AS DUE TO THE

DIFFERENT VOLTAGE DEPENDENCE OF TRAPPED

CARRIER CONCENTRATIONS AS OPPOSED TO FREE

CARRIER CONCENTRATIONS

To illustrate the fact that the ideality factor for SRH

recombination is solely due to the voltage dependence of

carrier concentrations involved in recombination, let us con-

sider the simple example of a semiconductor with free carrier

concentrations n and p that follow Boltzmann statistics. The

semiconductor has a single trap sufficiently deep in the band

gap that emission processes can be neglected. Then the electron

recombination rate is

R = βnnNt(1 − f ), (B1)

where 1 − f is the probability that the defect with concen-

tration Nt is occupied by a hole and βn is the capture rate

coefficient for electrons. So the concentration pt of holes on

the defect level would be pt = Nt (1 − f ). Thus, the SRH

recombination rate R = βnnpt looks practically the same as a

direct recombination rate, with the only difference being that

the hole concentration pt involved in the recombination pro-

cess is not a concentration of holes in a band where Boltzmann

approximations are valid, but instead it is the concentration of

holes in a localized state. This concentration depends on the

concentration in the bands via 1 − f = pβp/(nβn + pβp).78

Thus, we obtain the typical SRH recombination rate,

R = βnβpNt

np

nβn + pβp

. (B2)

For n ≈ p as in the middle of p-i-n junction solar cells

or in the space-charge region79 of p-n junction solar cells,

the recombination rate R ∝ n ∝ exp (qV /2kT ), leading to

the typical ideality factor of 2. Here we assumed that np ∝
exp (qV /kT ), i.e., that the Boltzmann approximation and the

effective density of states approach are both appropriate for

the carriers in the bands. The ideality factor of 2 arises only

from the fact that the hole concentration on the defect does

not scale with voltage the same way as the carriers in the

bands do.

115209-11



KIRCHARTZ, PIETERS, KIRKPATRICK, RAU, AND NELSON PHYSICAL REVIEW B 83, 115209 (2011)

APPENDIX C: MONOMOLECULAR VERSUS

BIMOLECULAR RECOMBINATION

Recent publications55,80 on recombination in organic bulk

heterojunction solar cells discussed the question whether

the dominant recombination mechanism is bimolecular or

monomolecular. If monomolecular and bimolecular are de-

fined in terms of how the recombination rate scales with

carrier concentration (monomolecular: R ∝ n1; bimolecular:

R ∝ n2), then results from CE hint at recombination rates

R ∝ nδ with δ > 2, i.e., bimolecular or higher order. In

contrast, ideality factors nid > 1 on first sight hint at a

bimolecular or lower order. An ideality factor nid = 2, e.g.,

is (in the Boltzmann approximation) consistent with R ∝√
np ∝ exp (qV /2kT ), i.e., monomolecular recombination.

This apparent discrepancy is resolved when you take into

account that the carrier concentration scales with voltage not

according to the Boltzmann approximation but much slower

depending on the slope of the tail states. Then it is possible that

the recombination rate R ∝ exp (qV /2kT ) and at the same

time R ∝ nδ holds with δ > 2. The question, whether such

recombination via tail states is monomolecular or bimolecular,

is then purely a matter of definition of these two terms.

Thus, any future discussion on nongeminate recombination

using the terms bimolecular and monomolecular will benefit

from a proper definition of these terms that takes both the

proportionality of recombination rate and measured charge

density as well as the ideality factor into account.

Note that in some publications46,81,82 the terms bimolecular

and monomolecular are defined in a mechanistic sense and

do not define a rate order. In this case, bimolecular means

that an electron on one molecule recombines with a hole on

another molecule, which makes bimolecular recombination a

synonym for nongeminate recombination. Monomolecular is

then used as a synonym for geminate recombination. Within

this terminology, all recombination discussed in this paper is

bimolecular.
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