Multiferroicity in oxide thin films and heterostructures

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von
Diplom-Physiker
Artur Glavic
aus Moers

Berichter: Universitätsprofessor Thomas Brückel Universitätsprofessor Matthias Wuttig

Tag der Mündlichen Prüfung:

Contents

1	Intr	oductio	on	7
2	The	oretica	al Background	g
	2.1	Transi	tion metal oxides ABO ₃ with Perovskite structure	9
		2.1.1	Ground state and magnetic moment in Perovskites	9
		2.1.2	Magnetic exchange interactions	10
	2.2	Multif	Terroics	12
		2.2.1	Routes to simultaneous magnetic and electric dipolar ordering	13
		2.2.2	Cycloidal magnetic order in multiferroic RMnO ₃	14
	2.3	Epitax	tial thin films	16
		2.3.1	Orientation of deposited films	16
		2.3.2	Growth modes	17
		2.3.3	Strain relaxation	18
		2.3.4	Influence of strain on the magnetic structure	19
	2.4	Scatte	ring theory	20
		2.4.1	General scattering theory and Born approximation	20
		2.4.2	Single crystal diffraction	21
		2.4.3	Small incident angles - reflectometry	24
		2.4.4	Neutron scattering	25
		2.4.5	X-ray scattering	26
3	Exp	erimer	ntal Methods and Instruments	33
	3.1	SQUII	D magnetometry	33
	3.2		c force microscopy (AFM)	33
	3.3		rford backscattering spectrometry (RBS)	34
	3.4		d harmonic generation (SHG)	34
	3.5		ring and resonant x-ray techniques	35
		3.5.1	X-ray reflectometry (XRR)	36
		3.5.2	X-ray diffraction (XRD)	36
		3.5.3	Resonant x-ray diffraction	37
		3.5.4	X-ray magnetic circular dichroism (XMCD)	38
		3.5.5	Polarized neutron diffraction (PND)	38
		3.5.6	Polarized neutron reflectometry (PNR)	38
		3.5.7	Modeling of reflectivity and diffraction data	39
4	San	nple Pr	reparation and Description	41
·	4.1	•	îlm deposition methods used	41
		4.1.1	Pulsed laser deposition	41
		4.1.2	Oxide sputter deposition	41

	4.2	Samples under investigation	42
		4.2.1 TbMnO ₃ /DyMnO ₃ -single layers on YAlO ₃	42
		4.2.2 LaCoO ₃ -single layers on YAlO ₃	43
		4.2.3 [TbMnO ₃ -LaCoO ₃]-multilayers on YAlO ₃	43
		4.2.4 [EuTiO ₃ -BaTiO ₃]-multilayers on $GdScO_3$	44
5	Ехр	eriments I: TbMnO ₃ and DyMnO ₃ Single Layers	45
	5.1	Structural characterization	46
		5.1.1 Stoichiometry of the films	46
		5.1.2 Film thickness and roughness	47
		5.1.3 Surface structure	47
		5.1.4 Crystalline structure	49
	5.2	Macroscopic magnetization	49
	5.3	Symmetry and ferroelectricity	53
	5.4	Microscopic magnetization	53
		5.4.1 Polarized neutron diffraction	53
		5.4.2 Soft x-ray resonant magnetic scattering	55
	5.5	Summary	62
6	Exp	eriments II: LaCoO ₃ Thin Films and [TbMnO ₃ -LaCoO ₃]-Multilayers	65
	6.1	Structural characterization	65
	6.2	Macroscopic magnetization	66
	0.2	6.2.1 SQUID magnetometry	66
		6.2.2 X-ray magnetic circular dichroism	68
	6.3	Microscopic magnetization	72
	0.0	6.3.1 Polarized neutron diffraction	72
		6.3.2 X-ray resonant magnetic scattering	74
	6.4	Summary	76
_	-		
7	-	eriments III: [EuTiO ₃ -BaTiO ₃]-Multilayers	79
		Crystal structure	79
	7.2	Layer structure and magnetization	81
	7.3	Summary	82
8	Con	clusion	83
Ac	knov	vledgment	87
Δ	hhΔ	litional Figures and Tables	89
•	A.1	Sample parameters	89
	A.2	X-ray reflectivity simulations	93
	A.3	Substrate imperfections	99
В	Use	d Models	101
	B.1		101
	B.2	Reflectivity model for oxide samples	
	B.3	Spin model and neutron diffraction calculation for $\mathbb{TL}^{18/3}_{\times 20}$	
С	Bibl	iography	127

D	List of Figures	137
Ε	List of Tables	141
F	Index	143
	List of Symbols and Abbreviations G.1 Symbols	

Chapter 1

Introduction

Multiferroics, materials possessing at least two (anti)ferroic properties, are of high interest in todays research because of a variety of possible applications and the physical principles behind the effect [31, 123, 124]. Especially magnetic and ferroelectric order are of interest for sensing, data storage and data processing [89]. "The revival of the magneto-electric effect" [40, 113] was strongly triggered by the observation of multiferroic behavior in a variety of manganites containing small rare earth cations [58, 70, 72]. In these compounds a strong coupling between the ferroelectric polarization and the (anti)ferromagnetic order of their spin system exists [38]. From a theoretical point of view, these compounds contradict the usual explanation for ferroelectricity and magnetic order in transition metal systems. The former usually requires d^0 -ness, i.e. empty d orbitals, while the latter can only appear when partly filled 3d orbitals are present. From an application's point of view, the control of the electrical degree of freedom via magnetic fields and vice versa offers fascinating new perspectives, e.g. devices where a magnetic field changes the optical properties [24]. When it comes to devices, thin films of multiferroic compounds are required. Furthermore, the mechanisms leading to multiferroic behavior may be altered by epitaxial strain, the interface to the substrate or the increased importance of interfaces and finite size [98].

The improvements of thin film deposition methods made it possible to produce oxidic superstructures of layers with only a few unit cells and atomic flat interfaces. Heterostructures of different oxide materials possess even more perspectives for application than bulk materials [99], as the properties of the different layers can be combined as e.g. in artificial multiferroics [22, 44] and even new phenomena are found (2D electron gas [90] and superconductivity [101] at an interface between two insulators, ferromagnetic clusters and superconducting order [36] or charge transfer at the interfaces [49, 106]).

In this work the multiferroic compounds TbMnO₃ and DyMnO₃ are studied in thin films and heterostructures for their magnetic and ferroelectric properties. Additionally, a potential artificial multiferroic structure of EuTiO₃ and BaTiO₃ is investigated. TbMnO₃ thin films have already been grown on e.g. SrTiO₃ and LaAlO₃ substrates [33]. These films exhibit 90° twinning and show emerging ferromagnetism [73, 80, 102], while the antiferromagnetic spiral structure, which leads to the multiferroicity, was not directly observed. For the present study, the films and multilayers were deposited on orthorhombic YAlO₃ substrates, which leads to untwinned films [47]. The structural and multiferroic properties of single layers with different thicknesses between 2 and 200 nm have been investigated (see **chapter 5**) by x-ray and neutron scattering techniques as well as macroscopic magnetization measurements. Thus all important multiferroic properties were analyzed before progressing with the multilayer investigations.

The coupling of the magnetic order of TbMnO₃ to adjacent ferromagnetic LaCoO₃ layers has been investigated with microscopic and macroscopic methods in the second part of this work (**chapter 6**). Although in bulk TbMnO₃ the coupling between magnetism and ferroelectricity is already strong, large fields are needed to switch the polarization, which could be overcome by a coupling to a ferromagnetic material.

Another form of interface effect has been studied for multilayers of EuTiO₃ and BaTiO₃ in **chapter 7**. Strained single layers of EuTiO₃ are found to be ferromagnetic, while the alloy Eu_{0.5}Ba_{0.5}TiO₃, on the other hand, does not show any magnetic order. Therefore ferromagnetism in different multilayers of BaTiO₃ and EuTiO₃ were studied with polarized neutron reflectivity.

Chapter 2

Theoretical Background

The following sections will give a review of the theory behind the investigated material systems and experimental methods. For a description of the physical and mathematical symbols used, refer to the list of symbols in the appendix **chapter G**.

2.1 Transition metal oxides ABO₃ with Perovskite structure

The compounds under investigation in this thesis are transition metal oxides with the composition ABO₃. They possess a (distorted) Perovskite type crystal structure, where the B-site cation is positioned inside an octahedron of 6 oxygen anions. The octahedra are connected at the corners and the A-site cations occupy the spaces between the octahedra. Depending on the ion sizes the octahedra are buckled, which changes the symmetry from cubic to orthorhombic or rhombohedral. The crystal unit cell of orthorhombic Perovskites in the Pbnm space group setting (e.g. YAlO₃ and TbMnO₃) is illustrated in **figure 2.1**. The 3d transition metals occupy the B-site while the A-site can be filled with a variety of elements from the second group, some of the 4d transition metals, the lanthanoids and a mixture of these. Changes in the size of the A-site ion lead to tilting of the oxygen octahedra. Secondly the state of ionization at the A-site defines the population of the 3d states of the B-site transition metal.

The described flexibility and the resulting tunability is one reason for the variety of effects found in this class of compounds (and slight variations) [122] as Mott-insulation, colossal magneto resistance (CMR), high temperature superconductivity and single phase multiferroicity (section 2.2). The magnetic order (dependent on the ground state) is an important driving force for these effects and thus will be covered in the next sections.

2.1.1 Ground state and magnetic moment in Perovskites

Before addressing the coupling mechanisms leading to different magnetic order, this section will cover the derivation of the cation's ground state and the resulting magnetic moment. The 3d transition metal on the B-site is octahedrally coordinated by 6 oxygen anions creating a crystal field, which – for the ideal undistorted octahedron – splits the 5 degenerate 3d states into 3 lower lying t_{2g} and 2 elevated e_g orbitals [5, 23], because of the different distances to the ligand charge. This splitting ($\Delta E_{CrystalField}$) is found to be 4Dq and 6Dq for the t_{2g} and e_g levels

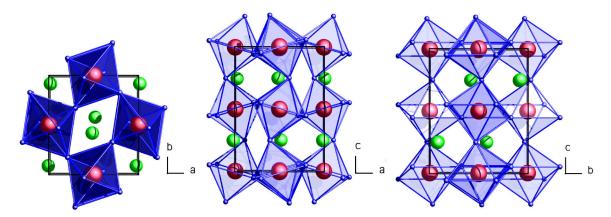


Figure 2.1: Crystal structure of orthorhombic ABO₃ transition metal oxides with the transition metal ions B (red) inside oxygen (blue) octahedra and the A site ions (green) in the spaces between the octahedra.

(as the overall energy is conserved), respectively, and has been calculated with good agreement to experimental data (e.g. by Phillips [95]). In some systems the degeneracy of the t_{2g} and e_g orbitals is lifted by a distortion of the octahedra, which can lead to an overall energy gain¹; the so called Jahn-Teller effect [62]. This can be a static cooperative distortion of the lattice or fluctuations without an average change of the crystal structure.

The magnetic moment depends on the electron configuration of the ion and the ratio between the crystal field splitting and the Hund's rule coupling energy (ΔE_{Hund}), which splits the \uparrow and \downarrow spin states (exchange splitting). This is illustrated in the energy diagram in **figure 2.2**. Ions with more than 3 and less than 8 d-electrons thus may have a high-spin or low-spin state in dependence of the ratio between $\Delta E_{CrystalField}$ and ΔE_{Hund} .

Manganese has the configuration $[Ar]3d^54s^2$, for the two important oxidation states Mn³⁺ and Mn⁴⁺ this leads to 4 and 3 d-electrons, respectively. Because of an usually moderate crystal field splitting their ground states are $t_{2g\uparrow}^3e_{g\uparrow}^1$ for Mn³⁺ and $t_{2g\uparrow}^3$ for Mn⁴⁺.

Cobalt with $[Ar]3d^74s^2$ has 6 d-electrons in trivalent-configuration, as present in the rare earth cobaltates. Exchange splitting and ligand field effect have the same order of magnitude, which results in a low- $(\langle t_{2g}^6 \rangle$ S=0), intermediate- $(\langle t_{2g}^4 \rangle t_{2g\uparrow} e_{g\uparrow}$ S=1) and high-spin state $(\langle t_{2g}^2 \rangle t_{2g\uparrow}^2 e_{g\uparrow}^2$ S=2). For LaCoO₃, spin state transitions attracted a lot of attention in research over decades but are not completely settled yet [52, 81, 109, 117].

2.1.2 Magnetic exchange interactions

In a fully ionic bound crystal the magnetic ions would be isolated from neighboring magnetic moments², which would lead to purely paramagnetic behavior. This holds for the rare earth

¹"The physical reason for this is that in first-order perturbation theory, the center of gravity of the levels remains the same after a perturbation that splits the levels, so that removal of the degeneracy, or splitting of the levels, results in a ground state that decreases linearly with the distortion." - p. 64 in [5]

²Leaving only the magnetic dipole-dipole interaction, which has an interaction energy of $k_B \cdot T \approx \frac{\mu_0}{4\pi} \frac{g^2 \mu_B^2}{4a^2} \lesssim 100 \, \text{mK}$ and thus can be neglected for temperatures above 1 K.

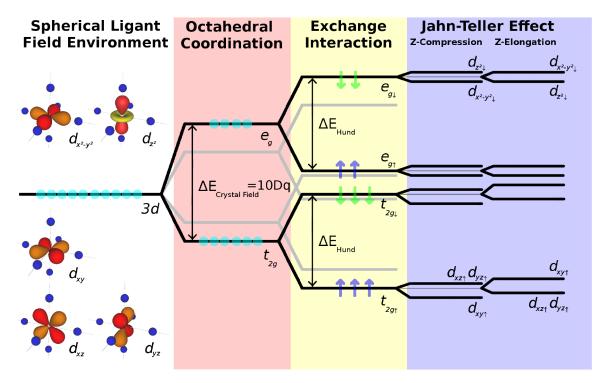


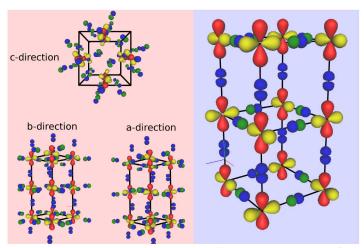
Figure 2.2: Crystal field splitting of the 3d-orbitals in an octahedral coordination. The crystal field effect is larger than the Hund's coupling, so the $t_{2g\downarrow}$ states are filled before the $e_{g\uparrow}$ states. The opposite case is also indicated (gray).

ions, where interaction with other magnetic ions is quite small (ordering temperatures below $10\,\mathrm{K}$) due to the adjacency of the 4f electrons to the core. In the case of the transition metals the unoccupied d-bands lie relatively low above the Fermi-level, which allows virtual hopping from the ligand to the cation, partial covalent bonds or even metallic conductivity. The coupling across one or more anions, known as superexchange, can lead to ferro- or antiferromagnetic correlations with varying strength. Which type of coupling results from a superexchange path depends on the occupied and unoccupied cation orbitals and their spatial expansion with respect to the anion orbitals. The different possible cases and routes have been condensed [5, 17, 50, 67] to the so called Goodenough-Kanamori rules, which will be exemplified using the example of the A-type³ antiferromagnet LaMnO₃ (the parent compound of a CMR material [65]):

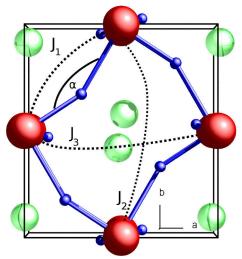
LaMnO₃ has a distorted Perovskite structure as illustrated in **figure 2.1**. Below $\gtrsim 1150 \,\mathrm{K}$ cooperative Jahn-Teller distortion elongates the octahedra in the ab-plane in alternating directions for neighboring manganese ions. This lifts the degeneracy of the half filled manganese e_g orbitals, leading to orbital order below $\approx 750 \,\mathrm{K}$, where only the d_{z^2} states are occupied, while the $d_{x^2-y^2}$ orbitals remain empty. Although the origin of these transitions is still under debate [94], the complex interplay between superexchange, Jahn-Teller effect and magnetism is described generally with the Kugel'-Khomskiĭ model [75].

The creation of covalent or semicovalent bonds is only possible, if there is an overlap of oxygen 2p with empty d-orbitals of the transition metal ion (in this case the empty e_g , as it is the lowest in energy). The ordered unoccupied orbitals of LaMnO₃ are illustrated in **figure 2.3a**. As can be seen there is a closed superexchange path in the c-direction for all Mn-ions, while in a- and b-direction only one Mn-ion can form a bond with the anion per site. Applying the

³Parallel ordered moments in planes with antiferromagnetic stacking.



(a) Orbital configuration of empty $\mathrm{Mn^{3+}}$ - e_g and occupied $\mathrm{O^{2-}}$ -p states in LaMnO₃. On the left side the distorted structure is illustrated with one view for all crystal axes. The right side shows the bonds between the magnetic ions in an undistorted structure for better perceptibility with a view slightly tilted from the \vec{b} -direction. The single bound oxygens are illustrated with green orbitals binding to yellow Mn coils $(3d_{v^2-v^2})$.



(b) The superexchange paths for nearest neighbor (J_1) and next nearest neighbor (J_2) and J_3 coupling in RMnO₃ compounds projected along \vec{c} . The angle responsible for the strength of the nearest neighbor coupling is illustrated as α . Colors as in figure 2.1

Figure 2.3: Superexchange in RMnO₃

Goodenough-Kanamori rules, this leads to weak ferromagnetic bonds in the ab-planes with an antiferromagnetic coupling between the layers, thus resulting in the found A-type antiferromagnetic order [45, 61, 83, 133]. It should be emphasized, that these considerations only hold for systems containing only trivalent Mn ions, while Mn^{4+} can form 6 semicovalent bonds and thus have antiferromagnetic interactions in all directions leading to G-type order as e.g. in CaMnO_3 .

2.2 Multiferroics

The presence of at least two ferroic properties⁴ – (anti)ferromagnetism, ferroelectricity⁵ or ferroelasticity⁶ – is called multiferroicity. While they are closely related, multiferroicity does not imply a coupling⁷ between the different ferroic orders. Especially materials with combined ferromagnetic and ferroelectric order and magnetoelectric coupling possess a large potential for applications, as e.g. magnetic field sensors or magnetic random access memories (MRAM), without the need for high current densities for switching, as one could simply apply an electric field. There are very few single phase⁸ multiferroics in nature with often low ordering

⁴We neglect the ferrotoroidicity here, because it isn't of large importance up to now.

⁵Forming of a long range ordered state of permanent electric dipoles, which can be switched with an electric field

⁶Spontaneous strain in a crystal, which can be switched to another phase with different crystal structure or orientation

⁷Magnetoelectric, piezoelectric or magnetostictive effects.

⁸In contrast to artificial heterostructures.

temperatures, antiferromagnetism or a low coupling between both degrees of freedom.

2.2.1 Routes to simultaneous magnetic and electric dipolar ordering

When first looking for multiferroic compounds, one would investigate the class of materials, which is known to include materials exhibiting strong ferroelectricity and, on the other hand, materials with magnetic order. From this point of view the binary transition metal oxides are good candidates, because they comprise model ferroelectric materials as $BaTiO_3$ or $PbZr_xTi_{1-x}O_3$ (PZT) and a diversity of magnetic compounds. Unfortunately, the physical mechanisms leading to both types of order in these compounds are contradictory. Ferroelectricity as in $BaTiO_3$ requires empty d-shells (d^0 -ness), as this allows for a full covalent bond to one adjacent oxygen ion, which can lead to an off-centering of the transition metal ion, creating an electric dipole [32, 125]. Magnetism, on the other hand, obviously requires partly filled d-orbitals. Due to these facts the standard mechanism of ferroelectricity and magnetism in these compounds can't lead to multiferroicity. Hence other mechanisms are needed [40]:

- One possible route is to detach the magnetism from the B-site ion as in BiFeO₃, where Bi creates ferroelectric polarization with a lone-pair⁹ mechanism [100, 118]. Due to the spatial separation of the magnetic and ferroelectric ion this mechanism generally leads to a weak coupling of both degrees of freedom.
- The ferroelectricity can be created due to charge order as proposed for LuFe₂O₄ [18, 59, 134]. This would, in principal, lead to very strong magnetoelectric effects.
- Geometrical considerations have to be taken into account to explain the multiferroicity in hexagonal YMnO₃ [126].
- The situation of most interest for this work is present in materials with competing interactions, which can lead to a spiral magnetic order. This magnetic structure itself can be the source for a electric polarization, which will be discussed in **section 2.2.2**.
- Artificial thin film heterostructures can be created [44], which couple a ferromagnetic to a ferroelectric material via e.g. a ferroelectric piezoelectric magnetostrictive ferromagnetic route. Besides their importance for application these structures are no "real" multiferroics in the sense of single phase materials.

Symmetry considerations: Another argument for the sparsity of multiferroic compounds is that they require breaking of two symmetries in one phase. For ordered magnetic moments, the time reversal symmetry is broken, as the time inversion changes the direction of a spin. Spatial inversion, on the other hand, only exchanges spins at different sites leaving the magnetic order unchanged in most cases. Electric polarization is produced by off-centered charges and therefore breaks the spatial inversion symmetry. Thus, for a multiferroic compound, both, time and spatial inversion symmetry, need to be broken.

⁹Two 5s or 6s electrons without a chemical bond.

2.2.2 Cycloidal magnetic order in multiferroic RMnO₃

For the explanation of the magnetic structure of LaMnO₃ in **section 2.1.2** it was sufficient to consider nearest neighbor (NN) interactions (J_1 in **figure 2.3b**). As the manganese valence state and the geometry is the same for all RMnO₃ (R=[La-Lu]) compounds, the NN coupling has the same sign. The main difference when exchanging the A-site ion is the ion size, which changes the tilting of the oxygen octahedra. Turning the Mn-O-Mn angle (illustrated as α in **figure 2.3b**) further away from 180° weakens the ferromagnetic interactions in the ab-plane. This is evidenced by a decrease in magnetic ordering temperature starting from 140 K for La³⁺ with an ionic radius of 1.032 Å ($\alpha = 155^{\circ}$) down to below 50 K for Gd³⁺ with an ionic radius of 0.938 Å ($\alpha = 146^{\circ}$)¹⁰. Despite the fact that the next nearest neighbor (NNN) superexchange (antiferromagnetic J_2 and weak ferromagnetic J_3 in **figure 2.3b**) can only occur via two oxygen ions, which generally weakens the coupling, it becomes important, when the NN interaction is further weakened going from Gd to Tb and Dy. Additionally the NNN exchange gets stronger as the O-O distance decreases (3.4 Å in LaMnO₃ to 3.0 Å in HoMnO₃). The frustration arising from the ferromagnetic NN and antiferromagnetic NNN interaction leads to a cycloidal magnetic order¹¹ [69, 71] with a propagation vector in b-direction as ground state of those compounds.

Although this needs to be considered as the 2D frustrated Heisenberg model for S=2, the basic principal of this magnetic ground state can be understood using a classical one dimensional chain of NN ferromagnetic and NNN antiferromagnetic coupled moments. The Hamiltonian for this chain can be written as:

$$\mathcal{H} = \sum_{j} J_1 \vec{S}_j \cdot \vec{S}_{j+1} + \sum_{j} J_2 \vec{S}_j \cdot \vec{S}_{j+2}$$
 (2.1)

with $J_1 < 0$ and $J_2 > 0$. The energy of the system only depends on the relative angle between neighboring moments and as we assume a ordered ground state, we can rewrite the Hamiltonian per site to only contain the relative angle between neighbors:

$$\mathcal{H}_{j} = J_{1}\cos\left(\phi_{j,j+1}\right) + J_{2}\cos\left(2\phi_{j,j+1}\right)$$
 (2.2)

$$\frac{\partial \mathcal{H}_j}{\partial \phi_{i,j+1}} \stackrel{!}{=} 0 \quad \text{for minimal energy}$$
 (2.3)

$$\Rightarrow 0 = -J_1 \sin\left(\phi_{j,j+1}\right) \left(1 + \frac{4J_2}{J_1} \cos\left(\phi_{j,j+1}\right)\right) \tag{2.4}$$

$$\frac{\partial^2 \mathcal{H}_j}{\partial \phi_{j,j+1}^2} = -J_1 \left(\cos \left(\phi_{j,j+1} \right) + \frac{4J_2}{J_1} \cos \left(2\phi_{j,j+1} \right) \right) \tag{2.5}$$

As one can see from the first and second derivative of the Hamiltonian, for $J_2 \ge -\frac{1}{4}J_1$ an extremum at $\cos\left(\phi_{j,j+1}\right) = -\frac{J_1}{4J_2}$ arises and the ferromagnetic solution $\phi_{j,j+1} = 0$ is no longer a minimum (as the second derivative is $-J_1(1+\frac{4J_2}{J_1}) < 0$).

Further decreasing ion size on the A-site in HoMnO₃ leads to ferromagnetic zik-zak chains in the ab-plane known as E-type antiferromagnetic order. The three types of order in the magnetic

¹⁰Radii taken from [3] (page 14).

¹¹The propagation vector lies in the plane of rotation of the magnetic moments in contrast to proper-screw type magnetic order.

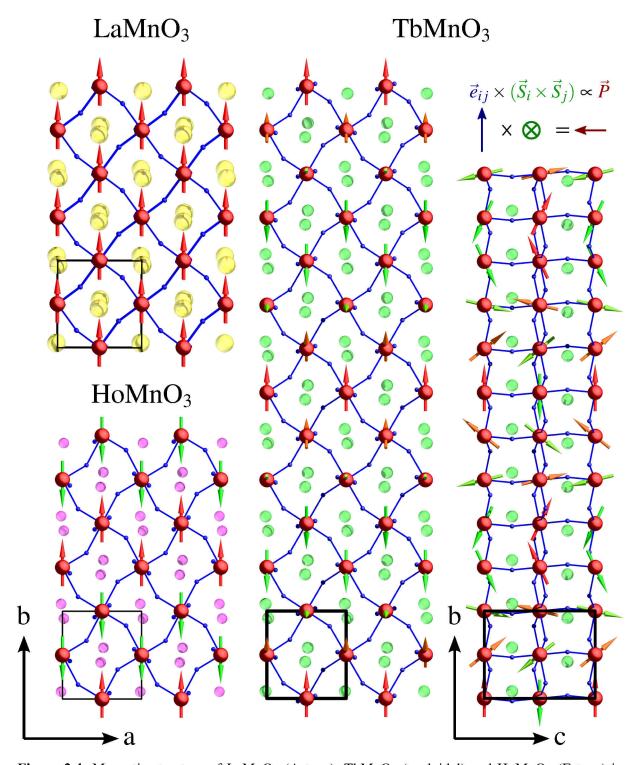


Figure 2.4: Magnetic structure of LaMnO₃ (A-type), TbMnO₃ (cycloidal) and HoMnO₃ (E-type) in the low temperature ordered phase. In the case of the larger La ions, the Mn-O-Mn bond angle is $\alpha = 155^{\circ}$, which leads to a magnetic structure governed by the nearest neighbor interaction, which is ferromagnetic in the ab-plane. In HoMnO₃ the bond angle is about 144° and the ferromagnetic nearest neighbor interaction is weakened, giving rise to antiferromagnetic order in \vec{b} -direction through the next nearest neighbor coupling (J_2 in **figure 2.3b**). In the intermediate case of TbMnO₃, with a fitting ratio of NN and NNN coupling, the order is cycloidal with magnetic moments in the bc-plane and a periodicity close to $^{7/2} \cdot b$.

phase diagram are illustrated in **figure 2.4**. It should be noted, that the mentioned frustration gives rise to a phase between the low temperature magnetic ordered and the paramagnetic phase, which exhibits a sinusoidally modulated spin wave¹² with moments in the \vec{b} -direction.

In contrast to the other routes to multiferroicity described in **section 2.2** the ferroelectricity in TbMnO₃ and DyMnO₃ directly arises from their uncommon magnetic structure. This gives rise to a strong coupling of both properties [51, 70] and a rich magnetoelectric phase diagram [72]. It was realized quite early [69] that the cycloidal magnetic structure breaks inversion symmetry as required for ferroelectricity. This leads to a phenomenological theory for the ferroelectricity and magnetoelectric effect [85]. The ferroelectric polarization derived with this model is equation 2.6, where \vec{P} is the electric polarization, χ_e the dielectric susceptibility without magnetism, γ the magnetoelectric coupling coefficient, m_b and m_c the maximum component of the magnetic moments in \hat{b} and \hat{c} , $\vec{\tau}$ the propagation vector of the magnetic structure and $\hat{a} = \hat{b} \times \hat{c}$ the direction of the magnetic moments rotation axis.

$$\vec{P} = \gamma \chi_e \ m_b m_c (\vec{\tau} \times \hat{a}) \parallel \hat{c} \tag{2.6}$$

The symmetry alone does not explain the effect itself. The microscopic origin of the ferroelectric polarization was identified to be the inverse Dzyaloshinsky-Moriya interaction [68, 88, 110, 111] (responsible for the coupling constant γ in equation 2.6). For the conventional Dzyaloshinsky-Moriya interaction an anisotropic superexchange leads to a non collinear magnetic structure, if there is no center of inversion. This effect was first predicted by Dzyaloshinsky based on symmetry arguments [37] and later theoretically deduced by introducing spin-orbit coupling in the energy terms describing the superexchange [84]. In the opposite case, where there is already a cycloidal magnetic structure, a small displacement (recently measured [131] to be in the range of femto meters) of the ions can lead to an energy gain via the Dzyaloshinsky-Moriya term $E_{DM} = D \cdot (S_i \times S_i)$, which is the source for the ferroelectric polarization.

2.3 Epitaxial thin films

Thin film growth with a coherent crystalline structure is called epitaxy. In general, when depositing another material on a single crystalline substrate, there will always be some differences in crystal and electronic structure, which needs to be adopted at the interface [56]. The difference between the in-plane lattice parameters of the substrate and those of the deposited material will lead to strained films up to a critical thickness, where the strain relaxes due to dislocations [57] and other defects until the film has relaxed to it's bulk crystal structure. Differences in the electronic structure at the interface ¹³ can lead to electron transfer and bond formation, which changes the band structure of the interface and the adjacent few unit cells [49, 90, 91, 101].

2.3.1 Orientation of deposited films

The coherent growth at the interface between two materials constrains the possible directions one material can grow on the other, because the unit cell geometry cannot be strained infinitely.

¹²The magnetic phase diagram of the RMnO₃ compounds is shown in [71].

¹³Difference in e.g. valence, band gap, charge or electronic density of states.

	In-plane direction 1		In-plane direction 2			
	Miller Indices		Strain	Miller Indice		Strain
	$TbMnO_3$	$YAlO_3$	Suam	$TbMnO_3$	$YAlO_3$	Suam
Orientation 1:	(100)	(010)	0.6%	(001)	(001)	0.4%
Orientation 2:	(610)	(060)	1.1%	(001)	(001)	0.4%
Orientation 3:	(710)	(070)	0.7%	(001)	(001)	0.4%
Orientation 4:	(530)	(060)	0.6%	(001)	(001)	0.4%
Orientation 5:	(270)	(080)	0.6%	(001)	(001)	0.4%
Orientation 6:	(321)	(040)	2.1%	(-737)	(001)	0.9%
Orientation 7:	(342)	(060)	0.2%	(1-36)	(001)	8.6%

Table 2.1: Theoretical possible growth orientations of TbMnO₃ on YAlO₃ substrates with the relative strain for both in-plane direction of the TbMnO₃ in-plane lattice.

To determine possible epitaxial growth directions, the in-plane lattice parameters of the substrate (or former deposited film) has to be compared with the unit cell metric of the deposited film. In most cases the growth direction, which can be accomplished by placing a small integer number of linear combinations of the film lattice vectors parallel to the substrate lattice with the lowest possible strain, will be preferred. E.g. growing Ag ($a = b = c = 4.085 \,\text{Å}$) on GaAs with the in-plane lattice $a_2 = b_2 = 5.6533 \,\text{Å}$ leads to a growth with $(\vec{a} + \vec{b}) \parallel \vec{a}_2$ as $|\vec{a} + \vec{b}| = 5.777 \,\text{Å} = 1.02 \cdot a_2$. For new systems the possible growth directions can be estimated by simply comparing all possible linear combinations of the film lattice parameters for their compatibility with the substrate. **Table 2.1** shows all possibilities for TbMnO₃ films deposited on YAlO₃ (100) with a strain lower than 4% and up to 7 TbMnO₃ lattice vectors in each direction. Obviously, in-plane components with large vectors are very unlikely, as the substrate and film atoms can only have perfect bonding conditions at positions with this distance.

2.3.2 Growth modes

The microscopical development of the film during the growth can vary in dependence of the materials, deposition method, deposition rate and deposition temperature. An adatom impinging on the surface can diffuse on a terrace (with the diffusion constant $D = k_s \cdot a^2$)¹⁴ until it hits a step or encounters another adatom or adatom cluster, loosing it's mobility due to the additional bond formation. Even the best substrates have step edges, as the polished surface normal never coincides with the crystal symmetry direction. The diffusion speed, the terrace width and the deposition rate determines, if the so called step flow or spontaneous nucleation dominates. The site-to-site hopping coefficient k_s is temperature dependent with $k_s = e^{-V_s/k_BT}$ [128, 135]. As the coordination of atoms hopping down a step of an island is lowered, it forms an energy barrier which determines if clusters grow as 2d or 3d islands.

For deposited materials, which differ from the substrate material (heteroepitaxy), additional thermodynamic considerations need to be taken into account, which can lead to three basic situations. These so called growth modes are commonly classified as introduced by Bauer [21]:

Layer-by-layer or *Frank-van der Merwe* growth: Each mono-atomic layer is closed one after the other. As this mode leads to defined film thickness and low roughnesses, it is the

 $^{^{14}}k_s$ is the site hopping rate of an atom and a the effective hopping distance.

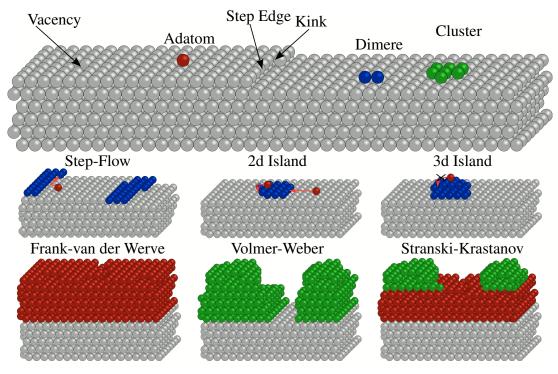


Figure 2.5: Schematic of important terms for layer growth and the growth mode models. Ideas from [12, 13, 135].

situation desired in most cases.

Island or *Volmer-Weber* mode: Starting at the substrate the deposited material creates distinct islands, which grow separately.

Stranski-Krastanov (SK) mode: The growth starts in layer-by-layer mode and switches to island growth after a defined thickness is reached.

Which mode is favored depends on the substrate and film surface free energies $\gamma_{Substrate}$, γ_{Film} and the interface energy γ_{SF} . If $\gamma_{Film} + \gamma_{SF} < \gamma_{Substrate}$ layer-by-layer growth will be favored, while Volmer-Weber is favored otherwise. This fact leads to the consequence, that a multilayer system of layers A and B will have different interface roughnesses for B grown on A than for A grown on B. For pseudomorphic growing films¹⁵ the interface energy increases with each layer, which means that the layer-by-layer growth will switch to island mode after a critical thickness if the strain is not relaxed, which is called Stranski-Krastanov growth.

2.3.3 Strain relaxation

As long as the film thickness is limited and the islands are distinct, it is possible to partly relax the strain in pseudomorphic growth by elastic deformation as shown in **figure 2.6a**. When the islands grow together or the thickness of a closed layer gets too large, misfit dislocations can form [63, 66, 87] and the film crystal lattice can relax to it's bulk values (**figure 2.6b**).

¹⁵The film lattice parameters are strained to fit the substrate.

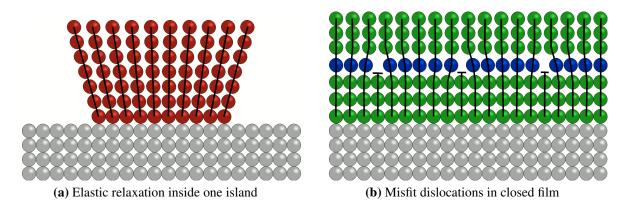


Figure 2.6: Strain relaxation processes. Ideas from [12, 13].

2.3.4 Influence of strain on the magnetic structure

As was described in **section 2.1.1** and **2.1.2**, the magnetic coupling in a compound can strongly depend on the unit-cell geometry. When a compound gets strained, the change in geometry can therefore lead to a change of the magnetic ordering temperature or even alter the type of order. As this effect is of importance for some compounds investigated in this work we will discuss some examples:

Magnetism in EuTiO₃ The growing accuracy of ab-initio calculations was used to predict a ferromagnetic ferroelectric state in the bulk paraelectric antiferromagnet EuTiO₃ [76], if the material is extended in two directions (leading to a compression in the third direction). Strained films grown on SrTiO₃ and DyScO₃ could confirm these predictions [76]. This effect is of great interest for the field of multiferroicity as a large magnetoelectric coupling was found [112] in this compound, too. This material will be discussed further in the according sample section **section 4.2.4**.

Ferromagnetic LaCoO₃ A similar effect can be found in LaCoO₃ thin films which exhibit ferromagnetism [42]. The spin state transition found in the paramagnetic bulk material [81] is additionally suppressed partially. The origin for this effect is still under debate. It was suggested that a superexchange between hight-spin and low-spin Co ions could be responsible for the ferromagnetic coupling [82], but this explanation would pose the additional question, why the intermediate spin state of the bulk material would not result in the same coupling. This effect is of specific importance for the systems introduced in **section 4.2.2** and **4.2.3**.

Chemical strain in RMnO₃ Strain effects can also be produced by substituting elements with mixtures of other materials. This method was used to change the Mn-O-Mn bond angle in EuMnO₃ by partially substituting Eu with Y. With this method it was possible to establish multiferroicity [55] as in TbMnO₃, which was an additional proof for the theoretical interpretation of the RMnO₃ magnetic phase diagram.

2.4 Scattering theory

As several different types of scattering experiments were performed to investigate different physical properties of the samples, this section will give an overview on the basic scattering theory, needed to understand the different methods.

2.4.1 General scattering theory and Born approximation

Incoming beam $k = \frac{2\pi}{\lambda}$ Sample \vec{k}_i \vec{Q}

Detector

Figure 2.7: Scattering

geometry

A scattering experiment measures the angular dependent intensity (proportional to the differential scattering cross section $\frac{d\sigma}{d\Omega}$) of radiation after interaction with the sample.

$$I = I_0 \frac{d\sigma(\Theta, \varphi)}{d\Omega} d\Omega = I_0 |f_k(\Theta, \varphi)|^2$$
 (2.7)

$$\Phi(r) \quad \mathop{\sim}_{r \to \infty} \quad e^{i\vec{k}_i \vec{r}} + f_k(\Theta, \varphi) \frac{e^{i\vec{k}_f \vec{r}}}{r}$$
 (2.8)

$$V(\vec{r})\Phi(\vec{r}) = \frac{\hbar^2}{2m_{red}} (\nabla^2 + k^2) \Phi(\vec{r})$$
 (2.9)

The intensity I measured per given solid angle $d\Omega$ and incident intensity I_0 is given in equation 2.7. The derivation of the scattered intensity can $r^2d\Omega$ be found in many textbooks as for example in [2], only the results will be described in the following paragraphs:

To describe an elastic scattering process¹⁶ of non relativistic particles, one starts from the stationary Schrödinger, for scattering of photons with the Maxwell equations, which both lead to the wave equation (equation 2.9 just with different prefactors) with wave function $\Phi(\vec{r})$ and scattering potential $V(\vec{r})$. This equation needs to be solved for a plane incident wave (with wave vector \vec{k}_i) with an additional scattered wave (with wave

vector \vec{k}_f and $k_i = k_f = \frac{2\pi}{\lambda}$) as given in equation 2.8. The wave equation can be transformed into an integral form, which can be solved in many cases by using the plane wave $(\Phi_{(0)}(\vec{r}) = e^{i\vec{k}_i\vec{r}})$ as first approximation for the wave function, integrating the right side of equation 2.10 and iteratively putting the result as a next guess of Φ into the equation.

$$\Phi_{(n+1)}(\vec{r}) = e^{i\vec{k}_i\vec{r}} + \frac{2m_{red}}{4\pi\hbar^2} \int \frac{e^{ik|\vec{r}-\vec{r}'|}}{|\vec{r}-\vec{r}'|} V(\vec{r}') \Phi_{(n)}(\vec{r}') d^3r'$$
 (2.10)

If the interaction potential is weak, the first integration in this so called Born series is already a good approximation for the scattered wave (first Born approximation). The scattered amplitude in this framework is the Fourier transform of the scattering potential (introducing the scattering vector $\vec{Q} = \vec{k_f} - \vec{k_i}$ and with $e^{ik|\vec{r} - \vec{r'}|} = e^{i\vec{k_f}(\vec{r} - \vec{r'})}$ and $r \approx |\vec{r} - \vec{r'}|$ (far field)):

$$\stackrel{2.10+2.8}{\Longrightarrow} f_k^{(Born)}(\vec{Q}) = \frac{2m_{red}}{4\pi\hbar^2} \int V(\vec{r'}) e^{-i\vec{Q}\vec{r'}} d^3r' \propto \mathfrak{F}(V)$$
 (2.11)

¹⁶Scattering without energy transfer between radiation and sample.

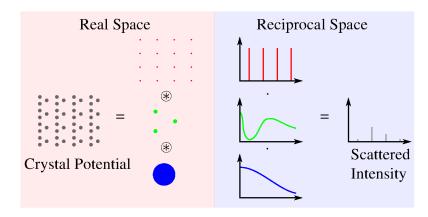


Figure 2.8: Separation of the crystal structure into convolutions of components, which correspond to products in the reciprocal space. The parts shown are the reciprocal lattice (top), structure factor (middle) and atomic form factor (bottom).

As the phase of the wave can't be measured in most experiments (the phase is lost by taking the modulus squared), it is necessary to calculate the intensity from a model for the scattering potential $V(\vec{r})$. How this model is accomplished depends on the type of radiation used to probe the sample and on the sample composition itself. The different aspects which need to be taken into account for specific experiments are described in the following sections.

2.4.2 Single crystal diffraction

X-ray radiation and moderated neutrons have wavelengths in the Å range, making them a perfect probe for structures with atomic scale variations in the potential. Especially single crystals as long range periodic structures can be probed precisely in reciprocal space¹⁷. For a general understanding of the diffraction profile from single crystals the structure can mathematically be described as a convolution of the atomic scattering potential in a basis defining the atom positions and an (almost) infinite lattice.

$$\mathfrak{F}(A \circledast B) = \mathfrak{F}(A) \cdot \mathfrak{F}(B) \tag{2.12}$$

The convolution theorem equation 2.12 can be used to derive the Fourier transform, as each element can be separately transformed and the results only need to be multiplied afterwards [2]. The corresponding transformation terms in equation 2.13 are called Atomic Form Factor, Structure Factor and Reciprocal Lattice (from an infinite crystal) and are illustrated in figure **2.8**.

Unit Cell Structure Factor Reciprocal Lattice
$$A(\vec{Q}) \sim \sum_{j} \underbrace{f_{j}(\vec{Q})}_{\text{Atomic Form Factor}} e^{i\vec{Q}\vec{R}_{j}} \cdot \sum_{h,k,l} \delta(\vec{Q} - (h\vec{a}_{1}^{*} + k\vec{a}_{2}^{*} + l\vec{a}_{3}^{*}))$$

$$\vec{a}_{i}^{*} = 2\pi \frac{\vec{a}_{(i+1)_{mod3}} \times \vec{a}_{(i+2)_{mod3}}}{\vec{a}_{1} \cdot (\vec{a}_{2} \times \vec{a}_{3})}$$
(2.13)

with
$$\vec{a}_i^* = 2\pi \frac{\vec{a}_{(i+1)_{mod3}} \times \vec{a}_{(i+2)_{mod3}}}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)}$$
 (2.14)

¹⁷Real space and reciprocal space are connected with the Fourier transform. In the Born approximation the diffraction experiment measures the modulus squared Fourier transform of the scattering potential and thus the scattering amplitude can be seen as reciprocal space representation of the real space structure.

Accordingly the diffraction profile consists of delta functions, which are scaled by the structure factor. For finite size crystals the sum of delta functions can be replaced by the Laue function, given in equation 2.15 of the subsequent section. The position of the peaks are defined by the lattice parameters and the intensities can be derived from the atom type and position in the unit cell.

In real experiments there are several aspects which need to be taken into account to derive the real peak shape. Even for perfect crystals a minimal peak width is present due to the instrumental resolution. The finite coherence of the used radiation limits the maximal crystal size in the coherent scattering volume, which additionally broadens the reflections (This can be understood by considering the scattering potential spatially limited to the coherence volume, which is a product of the infinite crystal with a limiting function, leading to a scattering amplitude which is a convolution of equation 2.13 with the Fourier transform of the limiting function and thus each peak is no more a delta function.). For x-ray radiation the exponential decay of the beam amplitude inside the sample due to absorption leads to Lorentz shaped peaks in \vec{Q} (Here the same argument as for the limited coherence volume applies, leading to a Lorentzian peak shape as absolute square of the Fourier transform of the heave side exponential decay.). Real crystals always have imperfections leading to missaligned lattice planes (mosaic), which can be measured when scanning perpendicular to \vec{Q} (rocking scan). The mosaicity for very good single crystals lies in the order $\leq 0.01^{\circ}$.

Diffraction from thin films and superlattices

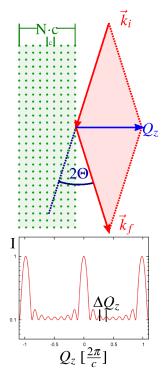


Figure 2.9: Scattering from a single layer

There is no principal difference in the physics for crystalline layers with respect to the basic scattering theory. The scattering amplitude can be calculated as Fourier transform of the potential. The inplane direction of deposited epitaxial films consists of a coherent structure on a very large length scale and can thus be treated as single crystal. For the out-of-plane scattering direction one needs to account for the finite thickness of the layers, as in most cases the coherence length is much larger than the film thickness¹⁸. In contrast to reflectometry (section 2.4.3), diffraction allows access to the crystal parameters and the size of the coherent lattice in thin films as well as the periodicity of multilayer structures.

$$I(Q_z) \sim \left| \mathfrak{F}(\sum_k \rho_{Atom}(z - k \cdot c)) \right|^2 = \left| \sum_{j,k} f_j(Q) e^{iQ_z R_{j_z}} \cdot e^{iQ_z(k \cdot c)} \right|^2$$
$$= N^2 \cdot \frac{\sin^2\left(\frac{1}{2}NQ_z c\right)}{\sin^2\left(\frac{1}{2}Q_z c\right)} \left| \sum_j f_j(Q) e^{iQ_z R_{j_z}} \right|^2$$
(2.15)

The main challenge when simulating the measured intensity, is to develop a suitable structural model for the sample. Perfect single layers can be described as finite size crystals, where the discrete

¹⁸Films thicker than \approx 100 nm can be treated as single crystals, as described in **section 2.4.2**, because the oscillations on the flanks of the peak can't be resolved any more.

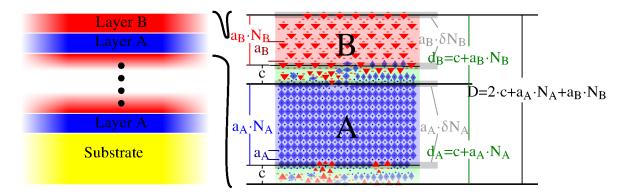


Figure 2.10: Sketch of the layer model used to describe multilayer diffraction. The important parameters include the bilayer repetitions M, out-of-plane crystal unit cell parameters $a_{A/B}$, number of unit cells $N_{A/B}$ and the thickness of the region without defined crystal structure c.

Fourier transform can be analytically deduced from a geometric series (equation 2.15). As can be seen, there are large maxima at $Q_z = n \cdot \frac{2\pi}{c}$ corresponding to the crystal lattice plane spacing with additional side maxima with the distance $\Delta Q_z = \frac{2\pi}{N \cdot c}$ corresponding to the film thickness $N \cdot c$ (see **figure 2.9**). As will be seen in **section 5.1.4**, this simple model gives a good qualitative agreement, but is not sufficient to produce a good fit to the intensity oscillations at the flanks. Deviations from the perfect crystal structure, such as strain relaxation, can be accounted for by numerically calculating the discrete Fourier transform for all diffraction planes.

Coherent multilayers lead to sharp features in the diffraction pattern corresponding to the multilayer periodicity. To calculate these diffraction patterns not only the crystal structure of each layer has to be taken into account, but e.g. layer thickness deviations and regions without defined crystal structure. Fullerton et all. have deduced a general formalism to simulate multilayers only from average parameters for each component [43]:

$$I(\vec{Q}) = M \left(\langle F_A F_A^* \rangle + 2 \Re \left(e^{\xi} \Phi_A \bar{F}_B \right) + \langle F_B F_B * \rangle \right)$$

$$+ 2 \Re \left\{ \left(e^{-\xi} \Phi_B \bar{F}_A T_A^{-1} T_B^{-1} + \Phi_A \bar{F}_A T_A^{-1} + \Phi_B \bar{F}_B T_B^{-1} + e^{\xi} \Phi_A \bar{F}_B \right)$$

$$\cdot \left(\frac{M - (M+1)e^{2\xi} T_A T_B + (e^{2\xi} T_A T_B)^{M+1}}{(1 - e^{2\xi} T_A T_B)^2} - M \right) \right\}$$
(2.16)

The general formalism was implemented for a M times repeated bilayer model as depicted in **figure 2.10** and can be found in **section B.1**. A model with thickness variations of integer numbers of unit cells was taken for the layers, which leads to the following parameters to be used in equation 2.16 (with X = A, B and Xj = Aj, Bj respectively, further parameter description in **chapter G**):

$$F_{Xj} = f_X \frac{1 - e^{iqN_{Xj}a_X}}{1 - e^{iqa_X}} \qquad P(N_{Xj}) = e^{\frac{(N_{Xj} - N_X)^2}{-2\sigma_X^2}} \cdot \left(\sum P\right)^{-1}$$
 (2.17)

$$\bar{F}_X = \sum_{j} P(N_{Xj}) F_{Xj} \qquad \Phi_X = \sum_{j} P(N_{Xj}) e^{(N_{Xj} - 1)iqa_X} F_{Xj}^* \qquad (2.18)$$

$$\langle F_X F_X^* \rangle = \sum_{j} P(N_{Xj}) F_{Xj} F_{Xj}^*$$
 $T_X = \sum_{j} P(N_{Xj}) F_{Xj} e^{(N_{Xj} - 1)iqa_X}$ (2.19)

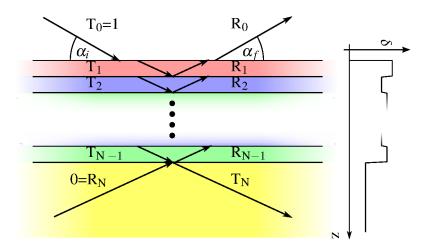


Figure 2.11: Sketch of the layer model used to describe the reflectivity. The right side illustrates the scattering power.

2.4.3 Small incident angles - reflectometry

Reflectometry measures the scattered intensity under a small incident angle (in most cases with $\theta \leq 2^{\circ}$) in the so called specular geometry, where both angles to the sample surface (α_i as incident and α_f as outgoing angle) are equal. In contrast to diffraction experiments described in section 2.4.2, the Born approximation does not hold for measurements with very small incident angles¹⁹. There is no sensitivity for the atomic structure in this \vec{Q} region anymore (as small structural features are measured at larger Q in reciprocal space), which makes it possible to use a continuum description for the scattering potential. For the case of reflectivity of a layered system, the wave equation can be solved using an optical approach. As \vec{Q} is only measured in the out-of-plane direction when incident and scattered angle are equal, the wave equation 2.9 has to be solved for the one dimensional potential V(z). As well known from quantum mechanics, a wave traveling across a step in the potential is partly reflected and transmitted according to the Fresnel coefficients (reflection $r_{i,j+1}$ and transmission $t_{i,j+1}$ coefficients for the interfaces between layer j and j+1):

$$r_{j,j+1} = \frac{k_{z,j} - k_{z,j+1}}{k_{z,j} + k_{z,j+1}} \quad \text{with } k_{z,j} = k_0 \sqrt{n_j^2 - \cos\left(\alpha_i^2\right)}$$
 (2.20)

$$r_{j,j+1} = \frac{k_{z,j} - k_{z,j+1}}{k_{z,j} + k_{z,j+1}}$$
 with $k_{z,j} = k_0 \sqrt{n_j^2 - \cos(\alpha_i^2)}$ (2.20)

$$t_{j,j+1} = \frac{2\sqrt{k_{z,j}k_{z,j+1}}}{k_{z,j} + k_{z,j+1}}$$
 and $n_j = 1 - \delta + i\beta$ (2.21)

The values of the scattering power density δ and absorption β governing the refractive index n, derived from the scattering potential, depend on the elements and their density in the material as well as the used radiation.

For more than one step in the potential (interfaces in a layered system) the interference between incoming and outgoing waves needs to be taken into account, leading to a system of coupled equations with boundary conditions at each interface. To solve this system of equations for any layered structure as shown in figure 2.11, Parratt introduced an iterative method [92], which

¹⁹Or large wave length compared with the structural periodicity.

uses the quotient of reflection and transmission inside each layer:

$$X_{j} = \frac{R_{j}}{T_{j}} = e^{-2ik_{z,j}z_{j}} \frac{r_{j,j+1} + X_{j+1}e^{2ik_{z,j+1}z_{j}}}{1 + r_{j,j+1}X_{j+1}e^{2ik_{z,j+1}z_{j}}}$$
(2.22)

Starting from the substrate where $X_N = R_N = 0$, the quotient can be calculated up to $X_0 = R_0$ as $T_0 = 1$. The effect of rough interfaces and inter-diffusion can be accounted for by introducing a Gaussian refraction coefficient profile, which leads to Fresnel coefficients modified by a Debye-Waller type term [35]:

$$r_{j,j+1}(\sigma) = r_{j,j+1}(0)e^{-2\sigma_j^2 k_{z,j} k_{z,j+1}}$$
(2.23)

2.4.4 Neutron scattering

Interaction of neutrons with matter

Neutrons can interact with the samples' nuclei via the strong interaction. It's range is much shorter than the wavelength of thermal neutrons (10^{-10} m compared to 10^{-15} m). Therefore the scattering potential can be described by the Fermi pseudo potential, which only depends on the strength of the interaction (scattering length b) determined by the inner structure of the nucleus:

$$V_{Fermi}(\vec{R}) = \frac{2\pi\hbar^2}{m} b\delta(\vec{r} - \vec{R})$$
 (2.24)

Because of the delta function in V_{Fermi} , the atomic form factor ($\mathfrak{F}(V_{Fermi})$) for nuclear scattering is a constant (figuratively the scattering center is a point without "form"). Due to the neutron magnetic moment $\vec{\mu}_n$ there is an additional magnetic dipole interaction of neutrons with the magnetic moment of electrons²⁰. Using the Zeeman interaction potential V_{mag} of a dipole in an external magnetic field (equation 2.25), the magnetic scattering cross section in dependence of the magnetization component perpendicular to \vec{Q} can be derived (equation 2.26).

$$V_{Mag} = -\vec{\mu}_{n} \cdot \vec{B} \qquad \qquad \vec{\mu}_{n} = -\gamma_{n} \mu_{n} \cdot \vec{\sigma} \qquad (2.25)$$

$$\stackrel{[6, 10, 26, 53]}{\Longrightarrow} \frac{d\sigma}{d\Omega} = (\gamma_{n} r_{e})^{2} \left| -\frac{1}{2\mu_{B}} \left\langle \sigma_{z}' \left| \vec{\sigma} \cdot \vec{M}_{\perp}(\vec{Q}) \right| \sigma_{z} \right\rangle \right|^{2} \qquad \vec{M}_{\perp} = \hat{Q} \times \vec{M} \times \hat{Q} \qquad (2.26)$$

$$\stackrel{\text{spin-only scattering}}{\Longrightarrow} \vec{M}(\vec{Q}) = -2\mu_{B} \cdot f_{m}(\vec{Q}) \cdot \sum_{j} e^{i\vec{Q}\vec{R}} \cdot \vec{S}_{j} \qquad f_{m} = \int_{Atom} \rho_{s}(\vec{R}) e^{i\vec{Q}\vec{R}} d^{3}R \qquad (2.27)$$

This includes the first important selection rule for magnetic neutron scattering, which states that only those components of the magnetic moment in the plane perpendicular to the scattering vector can be measured. The restriction to ions as only carrier of a magnetic moment allows to determine the quantum mechanical state, averaged over the thermodynamic ensemble (equation 2.27) and to introduce the magnetic form factor $f_m(\vec{Q})$ [2].

²⁰The magnetic moment of the nuclei is not considered, as the magnetic moment of a nucleus is extremely weak compared to the one of an electron due to it's larger mass.

Polarization and magnetic scattering If not only the intensity of scattered neutrons is measured, but their polarization \vec{P}_n (average direction of the neutron spin) as well, the cross section needs to be calculated including the spin-state change of the neutron. The vector character of the neutron magnetic moment allows the determination of the magnetization direction and can be used to identify different types of magnetic order. The general treatment of polarized neutron scattering by magnetic materials was derived by Blume and Maleev [26, 79] and incorporates the second important selection rule that magnetic moments $\vec{M}_{\perp} \perp \vec{P}_n$ change the polarization to the anti-parallel direction, so called spin-flip, while $\vec{M}_{\perp} \parallel \vec{P}_n$ keep the polarization direction. For scattering from single crystal samples, where $N = N(\vec{Q})$ denotes the nuclear scattering contribution, $\vec{M} = \vec{M}(\vec{Q})$ the magnetization and \vec{P}_n the polarization vector, one derives [26, 79, 108] (the spin-incoherent scattering intensity $I_{spin-inchoherent}$ is a constant background for some elements, which is the result of different scattering lengths for scattering of the neutrons with spin parallel and anti-parallel to the nuclear spin):

$$I = N^{\dagger} N + I_{spin-inchoherent} + \vec{M}_{\perp}^{\dagger} + \vec{P}_{n} \cdot \vec{M}_{\perp}^{\dagger} N + \vec{P}_{n} \cdot \vec{M}_{\perp} N^{\dagger} + i \vec{P}_{n} (\vec{M}_{\perp}^{\dagger} \times \vec{M}_{\perp})$$
 (2.28)

$$\vec{P}_{n}'I = \vec{P}_{n}(N^{\dagger}N - \frac{1}{3}I_{spin-incoherent}) + (\vec{P}_{n} \cdot \vec{M}_{\perp}^{\dagger})\vec{M}_{\perp} + (\vec{P}_{n} \cdot \vec{M}_{\perp})\vec{M}_{\perp}^{\dagger} - \vec{P}_{n}(\vec{M}_{\perp}^{\dagger}\vec{M}_{\perp})$$

$$+ iN(\vec{P}_{n} \times \vec{M}_{\perp}^{\dagger}) - iN^{\dagger}(\vec{P}_{n} \times \vec{M}_{\perp}) + N\vec{M}_{\perp}^{\dagger} + N^{\dagger}\vec{M}_{\perp} - i(\vec{M}_{\perp}^{\dagger} \times \vec{M}_{\perp})$$

$$(2.29)$$

2.4.5 X-ray scattering

Interaction of photons with matter

When an electromagnetic wave interacts with electrons due to the Coulomb force, the electron is accelerated in the electrical field of the radiation. The oscillating electron itself is a new source for radiation. The scattering cross-section for x-rays from a free electron is called Thomson scattering cross-section

$$\frac{d\sigma}{d\Omega_{Thomson}} = r_e^2 (\hat{e}_i \cdot \hat{e}_f)^2 \tag{2.30}$$

with the *classical electron radius* $r_e = \frac{e^2}{m_e c^2}$ and the electric polarization vectors of the incoming and outgoing wave $\hat{e}_{i/f}$, which are always perpendicular to the wave vectors $\vec{k}_{i/f}$. For the two linear polarizations σ and π or circular polarizations right (+) and left (-) the vectors are defined as the following:

$$\hat{e}_{i/f} = \underline{SP}_{i/f} \cdot \hat{e}_{\sigma/\pi/+/-} \qquad \underline{SP}_{i/f} = \left(\hat{e}_S, \hat{e}_{P,i/j}\right)^T \qquad \hat{e}_S = \widehat{k_i \times k_f} \qquad \hat{e}_{P,i/j} = \hat{k}_{i/f} \times \hat{e}_S$$

$$\hat{e}_{\sigma} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \hat{e}_{\pi} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \hat{e}_{+} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} \qquad \hat{e}_{-} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$$

For the electrons bound at an atom and high photon energies compared to the binding energy, the atomic form factor can be written as:

$$f_0(\vec{Q}) = \frac{r_e}{e} \int_V \rho_e(\vec{r}) e^{i\vec{Q}\cdot\vec{r}} d\vec{r}$$
 (2.31)

The form factor thus is proportional to the Fourier transform of the charge density ρ_e of the atom. For small scattering vectors the integral in equation 2.31 is proportional to the charge

number Z. As result, the contrast in x-ray reflectometry is only determined by the atom density and the elements in the system [9].

The electron density distribution is generally a quite complex function, as it consists of the spatial wave functions of all occupied orbitals. The form factors used to model intensities are tabulated values or empirical approximations of these values, as e.g. the expansion given in [4]:

$$f_0(\vec{Q}) \approx \sum_{j=1}^4 a_j e^{-b_j (2\pi \vec{Q})^2} + c$$
 (2.32)

Obviously the form factor drops for larger \vec{Q} , which means that for diffraction experiments with x-rays the intensity of the observed reflections will drop with \vec{Q} in contrast to neutron experiments²¹. When used in kinematic models the absorption can be introduced as an imaginary part of f. For linear polarized photons the polarization term in equation 2.30 leads to an additional factor of $\cos^2(2\Theta)$ for the intensity of the polarization in the scattering plane ²².

Another major difference to neutrons is the large absorption μ of x-rays penetrating a solid on the path \vec{x} , which defines the attenuation of the radiation $I = I_0 e^{-\mu |\vec{x}|}$. The absorption coefficient is related to the absorption cross-section σ_{abs} via

$$\mu = \rho_{atom}\sigma_{abs} = \rho_{atom}2r_0\lambda f_2(E) \tag{2.33}$$

and ranges from $\lesssim 100\,\mathrm{nm}$ for soft x-ray radiation to some $\,\mu\mathrm{m}$ for conventional copper x-ray tubes.

Resonance effects

For photon energies close to the binding energy of the electrons the classical treatment used for the Thomson-scattering no longer yields good results and a quantum mechanical treatment is needed. The interaction Hamiltonian for the radiation field with the electron can be written as

$$\mathcal{H}_{int} = -\frac{i\hbar e}{m}\vec{A}\cdot\vec{\nabla} + \frac{e^2}{2m}\vec{A}^2 \tag{2.34}$$

if the spin is neglected. The probability of transition²³ from initial to final state²⁴ ($|i\rangle \longmapsto |f\rangle$ with a possible intermediate state n with the lifetime τ_n) can be calculated via Fermi's Golden Rule using 2^{nd} -order time-dependent perturbation theory and the vector potential \vec{A} described with creation ($a_{\vec{k},u}^{\dagger}$) and annihilation ($a_{\vec{k},u}$) operators for the polarization state u and wave vector \vec{k} [1, 8, 11]:

$$W = \frac{2\pi}{\hbar} \left| \langle f | \mathcal{H}_{int} | i \rangle + \sum_{n} \frac{\langle f | \mathcal{H}_{int} | n \rangle \langle n | \mathcal{H}_{int} | i \rangle}{E_{n} - E_{i} \pm \hbar \omega + i \frac{\tau_{n}}{\hbar}} \right|^{2} \rho_{DOS}(\varepsilon_{f})$$
 (2.35)

$$\vec{A}(\vec{r},t) = \sum_{\vec{k},u} \hat{e}_u \sqrt{\frac{\hbar}{2\varepsilon_0 V \omega_{\vec{k}}}} \left(a_{\vec{k},u} e^{i(\vec{k}\vec{r} - \omega t)} + a_{\vec{k},u}^{\dagger} e^{-i(\vec{k}\vec{r} - \omega t)} \right)$$
(2.36)

²¹Neglecting the Debye-Waller factor, which is no property of the radiation.

 $^{^{22}\}pi$ -polarization in contrast to σ -polarization perpendicular to the scattering plane.

²³Corresponding to the scattering and absorption cross section.

²⁴The combined photon + electron states.

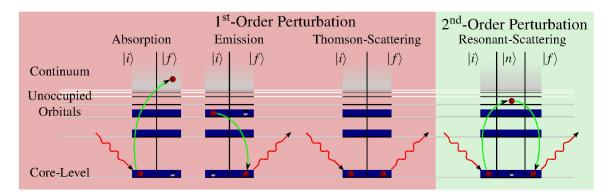


Figure 2.12: Interaction processes between photons and atoms in first and second order perturbation theory. The intermediate states j are only virtual excitations.

 ρ_{DOS} denotes the density of states. Combining equation 2.35, 2.36 and 2.34 describes four major effects:

Absorption/Stimulated Emission results from the $\vec{A} \cdot \vec{\nabla}$ -term in the first part of equation 2.35. As it is linear in the creation and annihilation operators, the transition from one state to a higher one can destroy a photon (absorption), while transitions from an excited state to a lower level (assumed there is an empty state) creates a photon (emission).

Thomson-Scattering the \vec{A}^2 part can destroy and create a photon, as it is quadratic in \vec{A} , but cannot change the state of the electron and thus corresponds to the simple charge scattering described above.

Resonant-Scattering can occur when the photon energy $\hbar\omega$ is close to the excitation energy of the intermediate state $E_n - E_i$, as the denominator in the second term of equation 2.35 approaches zero. Here also the $\vec{A} \cdot \vec{\nabla}$ part can destroy and create a photon.

The form factor including these effects (anomalous atomic scattering factor ASF) can be written as

$$f(E, \vec{Q}) = f_0(\vec{Q}) + f_1(E) + if_2(E)$$
(2.37)

including the already introduced form factor $|f_0|^2 = \frac{2\pi}{\hbar} \left| \langle f | \frac{e^2}{2m} \frac{\hbar}{2\varepsilon_0 V \omega} \hat{e}_i \hat{e}_f a a^\dagger | i \rangle \right|^2 \rho_{DOS}(\varepsilon_f) = 4r_e^2 |\hat{e}_i \hat{e}_f|^2 \rho_e$ and absorption coefficient f_2 from equation 2.33. The resonant scattering part f_1 is connected with the absorption through the Kramers-Kronig relations [74]:

$$f_1(E) = \frac{1}{\pi} \mathscr{P} \int_{-\infty}^{+\infty} \frac{E' f_2(E')}{E'^2 - E^2} dE'$$
 (2.38)

$$f_2(E) = \frac{2E}{\pi} \mathscr{P} \int_0^\infty \frac{E' f_1(E')}{E'^2 - E^2} dE'$$
 (2.39)

Absorption and x-ray magnetic circular dichroism We will now take a closer look at the absorption factor f_2 and it's relation to the electronic states of the atom. For this one needs to consider the first term in equation 2.35 with the annihilation part of the vector potential equation 2.36. As the electron wave function of the initial state (core electrons) is confined at the atom, the exponential part can be approximated by the linear terms of its Taylor series,

which includes a dipole approximation²⁵. One derives the transition rates:

$$W_{abs} = \frac{4\pi^2}{3c\hbar^2} \frac{e^2}{4\pi\epsilon_0} I_0 |\langle f|\vec{r}|i\rangle|^2$$
 (2.40)

As can be shown [8], the matrix elements can be replaced by the 3j-symbols of the angular momentum quantum numbers of the initial and final state (with the Wigner-Eckard theorem)

$$\langle j_f m_f | \vec{r}_{e_h} | j_i m_i \rangle = (-1)^{j_f - m_f} \begin{pmatrix} j_f & 1 & j_i \\ -m_f & e_h & m_i \end{pmatrix} \langle j_f | | \vec{r} | | j_i \rangle$$
 (2.41)

leading to selection rules for dipole transitions:

$$\Delta l = \pm 1$$
 $\Delta s = 0$ $\Delta j = 0, \pm 1$ $\Delta m = e_h$

Here e_h denotes the helicity of the used light²⁶. The spin does not change during the transition, as it doesn't appear in the Hamiltonian.

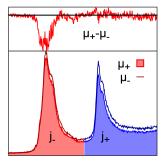
If circular polarized light is absorbed in a sample with an orbital magnetic moment \vec{M}_{orb} one derives for the projection of the total angular momentum:

$$m_f = \vec{j}_f \cdot \hat{M}_{orb} = m_i + \sigma(\hat{e}_h \cdot \hat{M}_{orb}) \tag{2.42}$$

The change is maximized for a magnetization axis pointing in the direction of the incident beam (which is the situation given in the selection rules above). As a result the absorption of left (+) and right (-) circular polarized light at an energy corresponding to the transition to a final state with finite angular magnetic moment is different. In the extreme case this so called x-ray magnetic circular dichroism (XMCD equation 2.43) for a transition, which has only empty $\Delta m = +1$ orbitals can become unity.

$$XMCD = \frac{\mu_{+} - \mu_{-}}{\mu_{+} + \mu_{-}} \tag{2.43}$$

Although the electron spin is not involved in the transition, the spin polarization of corresponding excited states changes the absorption probability, if the excited electron gets spin-polarized through spin-orbit coupling, leading to a spin dependent XMCD signal. Thus experiments measuring the absorption signal for j_+ and j_- ground states (like the one shown on the right measured at the Co L_{III} and L_{II} edges) can be used to determine the orbital and spin moment of a sample. The treatment of the theoretical foundation leads to the so called XMCD sum rules [29, 120, 121]:



²⁵The Tailor series $e^{i(\vec{k}\vec{r})} = 1 + i\vec{k}\cdot\vec{r} + ...$ for $\vec{k}\cdot\vec{r} \ll 1$ can be truncated after the linear term. As for the relation $\langle f|\vec{p}|i\rangle = i\frac{m}{\hbar}\omega_{\vec{k}}\langle f|\vec{r}|i\rangle$ equation 2.35 and equation 2.36 can be written in terms of $\langle f|-e\vec{r}|i\rangle$, which constitutes the electric dipole approximation [8].

²⁶For linear polarization the helicity is 0.

$$C_L \langle L_z \rangle = \frac{\int_{j_+ + J_-} d\omega (\mu_+ - \mu_-)}{I_{ges}}$$
 (2.44)

$$C_L \langle L_z \rangle = \frac{\int_{j_+ + J_-} d\omega(\mu_+ - \mu_-)}{I_{ges}}$$

$$C_S \langle S_z \rangle + C_T \langle T_z \rangle = \frac{\int_{j_+} d\omega(\mu_+ - \mu_-) - C_j \int_{j_-} d\omega(\mu_+ - \mu_-)}{I_{ges}}$$

$$(2.44)$$

$$I_{ges} = \frac{1}{n_h} \int_{j_+ + j_-} d\omega (\mu_+ + \mu_-)$$
 (2.46)

where the four constants C_x only depend on the orbital quantum numbers of the states involved in the transition and are omitted for readability. The scaling factor I_{ges} depends on the number of holes in the valence state $n_h = 4l + 2 - n$. The expectation value of the orbital moment $\langle L_z \rangle$ is, as expected, extracted from the XMCD signal of both transitions. On the other hand the weighted difference between the signals of both transitions can be used to derive the expectation values for the spin moment $\langle S_z \rangle$ and the magnetic dipole operator $\langle T_z \rangle$.

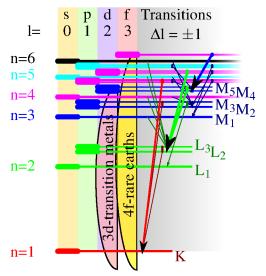


Figure 2.13: Atomic energy levels and possible dipole transitions. The important transitions for magnetic x-ray experiments are drawn bold.

M-edge and L-edge absorption of transition metals and rare earth ions For the specific cases of 3d transition metals and 4f rare earths the sum rules can specifically be derived to make it possible to calculate orbital and spin moments from an experiment. For the first group the L-edge absorption is used as the transition $2p \rightarrow 3d$ comprises the magnetic 3d levels. For most cases, where the environment is cubic (e.g. octahedral coordination), the $\langle T_7 \rangle$ term can be neglected, leading to simple sum rules [8, 29]:

$$\langle L_z \rangle = 2 \int_{L_{II}+L_{III}} d\omega (\mu_+ - \mu_-) / I_{ges}$$

$$\langle S_z \rangle = \frac{\frac{3}{2} \int_{L_{III}} d\omega (\mu_+ - \mu_-) - 3 \int_{L_{II}} d\omega (\mu_+ - \mu_-)}{I_{ges}}$$
(2.47)

Although the assumptions taken to derive these equations can lead to moderate deviations of the true expectation values (about 5-10% was found experimentally),

they constitute a very powerful tool to derive both quantities from an experiment without further theoretical treatment and knowledge of the specific compound. If the scaling factor I_{ges} can't be estimated precisely, the sum rules can still be used to determine the ratio of orbital to spin moment.

For the rare earth ions the M-edge transition $3d \rightarrow 4f$ directly probes the magnetic 4f orbitals. Here the dipole operator is not zero, but as the configuration follows Hund's rules, one can analytically derive both terms for a specific element together with the sum rules [29, 127]:

$$\langle T_z \rangle = \langle M \rangle (l - n + 1/2) \frac{3(S - J)^2 (S + J + 1)^2 - L(L + 1) [L(L + 1) + 2S(S + 1)2J(J + 1)]}{2(2l + 3)(2l - 1)(2L - 1)SJ(J + 1)}$$
(2.49)

$$\langle S_z \rangle = \langle M \rangle \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$
(2.50)

$$\langle L_z \rangle = 3 \int_{M_{IV} + M_V} d\omega (\mu_+ - \mu_-) / I_{ges}$$
 (2.51)

$$\frac{2}{3}\langle S_z\rangle + \frac{309}{144}\langle T_z\rangle = \left(\int_{M_V} d\omega(\mu_+ - \mu_-) - \frac{3}{2}\int_{M_{IV}} d\omega(\mu_+ - \mu_-)\right) / I_{ges}$$
 (2.52)

Resonant (magnetic) scattering

As already touched in the beginning of the discussion the second part of equation 2.35 gives rise to an additional scattering contribution at the excitation energy of an element. The coupling of the real part f_1 from the anomalous scattering cross section to the imaginary absorption part f_2 via the Kramers-Kronig relations gives rise to the anomalous charge scattering and can be derived as shown for the absorption. This effect can be used to enhance element specific features (namely charge and orbital order) which could not be measured otherwise because of the very small contrast of the corresponding atoms.

The interaction of photons with the magnetic moment can be incorporated only with a relativistic treatment. To extract the contribution of magnetic scattering qualitatively it is possible to only use relativistic corrections within the already introduced quantum mechanical treatment. In this framework the form factor can be derived as [27]:

$$f_0(\vec{Q}) = \left| f_0^{charge} - i \frac{\hbar \omega}{mc^2} f_0^{magnetic} \right|^2$$
 (2.53)

with

$$f_0^{magnetic} = 2r_e \left\langle f \left| e^{i\vec{Q}\vec{r}} \left(i \frac{(\vec{Q} \times \hat{p})}{\hbar k^2} \cdot \vec{e}_O + \frac{\hat{S} \cdot \vec{e}_S}{\hbar} \right) \right| i \right\rangle \rho_{DOS}(\varepsilon_f)$$
 (2.54)

$$\vec{e}_O = \hat{e}_i \times \hat{e}_f \qquad \vec{e}_S = \hat{e}_i \times \hat{e}_f - (\hat{k}_f \times \hat{e}_i) \times (\hat{k}_i \times \hat{e}_f) - (\hat{k}_f \cdot \hat{e}_i) \cdot (\hat{k}_i \times \hat{e}_f) + (\hat{k}_f \times \hat{e}_i)(\hat{k}_i \cdot \hat{e}_f)$$

As for the XMCD there are separate contributions from the orbital and spin magnetic moments. The intensity ratio of the magnetic to charge scattering can be estimated as the contributions mainly differ by the factor $\frac{\hbar\omega}{mc^2}$ and the density of the scatterers, which is the ratio between unpaired electrons and the full charge of the atom. Overall, for a typical magnetic material probed with x-ray radiation, this gives a ratio of

$$\frac{\sigma_{magnetic}}{\sigma_{charge}} \approx 4 \cdot 10^{-6} \frac{M}{M_{saturation}}.$$
 (2.55)

A much larger effect can be observed near a resonance, enhancing the magnetic scattering by several orders of magnitude using so called exchange scattering [54, 60]. Deriving the anoma-

lous scattering contribution yields:

$$\begin{split} f_{1}^{magnetic} &= \frac{3}{4} r_{e} \{ (\hat{e}_{i} \cdot \hat{e}_{f}) [F_{1}^{1} + F_{-1}^{1}] \\ &- i (\hat{e}_{i} \times \hat{e}_{f}) \cdot \hat{M} [F_{1}^{1} - F_{-1}^{1}] \\ &+ (\hat{e}_{i} \cdot \hat{M}) (\hat{e}_{f} \cdot \hat{M}) [2F_{0}^{1} - F_{1}^{1} - F_{-1}^{1}] \} \end{split} \tag{2.56}$$

$$F_{\Delta m}^{\Delta l} = \sum_{n} \frac{|\langle 0|D|n\rangle|^{2}}{E_{n} - E_{0} - \hbar \omega - i \Gamma_{n}/2}$$

with the resonator strengths $F_{\Delta m}^{\Delta l}$, which describes the transition probability. The first term is independent of the magnetization and describes the anomalous charge scattering. The second term depends on the direction of the magnetization and contains the matrix elements responsible for the XMCD effect. The polarization dependence shows, that it is possible for magnetic scattering to change the polarization direction of the photons. The last term, which is often neglected, depends on \hat{M} quadratically and provides an additional contribution to the magnetic scattering, which can be measured at a different position in reciprocal space (as squaring the magnetic moment for antiferromagnetic structures doubles the periodicity). The resonant exchange scattering (or x-ray resonant magnetic scattering XRMS) can be used to gather element specific information about (antiferro)magnetic order, as the resonant enhancement can lead to intensities comparable to off-resonant charge scattering ([46, 60, 132]) and is element specific (e.g. [77, 78, 115, 130]).

Chapter 3

Experimental Methods and Instruments

This chapter describes the methods and instruments used to investigate the samples as well as the basis of the numeric evaluation used for the experimental data. If not stated otherwise, all experimental data was treated, starting from the raw data, with the plot.py software [137], which was developed and expanded for this purpose. As the code is available under open source license and too extensive (\approx 40 000 lines), it won't be printed as part of this document.

3.1 SQUID magnetometry

For the magnetic characterization a Quantum Design MPMS SQUID magnetometer was used. It is equipped with a reciprocating sample orientation (RSO) option and has a resolution limited to $>10^{-12} \,\mathrm{A\cdot m^2}$. To produce as low background as possible, the samples were mounted inside a plastic straw and fixed with another straw, both much longer than the distance of the pickup coils (3 cm), leveling out their homogeneous magnetic moment (As shown in **figure 3.1**). For the zero field cooled measurements a flux gate sensor ultra low field option was used to decrease the remaining background field.

SQUID Coils

Figure 3.1: Sample mounting in the SQUID magnetometer

3.2 Atomic force microscopy (AFM)

Atomic force microscopy images were taken with an Agilent 5400 scanning probe instrument. The data were taken with a standard AC mode cantilever with \approx 4 nm tip size at \approx 250 kHz.

The images where post-processed with the included *PicoView* software using standard corrections¹ to remove piezo non-linearity effects, electronic noise and sample tilt.

¹Leveling, polynomial form removal, line correction.

3.3 Rutherford backscattering spectrometry (RBS)

High energy accelerated He⁺-ions can be used to probe the depth resolved elemental density by measuring the energy of the backscattered ions. In the Rutherford backscattering spectrometry (RBS) instrument of the Peter Grünberg Institute a Tandetron tandem accelerator is used to produce a 1.4 MeV ion flow [136]. When the ions get backscattered by atoms in the sample, the energy after collision only depends on the mass of the scattering nuclei and can easily be calculated from energy and momentum conservation equation 3.1. Ions penetrating deeper into the sample loose energy gradually because of the Coulomb interaction, which is generally very complicated to calculate. Therefore one uses an empirical model with an energy loss depending on the atom density of the material (equation 3.2). The energy spectrum of the backscattered particles can thus be modeled from the depth resolved atom density. Iterative fit of the model can yield the film thicknesses and elemental content for film thicknesses of several tenths of nm. When a single crystalline sample is aligned with a high symmetry axis directly parallel to the incident beam, all nuclei lie inside of shadow cones of the first few atom layers and other trajectories can penetrate the sample much deeper before getting scattered. This so called "Channeling" leads to a much lower backscattering intensity and can be used together with an arbitrary oriented measurement to probe the crystalline quality of the sample.

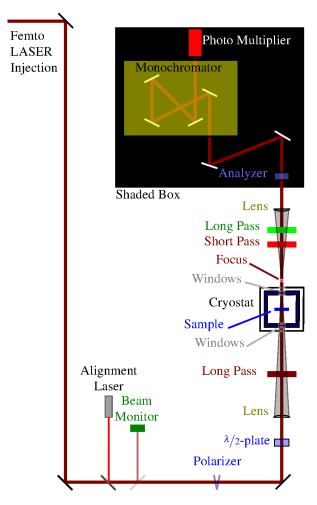


Figure 3.2: Setup used for Second Harmonic Generation

$$E_1 = E_0 \cdot \frac{m_{Atom} - m_{He^+}}{m_{Atom} + m_{He^+}}$$
 (3.1)

$$E_{1} = E_{0} \cdot \frac{m_{Atom} - m_{He^{+}}}{m_{Atom} + m_{He^{+}}}$$
 (3.1)
$$\frac{dE}{dx} = \rho_{Material} \cdot \sigma_{stop}$$
 (3.2)

3.4 Second harmonic generation (SHG)

A second harmonic generation experiment has been performed at the group of Prof. M. Fiebig of the Helmholtz Institute for Radiation and Nuclear Physics, Bonn. For very large light fields the linear response model, used to derive the absorption and scattering in section 2.4.5, does no longer hold and additional susceptibility terms need to be considered. This can lead to the generation of higher harmonic waves ($\omega = n \cdot \omega_0$) in the material. For the second harmonic these contributions can be written in terms of the susceptibility tensor $\chi^{(2)}$ as:

$$E_i(2\omega) = \chi_{ijk}^{(2)} E_j(\omega) E_k(\omega)$$
 (3.3)

Where i, j, k denote the direction of the linear polarization. This effect is a very sensitive probe of the symmetry properties in a crystal, as each tensor component can be forbidden, if a specific symmetry is present in the crystal. The selection rules for specific symmetries can be derived from all symmetry operation matrices $\sigma^{(i)}$ applicable for the system. For a centro-symmetric system ($\bar{1}$) all tensor components have to be zero as $\chi_{ijk} = \sigma^{(1)}_{ij} \sigma^{(1)}_{jq} \sigma^{(1)}_{kr} \chi_{pqr} = -1 \chi_{ijk}$ [14]. Therefore this method can be used to probe ferroelectricity² and magnetism [105], which makes it a valuable probe for complex multiferroic materials (e.g. to investigate coupled domains [41]).

The SHG setup used for the experiment consists of a femto second laser (\approx 100 fs) tunable between 1200 nm and 1450 nm with a 1 kHz repetition rate. The beam is polarized vertically and a $\lambda/2$ -plate can be used to turn the polarization. After the $\lambda/2$ -plate a lens focuses the light onto a spot some cm behind the sample (to prevent too much heating of the measured area) and the SHG light is collected with a confocal lens after the sample. The collected signal is analyzed with a turnable polarizer and monochromized to the half incident wavelength before the intensity is measured with a photo multiplier. The sample was mounted between two electric poles inside a cryostat with front and back windows. To get rid of any SHG contamination from the optical system, the beam is filtered with a long pass (>1000 nm) directly before and with a long (>500 nm to filter third harmonics) and short pass (<1000 nm to filter the direct beam and protect the optics) filter directly behind the cryostat.

3.5 Scattering and resonant x-ray techniques

Several x-ray and neutron techniques were used to investigate the sample properties. The theoretical foundation to this experiments has been given in **section 2.4.5** and **section 2.4.4**. The following general definitions will be used in the subsequent sections:

X-ray polarization The photon polarization of linear polarized x-rays is denoted as σ or π for incident polarization perpendicular or parallel to the scattering plane, respectively. The scattered beam polarization is called σ' and π' accordingly. Circular polarization is marked as + for right-hand and - for left-hand polarization.

Neutron polarization The two neutron spin directions parallel and anti-parallel to the guide field are denoted as \uparrow and \downarrow , respectively. As the effect of imperfect polarization is always present, the corrected or theoretic spin-up and spin-down intensities are defined as I_+ , I_- in contrast to the measured I_{\uparrow} and I_{\downarrow} .

Reciprocal space directions For most experiments the absorption of the substrate blocks the beam, so that the only possible scattering geometry is in reflection (Bragg-geometry). For this it is convenient to define a common right handed coordinate frame of reciprocal space directions, where one base vector lies in the out-of-plane (surface normal) direction (\hat{Q}_z) , one base vector perpendicular to the scattering plane (\hat{Q}_y) and the last one in beam direction perpendicular to both (\hat{Q}_x) .

Real space propagations are defined accordingly as x,y and z.

²As it requires a broken inversion symmetry.

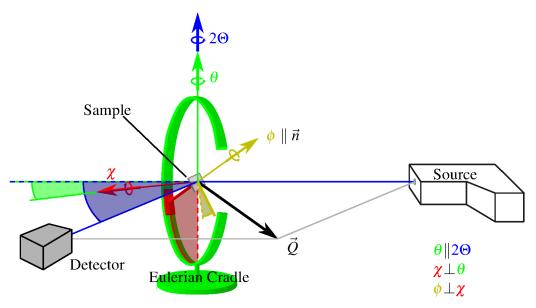


Figure 3.3: Angles and geometry of a 4-circle diffractometer.

Angles To define the reciprocal space directions, the orientation of the sample and the detector is of importance. Here we define the angle between the incident beam and the detector arm as 2Θ . The angle, which turns the sample stage around the same axis, is called θ . The axis perpendicular and attached to θ is χ , which itself holds the ϕ angle. A sketch of this geometry is given in **figure 3.3**. The two additional axis of a 6-circle diffractometer have not been used and are thus ignored.

3.5.1 X-ray reflectometry (XRR)

The investigation of layer thickness and roughness has been performed using a Bruker D8 reflectometer sketched in **figure 3.4**. The instrument is equipped with a Copper tube with single Göbel mirror monochromator, which additionally collimates the beam. The detector arm uses another Göbel mirror to focus the scattered beam on the resolution slit S4. The setup allows for a high resolution, high intensity measurement in the Q_z -direction up to a 2 Θ angle of about 110°. The layer thickness and roughness values were deduced by fitting the data using a Parratt formalism as described in **section 2.4.3**. As the investigated oxide films can not be simulated with the standard models (homogeneous layers with gaussian roughness), the Parratt implementation of the *GenX* program [25] was used and further developed to reflect the special needs (**section 3.5.7**).

3.5.2 X-ray diffraction (XRD)

The crystalline structure of the samples was probed using x-ray diffraction. For the out-ofplane measurements the reflectivity setup from **section 3.5.1** was used, because of it's superior resolution and intensity. For reflections with in-plane component the reflectivity setup is not suitable. The lattice parameters and reciprocal space maps where measured using a Huber 4circle diffractometer with a Copper tube equipped with double Göbel mirror monochromator

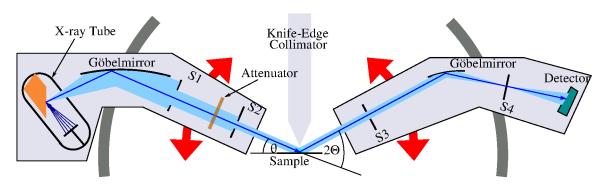


Figure 3.4: Sketch of the Bruker D8 x-ray reflectometer. The sample stage angle is fixed horizontally and the tube and detector can be moved.

and xyz-translation stage. The beam size is $\approx 0.5 \times 0.5 \text{ mm}^2$ and the maximum scattering angle $2\Theta = 155^\circ$. The SPEC instrument software was used to calculate the lattice parameters from a set of collected reflections. As the high degree of freedom of the 4-circle allows to measure a couple of symmetry equivalent reflections³ in Bragg geometry, more then 20 reflections were used to fit the lattice parameters. The general 4-circle diffraction geometry is shown in **figure 3.3**.

3.5.3 Resonant x-ray diffraction

Resonant x-ray experiments were performed at the beamline P09 of the PETRA-III source. The beamline uses a 2 m spectroscopy undulator as source and monochromizes the beam with a high heat load Si double monochromator and a high resolution Bartels monochromator. The incidence polarization can be turned from horizontal to vertical, using diamond quarter and half wave plates. The scattered beam can be analyzed with a 90° reflection from a suitable analyzer crystal, which can be turned around the detector axis to measure any polarization direction. The beam focusing mirrors generate a $145x50\,\mu\text{m}^2$ spot at the sample position and the available energy range is 2.4 - $24\,\text{keV}$. The sample can be mounted inside a closed cycle cryostat on a 6-circle diffractometer including xyz-translation.

Soft x-ray resonant magnetic scattering was done at the XUV-diffractometer end station of the UE46-PGM-1 beamline of BESSY II. The pole pieces of the 3.2 m permanent magnet undulator can be shifted with respect to each other to achieve linear polarization in any direction as well as circular polarization. With a plane grating monochromator the energy range from 121 up to 2000 eV is covered. Two samples are mounted with a copper cylinder which is fixed on the copper cool finger of the cryostat inside the UHV experimental chamber. To reach temperatures below 10 K an additional cooling shield can be pulled down around the sample area during operation. The absorption in the sample can be measured as total electron yield (TEY) by recording the current into the sample. The intensity is measured by a photo diode with $10x10 \text{ mm}^2$ sensitive area behind a $(1x10 \text{ mm}^2 \text{ in our case})$ slit, which is read out using a *Keithley* amplifier with variable range depending on the signal strengths. As the noise of the measured signal (typical $\approx 0.5\%$) depends on the amplifier range set during signal acquisition, it would only be possible to know the errors on the intensity, if the range for each point was known, too. This range is not written to the datafile (or fixed at a specific value), so the error can only be estimated from

³As (hkl),(h-kl),(hk-l) and (h-k-l) (for orthorhombic systems).

the scatter of the signal. Besides the θ and 2Θ motors the sample can be moved in x-, y- and z-direction and turned inside the holder by hand around the ϕ axis.

3.5.4 X-ray magnetic circular dichroism (XMCD)

Element specific magnetization has been measured at the 6.5 T end-station 4-ID-C of the Advanced Photon Source (APS), Argonne. The beamline has an electromagnetic undulator, which makes it possible to switch between left and right circular polarized light with 0.5 Hz. The available energy range for circular polarized light is $500\text{-}2800\,\text{eV}$, the beam size at the sample position is $0.3\text{x}0.1\,\text{mm}^2$ and the magnetic field can be applied in the beam direction. The absorption can be measured with TEY and a silicon based SII-Vortex fluorescence detector, which can be set to a defined energy window below the incident energy, to measure total fluorescence yield (TFY) at 2Θ =90°. Several samples can be mounted simultaneous on the cool finger of the cryostat.

3.5.5 Polarized neutron diffraction (PND)

Polarized neutron diffraction was used to measure antiferromagnetic order in the samples. For these experiments the two multi detector instruments DNS@FRM II and D7@ILL were used, which consist of the same basic components. The incident neutrons coming from a single crystal monochromator are purged of $\lambda/2$ contaminations with a Be-filter, polarized with a super mirror bender and pass a flipper. The sample is mounted inside the cryostat and can be turned the full range in θ . The scattered neutrons are detected within a large 2Θ region by a multi detector bank, where each detector is placed behind a bender polarization analyzer. For the DNS instrument the bank covers 125° with 25 detectors at ≈ 80 cm distance to the sample, at D7 132 detectors in a larger distance cover 140°. The incident beam has a divergence of $\Delta\theta \approx 2.5^{\circ}$ and a wavelength spread of $\frac{\Delta\lambda}{\lambda} \approx 1.5\%$. The background is subtracted by an empty sample holder measurement and the detector sensitivity is corrected using a measurement from an incoherent scatterer⁴ to scale the intensities of each detector. A correction of the imperfect polarization of the instrument, generally used for such measurement, was not applied as it did not yield good results. The mosaicity of the substrate and film reflections is much smaller than the beam divergence, which leads to the fact, that only a part (generally not well defined) of the incident beam is scattered. As the polarization measured with a spin incoherent scattering sample, normally used for the polarization correction, only gives an average polarization value over the whole beam, the correction is not possible.

3.5.6 Polarized neutron reflectometry (PNR)

Polarized neutron reflectometry has been performed at the TREFF instrument of FRM II and D17 of ILL. Both instruments have two variable resolution slits before the sample and a 2d-detector with analyzer super-mirrors on the 2Θ scattering arm. At TREFF a pyrolytic graphite monochromator and a supermirror polarizer define the incoming neutron beam, while at D17 a magnetic multilayer monochromator defines polarization and wavelength. A flipper before

⁴Vanadium in this case.

and after the sample allows to measure all four spin channels $I_{\uparrow\uparrow},I_{\downarrow\downarrow},I_{\uparrow\downarrow},I_{\downarrow\uparrow}$. The samples are mounted in a cryomagnet with the field in the scattering plane. The asymmetric wave length contributions of the multilayer monochromator of D17 has been characterized polarization dependent using the time-of-flight option of the instrument. For TREFF $\frac{\Delta\lambda}{\lambda}\approx 1.5\%$ does not limit the \vec{Q} -resolution and thus has no impact on the measurement.

The modeling of data is similar to x-ray reflectivity done with a Parratt formalism, including the magnetic scattering length density [103]. Thus each scattering channel can be simulated separately comprising the imperfect polarization of both flippers, polarizer and analyzer.

3.5.7 Modeling of reflectivity and diffraction data

Implementation of kinematic multilayer diffraction simulation

For the diffraction measurements a mathematical model described by Fullerton et al. [43] (see section 2.4.2) was implemented in an object oriented python module as plug-in to the plot.py program. The model describes a system of M repetitions of two crystal layers A and B (depicted in figure 2.10). Each layer can be described by averaged quantities and, in this case, is a Laue function multiplied by the structure factor calculated from the unit cell. Each layer has an average thickness of N unit cells and a thickness variation δN , which is applied by averaging over integer variations of the layer thickness. The layers are separated by a region without defined crystal structure c. After calculating the intensity for the crystal multilayer it is corrected for the beam footprint, which defines the scattering volume of the layers. Substrate peaks are added as Lorentzian functions and the polarization factor is corrected afterwards. An optional resolution can be applied by convolution with a Gaussian. The written code can be found in section B.2. For the form factors used for this model and the simulation of the single layers the expansion given in section 2.4.5 was used.

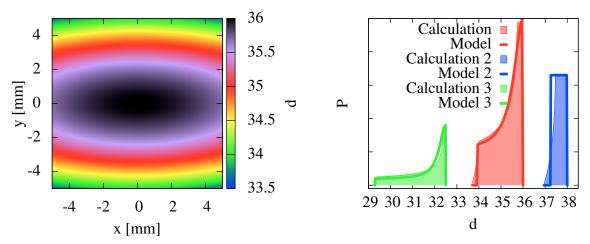
Reflectivity model for oxide samples

To refine the neutron and x-ray reflectivity data an expansion to a standard model was used. In addition to the default layer system, which includes the scattering power and a Gaussian roughness on the surface of each layer, some additional properties of the oxide systems needed to be taken into account.

With the following modifications the data could be modeled very well (see e.g. section 5.1.2).

Surface Very smooth surfaces can't be refined by only using a Gaussian roughness, as oxide layers tend to grow in steps or islands. PLD films have additional droplets on the surface, which also lead to non Gaussian roughnesses. To model non Gaussian roughnesses one or more surface layers with the same atomic scattering powers as the uppermost layer and less density were used.

Thickness inhomogeneity Large samples (e.g. 1 cm²) showed a thickness variation from the center to the edge regions, especially for the PLD samples. As this variation is not on the scale of the coherence lengths of the radiation, it cannot be modeled by increasing the roughness parameter, but intensities have to be averaged. The distribution of the



- (a) Simulation of the thickness of a film deposited with PLD with line focus on a $10x10\,\mathrm{mm}^2$ substrate. For the plasma coil deposition function $d(x,y) = k_x^2 k_y^2 (1 + k_x^2 \cdot \tan^2(\theta_x))(1 + k_y^2 \cdot \tan^2(\theta_y)), k_x = 1.5$ and $k_y = 4$ was chosen.
- (b) Thickness distribution P(d) calculated from the model in (a) with different values of the inhomogeneity parameters k_x and k_y . For the corresponding model functions (see text) the parameters γ , w and f raction were fit to the numeric calculation.

Figure 3.5: Visualization of the model used for the thickness inhomogeneity in the reflectivity model. As the real deposition height distribution function is not known a combination of a step function and a heave side Lorentzian was used to weight the simulated thicknesses of the layers.

thicknesses is not an easy analytic function and depends on many unknown parameters. For PLD the distribution can be analytically calculated for deposition on substrates at a large distance to the target in vacuum [19] (which is only a rough estimate of the situation present for the samples investigated here) with a product of two $k_{x/y}^2 \cdot (1 + k_{x/y}^2 \cdot \tan^2(\theta_{x/y}))$ functions, which has been done in **figure 3.5a**. As the parameters governing this height profile are system dependent and generally unknown the distribution was modeled with the sum of a heave side Lorentzian function and a plateau. As can be seen in the example **figure 3.5b**, this gives a relatively good agreement with different possible distributions calculated for three sets of $k_{x/y}$ parameters. Thus the height variation can be described with only three parameters: The width of the Lorentzian γ , the width of the plateau region w and the fraction of both contributions.

Multilayer roughness gradient The general multilayer model, which only repeats the same layers, was changed to allow a linear increase in roughness from the bottom to the top layers, as has to be expected for a real system.

D17 Resolution For the polarized neutron measurements from the D17 instrument a asymmetric shaped resolution function was implemented to reflect the wavelength distribution from the multilayer monochromator, measured with the time-of-flight option.

The code implementation of this model was used with the software *GenX* and can be found in section B.3.

Chapter 4

Sample Preparation and Description

All samples under investigation consist of epitaxial ABO₃ layers deposited on single crystalline YAlO₃ (100) and GdScO₃ (110) substrates. Except for the TbMnO₃ single layers created with sputter deposition, all samples were grown with pulsed laser deposition (PLD) by Jürgen Schubert of the PGI-9 of the Jülich research center.

4.1 Thin-film deposition methods used

4.1.1 Pulsed laser deposition

The material deposition in PLD is achieved by focusing a pulsed laser beam on target material of the composition desired for the film. The deposited energy leads to expeditious evaporation of material and plasma formation. For the deposition of oxide films the process is performed under an oxygen atmosphere of 10^{-3} -1 mbar. The used apparatus works with cylindrical targets, which are turned during deposition to yield a homogeneous ablation. The excimer laser has a line focus along the target axis of 1.5 cm, an energy density of $5 \, \text{J/cm}^2$ at 10 Hz and the distance from the target to the sample heater is about 5 cm. A detailed description of the setup can be found in [136].

The targets used for the deposited films were created with a solid state reaction from the corresponding unitary oxides. The primary materials (e.g. Tb_4O_7 and MnO_2 powder) were calcined for 6 h at $1100\,^{\circ}$ C, than compressed for 10 min at 0.13 GPa and subsequently sintered for additional 6 h at $1300\,^{\circ}$ C.

The main benefits of this method are high deposition rates, applicability to almost any chemical composition where stoichiometric powder (and thus target material) is available and the possibility to work in high oxygen pressure to assure fully oxidized films. These benefits render the method especially suitable to create multilayer structures of complex oxides.

4.1.2 Oxide sputter deposition

Additionally to PLD, thin films of TbMnO₃ have been created with sputter deposition (**figure 4.1**). For this method the target is a flat disk of 5 cm diameter, connected to a radio frequency generator, which excites a plasma below the target surface. The plasma ions are accelerated onto the target by the electric field and sputter off the material. The sample is placed in ≈ 2 cm

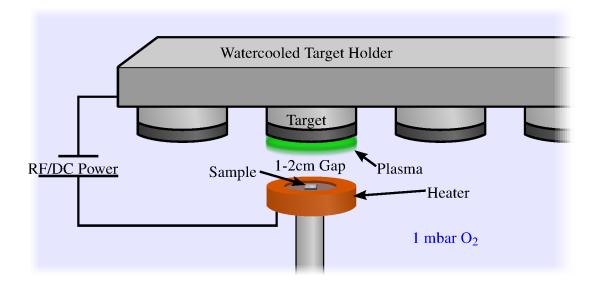


Figure 4.1: Schematics of the sputter deposition technique

distance below the target. In contrast to conventional sputtering, which is done in e.g. Argon atmosphere of about 10^{-4} mbar, the oxide sputtering is done with a oxygen pressure of up to several mbar. This leads to a much lower deposition rate and has the benefit of a very low mean free path, which inhibits high energy oxygen ions from damaging the sample surface [96]. The large target area makes it possible to create very homogeneous film thicknesses for samples up to $1 \, \mathrm{cm}^2$.

The target used for the deposition was bought from *Lesker*. To fix the targets to the holder and obtain a good electronic contact, the targets need to be "bonded". In this process the backside of the target is roughened and soldered to a metallic target holder.

4.2 Samples under investigation

The following sections will summarize the samples under investigation, their deposition parameters, relevant bulk properties and possible influences when depositing the materials in thin films and multilayers.

4.2.1 TbMnO₃/DyMnO₃-single layers on YAlO₃

As described in **section 2.2.2** TbMnO₃ and DyMnO₃ bulk crystals exhibit ferroelectricity as result of a complex magnetic order, which leads to a strong coupling between magnetism and ferroelectricity. Especially TbMnO₃ is a prototype compound for spiral multiferroics and therefore well studied. At room temperature the compounds are paraelectric and paramagnetic. At temperatures below $T_{N_{SDW}} = 41 \, \text{K} (\text{TbMnO}_3)/39 \, \text{K} (\text{DyMnO}_3)$ the Mn moments order in the \vec{b} -direction as sinusodial spin density wave (SDW) with propagation vector $(0 \, \tau_{Mn} \, 1)$. Below $T_{N_{SDW}} \, \tau_{Mn}$ changes until it almost locks-in at $T_{N_C} = T_{C_{FE}} = 28 \, \text{K} (\text{TbMnO}_3)/18 \, \text{K} (\text{DyMnO}_3)$ where the magnetic structure changes to a cycloidal with magnetic moments in the bc-plane.

At the same temperature a ferroelectric polarization in \vec{c} -direction emerges. The paramagnetic Tb/Dy moments show a strong coupling to the Mn order evidenced by resonant magnetic scattering [97, 107, 130] on the Tb/Dy-edge. Below $T_{N_{Tb/Dy}} = 7 \, \text{K}(\text{TbMnO}_3)/10 \, \text{K}(\text{DyMnO}_3)$ the rare earth moments order with a different wave vector of $(0 \, \tau_{Tb/Dy} \, 1)$ collinearily in the anisotropy direction, which lies in the ab-plane. The complete magnetoelectric phase diagram of TbMnO₃ and DyMnO₃ has been published by Kimura [72] with later refinements from other authors [20, 114].

Thin films of orthorhombic TbMnO₃ have already been studied on SrTiO₃ substrates [33, 34, 80, 102, 129] for their macroscopic properties and strain relaxation. Anomalous ferromagnetism has been found in these films [73], which contradicts the cycloidal order, that leads to the ferroelectricity. Unfortunately these films exhibited 90° domains, as the SrTiO₃ surface has a square crystal lattice and thus this is no well defined system especially for studies of direction dependent properties.

The TbMnO₃/DyMnO₃ films investigated in this work were deposited on orthorhombic YAlO₃ (100) substrates, which has a rectangular surface lattice structure, which corresponds to the TbMnO₃/DyMnO₃ ac-plane. This leads to \vec{b} as the only preferable growth direction [47] with a low strain of $\approx 0.5\%$. Therefore it is possible to investigate single crystalline films for the influence of finite size or interface effects in a well defined system without a strong influence of the substrate. Various film thicknesses of TbMnO₃ and DyMnO₃ have been produced between 2 nm and 400 nm using PLD and for TbMnO₃ additional sputter films were produced for comparison. The films were deposited at $\approx 700\,^{\circ}\text{C}$ with an oxygen pressure of $5\cdot 10^{-3}$ mbar for PLD and 3 mbar for sputtering.

The films will be referred to as \mathbb{T}_x^{PLD} , \mathbb{T}_x^{SD} and \mathbb{D}_x for PLD TbMnO₃, sputtered TbMnO₃ and PLD DyMnO₃ films of x nm thickness, respectively.

4.2.2 LaCoO₃-single layers on YAlO₃

To investigate the coupling between adjacent magnetic materials to the spiral magnetism in TbMnO₃, LaCoO₃ was chosen in the multilayers described in **section 4.2.3**. LaCoO₃ has a perovskite structure and as described in **section 2.3.4** gets ferromagnetic under strain with a transition temperature close to $T_{N_{SDW}}$ of TbMnO₃. To make sure, that the effect is present in the used LaCoO₃ layers on YalO₃ substrates, a single layer (with the emblem L₃₅) has been investigated deposited by PLD, too. The deposition parameters have been chosen equal to those of the TbMnO₃ layers. The layer thickness of 35 nm yields a reasonable magnetic moment for SQUID investigations.

4.2.3 [TbMnO₃-LaCoO₃]-multilayers on YAIO₃

The effect of exchange coupling of the antiferromagnetic $TbMnO_3$ order to adjacent ferromagnetic $LaCoO_3$ films has been studied with multilayers, consisting of $\approx 10 \text{ nm } TbMnO_3$ and $2 \text{ nm } LaCoO_3$ bilayers. The $TbMnO_3$ thickness was chosen to comprise approximately 3 propagations of the magnetic spiral, separated only by a few unit cells of the ferromagnetic interlayer.

The deposition parameters for PLD were the same as for the single layers and most investigations were performed on multilayers with 20 periods. As the sample consists of 18 UC TbMnO₃ and 3 UC LaCoO₃ the it will be referred to as $\mathbb{TL}^{18/3}_{\times 20}$.

4.2.4 [EuTiO₃-BaTiO₃]-multilayers on GdScO₃

Similar to the [TbMnO₃-LaCoO₃]-multilayers, the magnetic exchange interaction at the EuTiO₃ and BaTiO₃ interface has been investigated with different multilayers. While strained EuTiO₃ layers can become ferromagnetic (**section 2.3.4**), the alloy Eu_{0.5}Ba_{0.5}TiO₃ tends to show no magnetic order at all, up to very low temperatures [104]. The absence of magnetic order together with a large magnetic moment on Eu and a strong magnetoelectric effect allows the material to be used as a very sensitive probe in the search for an electric dipole moment of the electron [104, 116], an important quantity in the field of particle physics. In a multilayer structure the effect of strain and magnetic exchange interaction could lead to either ferromagnetic EuTiO₃ layers in an artificial multiferroic structure or a similar behavior as in the alloy compound.

For a systematic investigation, multilayers with the composition EuTiO₃/BaTiO₃ 1 nm/1 nm, 1.5 nm/2.5 nm, 2 nm/4 nm and 5 nm/4 nm (labeled $\mathbb{EB}_{\times 20}^{x/y}$ for 20 repetitions with x UC EuTiO₃ and y UC BaTiO₃) have been produced with PLD, using the parameters (similar to the TbMnO₃ system but with 650 °C substrate temperature) and targets already used for earlier studies of Jürgen Schubert. GdScO₃ (1 1 0) was selected as substrate, as the lattice constant (3.97 Å) is in between of bulk EuTiO₃ (3.9 Å) and BaTiO₃ (4.0 Å) which results in a strain of $\approx 1.2\%^1$.

¹An epitaxial system of thin layers with different lattice constants the average strain between the substrate and the multilayer can be calculated from the substrate lattice parameters and the thickness weighted mean of the component materials.

Chapter 5

Experiments I: TbMnO₃ and DyMnO₃ Single Layers

To investigate the influence of finite size on the multiferroicity originating from spiral magnetic structures, RMnO₃ thin films have been examined. In the almost unstrained system with YAlO₃ substrates this study allows the comparison to other work on TbMnO₃ thin films, where ferromagnetic order has been observed as discussed in **section 4.2.1**. The multiferroic behavior of TbMnO₃ and DyMnO₃ has been studied with a variety of methods for different film thicknesses deposited by PLD and sputtering. The main parameters of the investigated films are summed up below. (All parameters determined for the samples are collected in the appendix as **table**

ID	A[mm ²]	d[nm]	δd[%]	σ[nm]	$\delta\theta_{200}[^{\circ}]$	$T_{N_{\mathrm{SDW}}}$	T_{N_C}	$T_{N_{Tb}}$	Method
$\mathbb{T}_2^{ ext{PLD}}$	10 × 10	2.24(5)	20.(15)	0.37(1)	0.010(3)	21 K			PLD
$\mathbb{T}_5^{ ext{PLD}}$	10×10	4.99(3)	7.8(5)	0.41(1)	0.015(1)				PLD
$\mathbb{T}_9^{\mathrm{PLD}}$	10×10	9.2(1)	1.3(5)	0.50(1)	0.011(1)	36 K	-	15 K	PLD
$\mathbb{T}^{ ext{PLD}}_{18}$	10×10	17.6(1)	2.3(5)	0.55(1)	0.012(1)	36 K	-	15 K	PLD
$\mathbb{T}^{ ext{PLD}*}_{54}$	10×10	54.4(2)	4.2(5)	1.09(3)	0.013(1)				PLD
$\mathbb{T}^{ ext{PLD}}_{200}$	10×10	200.(50)			0.017(1)	35*/41 K	-	15 K *	PLD
$\mathbb{T}_2^{\mathrm{SD}}$	5 × 5	2.01(4)		0.63(5)	0.020(1)				Sputter
$\mathbb{T}_6^{ ext{SD}}$	5 × 5	5.88(3)	1.0(2)	0.85(1)	0.015(1)	39 K	23 K		Sputter
$\mathbb{T}_{11}^{ ext{SD}}$	5 × 5	10.6(15)	1.2(4)	0.56(2)	0.008(1)	41 K	27.5 K	10.5 K	Sputter
$\mathbb{T}^{\mathrm{SD}}_{16}$	10×10	15.9(1)	0.7(4)	0.37(1)	0.011(1)	41.5 K		10 K	Sputter
$\mathbb{T}^{\mathrm{SD}}_{20}$	5 × 5	19.62(3)	0.2(2)	0.84(9)	0.013(1)	43 K	29 K		Sputter
$\mathbb{T}^{ ext{SD}}_{31}$	10×10	30.9(2)	0.6(4)	0.48(1)	0.010(1)	39 K		10 K	Sputter
$\mathbb{T}^{\mathrm{SD}}_{46}$	5 × 5	46.2(3)	2.4(5)	0.88(9)	0.018(1)				Sputter
$\mathbb{T}^{ ext{SD}}_{100}$	5 × 5	100.7(2)	0.4(1)	1.45(2)		42 K	27 K	10 K	Sputter
$\mathbb{T}^{\mathrm{SD}}_{400}$	5 × 5	400.(50)				43 K	28 K	9 K	Sputter
\mathbb{D}_2	10×10	2.07(3)	11.(5)	0.60(3)	0.013(1)				PLD
\mathbb{D}_{5}	10×10	5.30(4)	5.(2)	0.64(4)	0.017(1)				PLD
\mathbb{D}_{10}	10×10	9.6(1)	13.(5)	0.47(2)	0.013(1)	35 K	-	15 K	PLD
\mathbb{D}_{20}	10×10	20.(2)	10.(3)	0.64(4)	0.010(1)	35 K	-	15 K	PLD
\mathbb{D}_{50}	10×10	50.(5)							PLD
\mathbb{D}_{100}	10 × 10	100.(10)		2.0(5)					PLD

Table 5.1: TbMnO₃ and DyMnO₃ single layers used for the experiments with some important parameters. Parameters obtained by reflectometry, diffraction, SQUID, SHG and resonant scattering are colored accordingly. "*" denotes off-stoichiometric samples, empty fields are not measured, "-" represents a property not present in this sample.

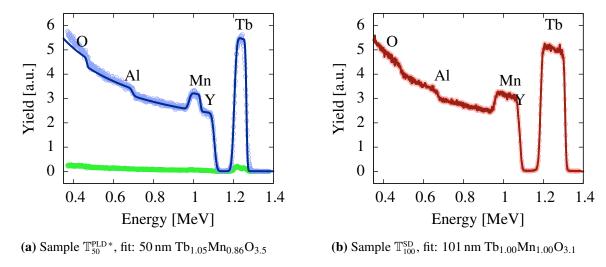


Figure 5.1: RBS measurements and fit including channeling. Channeling (green) aligned to a high symmetry axis of the crystal yields a drop to 5% with respect to random orientation of the crystal axis (data (points) and simulation (line)).

A.1 and **table A.2**.) The samples used to improve the deposition parameters and produced with incorrect stoichiometry were omitted.

5.1 Structural characterization

A very important feature related to the quality of epitaxial layers is the crystalline and surface structure as well as the chemical composition. Layer by layer growth will yield low surface roughnesses and a high crystalline quality. Together with the stoichiometry this is a prerequisite to study a well defined system for e.g. magnetism. The following sections sum up the data measured with x-ray reflectivity, x-ray diffraction, RBS and AFM.

5.1.1 Stoichiometry of the films

Layers with at least 50 nm thickness have been characterized by Rutherford backscattering spectrometry¹. The method gives a rough estimate of the layer thickness of $\approx 10\%$ and can be used to measure the elemental content of a layer. A typical RBS spectrum recorded for \mathbb{T}_{50}^{PLD*} is shown in **figure 5.1a** together with it's simulation. The large drop in the channeling direction is a sign for a good crystal quality. The method was used to determine the thickness of films with more than 100 nm. From measurements on films deposited on silicon substrates, the first target created for TbMnO₃ was found to produce layers with 10-15% Mn deficiency. Therefore a second target with additional Mn content was created, yielding stoichiometric samples (with an accuracy of $\approx 2\%$). Samples produced with the old target are marked with a "*".

¹The experiments were performed by Willi Zander and analyzed by Jürgen Schubert.

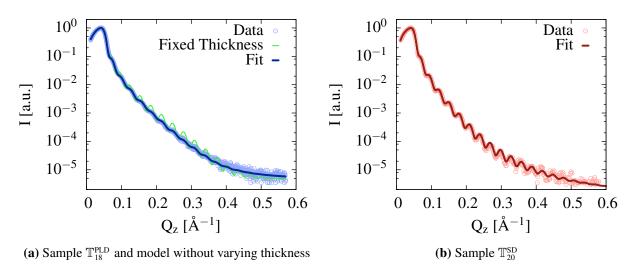


Figure 5.2: X-ray reflectivity data from Huber D8 together with simulation (enlarged in section A.2)

5.1.2 Film thickness and roughness

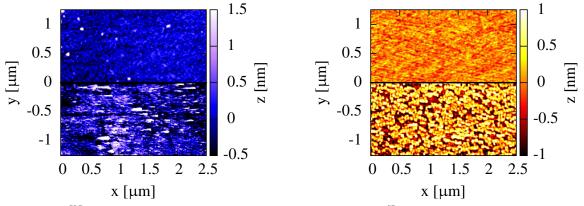
The layer thicknesses for films of up to $\approx 100\,\mathrm{nm}$ could be measured with x-ray reflectivity (XRR). The data was simulated according to the model of section 3.5.7, using scattering powers calculated from the crystal structure and tabulated elemental scattering, to obtain thickness d, roughness σ and overall thickness inhomogeneity δ d. The interface roughness between substrate and film was found to be quite low (1-2.5 Å), justifying to abdicate any pretreatment of the substrate surface before growth. For most samples it was not possible to simulate the data with a simple single layer model. Although the Kiesing fringes fitted quite well, the intensity drop of the simulation did not follow the measured curve. Together with the surface structure measured with AFM (section 5.1.3) this can be explained by a non Gaussian height distribution of the roughness. As the mathematic description of the asymmetric roughness is not fully developed yet, the derived roughness values in the model are overestimated.

Figure 5.2 compares the measurements of \mathbb{T}^{PLD}_{18} and \mathbb{T}^{SD}_{20} . The best fit of a model without thickness inhomogeneity shows a strong deviation from the measured data in **figure 5.2a**. The other fits used to extract the film parameters are presented in **section A.2**. As can be seen, the oscillations in the data of the PLD sample have a lower contrast and die out more quickly than in the case of the sputter sample, which is a sign for a larger thickness inhomogeneity. This has been found to be the case for most of the PLD samples, but sputter films created later showed increased inhomogeneity due to problems during the bonding process², too.

5.1.3 Surface structure

Selected PLD and sputter TbMnO₃ samples, which needed extraordinary high and low asymmetric shaped roughnesses for the reflectivity simulations, have been investigated for their surface structure with AFM. The resulting images are shown in **figure 5.3**. The root mean square (rms) roughness calculated from these measurements is comparable to the reflectivity results

²Cutting the target to the appropriate shape and fixing it to the target holder.



(a) Sample \mathbb{T}_{18}^{PLD} (σ =0.25 nm) with Gaussian (top) and \mathbb{T}_{54}^{PLD} (σ =0.6 nm) with non Gaussian roughness (bottom)

(b) Samples \mathbb{T}^{SD}_{16} (σ =0.2 nm) with Gaussian (top) and \mathbb{T}^{SD}_{46} (σ =0.7 nm) with non Gaussian roughness (bottom)

Figure 5.3: AFM images of 5x5 μm² section of the TbMnO₃ film surface

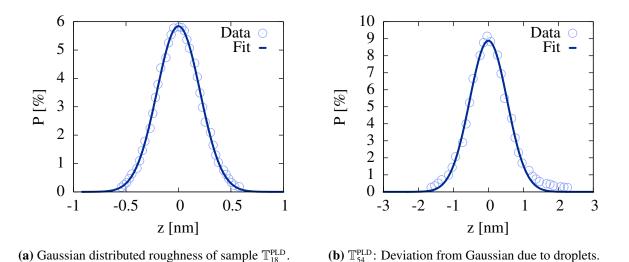


Figure 5.4: Height distribution extracted from figure 5.3a with best Gaussian fit

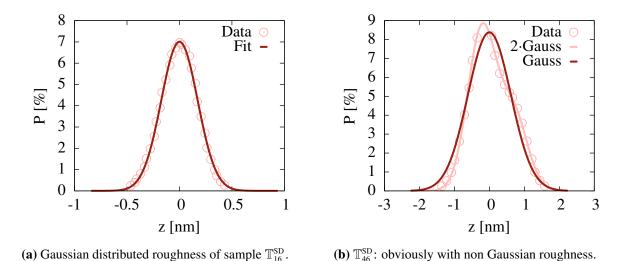


Figure 5.5: Height distribution extracted from figure 5.3b with best Gaussian fit

of these samples. The obvious difference between the PLD and sputter samples is the droplets resulting from the PLD method. For the PLD samples the asymmetric hight distribution seems to originate from a large droplet density. The rough sputter sample, on the other hand, shows a surface build from clusters with similar size and shape in contrast to the arbitrary, noise like surface of the smooth sample. The height distributions depicted in **figure 5.5** show a clear difference for both sputter samples. The roughness of the smooth sample, where XRR could be fitted without any additional surface layer, shows a clear Gaussian shape, in contrast to the rougher sample. These results justify the addition of surface layers to the XRR simulations to describe the non Gaussian height distribution. A model is in development, which makes it possible to fit the full rms roughness of such non Gaussian height distribution by mapping the scattering length density distribution of a two or more surface layer model to a height distribution of one rough layer.

5.1.4 Crystalline structure

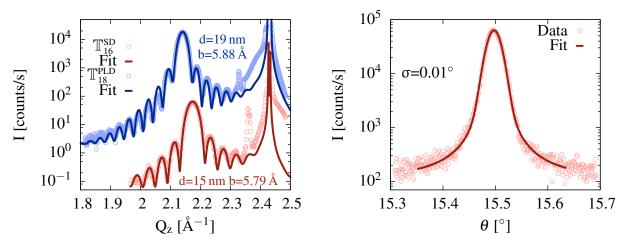
The crystalline quality of the epitaxial layers was investigated using x-ray diffraction. Both instruments used (D8 and 4-circle) have a Cu anode with a monochromator, which transmits $K_{\alpha 1}$ and $K_{\alpha 2}$ together with some Bremsstrahlung. The mosaicity of the crystal structure was measured on the TbMnO₃/DyMnO₃ (0 2 0)-peak, which is exemplified in **figure 5.6b** and **5.8a**. A Voigt function was used to fit the mosaicity and calculate the standard deviations given in the tables. The corresponding out-of-plane reciprocal lattice scan is shown in figure 5.6a including a kinematic simulation³ of a crystalline TbMnO₃ layer with discrete roughness on a YAlO₃ substrate. The Laue oscillations corresponding to the film thickness were found for all layers with less than 40 nm thickness and could be simulated. For the models the thickness were found to have \approx 1-2 nm less extent than in the corresponding XRR model. This can be explained with an interface region of undefined crystal structure of corresponding size. The sharp peak between the substrate and film reflections could be identified as the YAlO₃ (0 2 0) peak and was found for most samples deposited on a second batch of substrates. The presence of these peaks could only be explained by wrong oriented crystallites in the substrates, which is confirmed by additional measurements on unused substrates showing the same peak. (A comparison of a first and second batch substrate can be found in section A.3.)

Reciprocal space maps around partly in-plane reflections where recorded with the 4-circle diffractometer. The film peaks lie on the same in-plane reciprocal space position Q_y as the substrate peaks, which confirms the fact, that the film lattice is matched to the substrate. **figure 5.7** and **figure 5.8b** show example meshes for a TbMnO₃ and DyMnO₃ sample. For the stronger reflections one can see the Bremsberg and tungsten peaks, which are not suppressed by the Göbelmirror, on a line between the peak position and the origin.

5.2 Macroscopic magnetization

The magnetization measurements were performed with the SQUID magnetometer, using the reciprocating sample option (RSO). As there is no ferromagnetic order in the films, the magnetic

³No resolution has been taken into account.



- (a) θ -2 Θ scan around the TbMnO₃ (020) peak with kinematic simulation for Cu- $K_{\alpha 1}$ and $-K_{\alpha 2}$
- **(b)** Rocking scan on the TbMnO₃-peak from \mathbb{T}_{16}^{SD} in (a) with refined Voigt function

Figure 5.6: Out-of-plane XRD measurements performed with the D8 instrument on \mathbb{T}_{16}^{SD} and \mathbb{T}_{18}^{PLD}

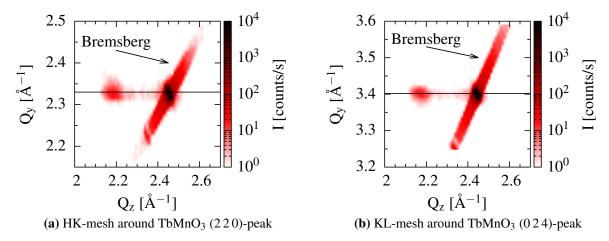


Figure 5.7: Reciprocal space meshes measured on \mathbb{T}_{11}^{SD} with the 4-circle diffractometer. The in-plane lattice parameters are obviously fit to the substrate, within the instrumental resolution.

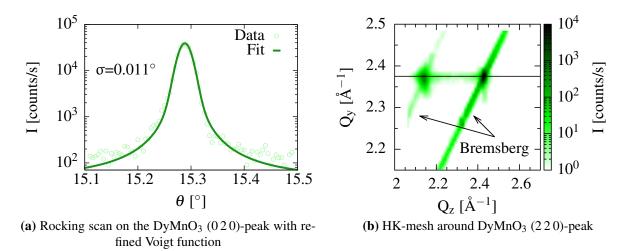
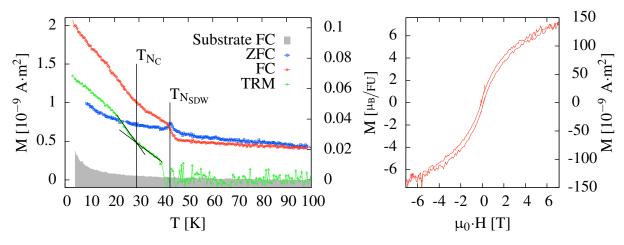


Figure 5.8: Reciprocal space meshes measured on \mathbb{D}_{100} with the 4-circle diffractometer. The in-plane lattice parameters are obviously fit to the substrate, within the instrumental resolution.



- (a) Temperature dependence measured zero field cooled (ZFC) and field cooled (FC) in 10 mT and the resulting thermal remanent magnetization (TRM), corrected for the diamagnetism of the substrate.

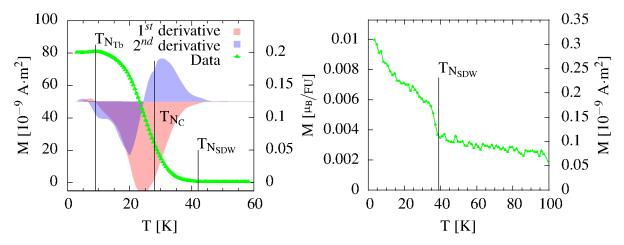
 Black lines are guides to the eye.
- **(b)** Field dependence at 3 K, corrected for the diamagnetism of the substrate

Figure 5.9: Magnetization measurements on $\mathbb{T}_{20}^{\text{SD}}$ in \vec{c} -direction

moment of the layers is relatively small and in the same order of magnitude as the diamagnetism of the substrate. This makes it challenging to measure the film signal even with a precise magnetometer. To keep additional influences as low as possible, the samples were mounted without any glue, tape or capsule inside a plastic straw as described in **section 3.1**. To reduce the remanent magnetization of the instrument, a degauss sequence⁴ was used before each temperature dependent measurement and the remaining field was minimized using the ultra low field option. After this procedure the samples were cooled to 3 K and measured at 10 mT during heating up to 300 K (ZFC). After this the samples were measured cooling inside the same field again down to 3 K (FC), where the field was reset to 0 and the thermal remanent magnetization (TRM) was measured during heating.

For the TbMnO₃ and DyMnO₃ samples the magnetization measurements in \vec{a} - and \vec{b} -directions show only background magnetization from the substrate and paramagnetism from the layer, as the Tb/Dy anisotropy axes lie in the ab-plane. Hence the magnetic moment of the rare earths dominate the measurement. Therefore later measurements were only performed with the \vec{c} axes in the direction of the magnetic field. The magnetic moment per formula unit (μ_B/FU) was calculated from the measured film thickness and the surface area and thus has a low precision of some %. **figure 5.9a** shows a typical measurement series from a TbMnO₃ thin film together with an empty substrate measurement for comparison. As can be seen there is only a very weak magnetic signal from the film, dominated by weak ferromagnetism (proofed with the hysteresis in **figure 5.9b**) that sets in at the Mn spin density wave transition temperature $T_{N_{\text{SDW}}}$. This is the only transition, that is prominent for all samples and is best identified in the TRM measurement, as the paramagnetic background is not present (see also **figure 5.10**). The two other transition ($T_{N_{\text{C}}}$ and $T_{N_{\text{Tb}}}/T_{N_{\text{Dy}}}$) can only be roughly estimated from small kinks in the magnetization curves or their derivative for samples with limited impurities.

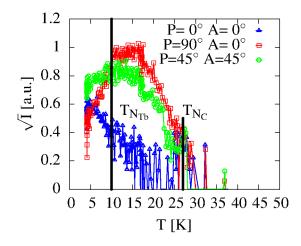
⁴Field oscillations with decreasing amplitude between 1 T an 0.

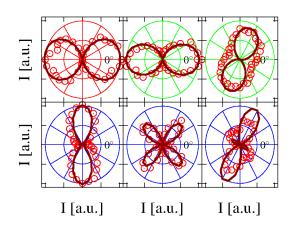


(a) \mathbb{T}^{SD}_{400} : The derivatives have been given in arbitrary scale to illustrate the position of T_{N_C} and $T_{N_{Tb}}$. $T_{N_{SDW}}$ is present at the point where the magnetization drops to zero, T_{N_C} can only be estimated due to small kinks in the derivatives and $T_{N_{Tb}}$ is present at the maximum of the magnetization slightly below $10\,\mathrm{K}$.

(b) $\mathbb{T}_{31}^{\text{SD}}$: Ferromagnetic impurities in the substrate lead to remanent magnetization event above $T_{N_{\text{SDW}}}$. Due to this background and the low magnetization, no other transitions could be observed for smaller films.

Figure 5.10: Thermal remanent magnetization measured in \vec{c} -direction after field cooling in 10 mT





(a) Temperature dependence of the square root SHG intensity for three polarizer (P) and analyzer (A) positions. The SHG signal vanishes above $\approx\!27\,\mathrm{K}$. At $\mathrm{T}_{\mathrm{N}_{\mathrm{Tb}}}$ the electric polarization is lowered and an additional term gains intensity.

(b) Complete set of anisotropy scans performed at 11 K together with simulation including χ_{yyy} , χ_{yxx} and χ_{xxy} . From left to right, line 1: polarizer = analyzer scan, analyzer scans with polarizer at 90° and 135°, line 2: polarizer scans with analyzer at 0°, 90° and 135°

Figure 5.11: Second harmonic generation on \mathbb{T}^{SD}_{100} , the electric polarization lies in the \vec{c} -direction. Polarizer/analyzer 0° corresponds to an electric field in the \vec{a} -direction, 90° to the \vec{c} -direction.

5.3 Symmetry and ferroelectricity

For $\mathbb{T}^{\text{SD}}_{100}$ the ferroelectricity was investigated with second harmonic generation (SHG). The sample was mounted with \vec{b} in the beam direction (z-direction) and measured in transmission. In this geometry the only independent susceptibility terms measurable are (see **section 3.4**) χ_{xxx} , $\chi_{xxy} = \chi_{xyx}$, χ_{xyy} , χ_{yyy} , χ_{yyy} , χ_{yyy} and χ_{yxx} . TbMnO₃ has a Pbnm space group, which has the point symmetry *mmm*. That means it is centro-symmetric and thus SHG from the crystal structure is forbidden. The broken symmetry at the interface and surface does not affect the measurable terms, as it only breaks the mirror symmetry in the z-direction. Ferroelectric order in \vec{c} (x-direction) reduces the symmetry to *mm*2, which has no inversion symmetry and, as can be looked up in [15], only forbids χ_{xxx} , χ_{xyy} and χ_{yxy} . If the ferroelectricity would occur in \vec{a} (y-direction), the other three terms would be forbidden, thus both directions of the ferroelectric polarization can be distinguished.

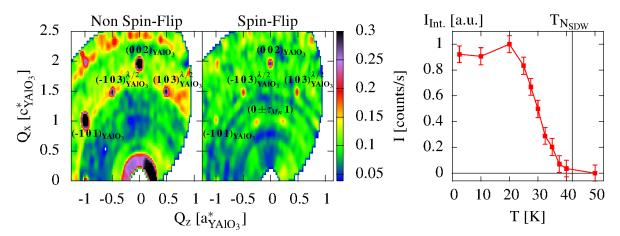
For the investigated sample a small but clear SHG signal was detected below 27 K and is shown in **figure 5.11**. To make sure, that the signal does not originate from fluorescence or any other source, the monochromator energy was scanned and only a signal with half the radiation wavelength was found. As a second test filters were used to identify the position where the SHG signal was created and any source outside the cryostat could be eliminated. An even clearer proof was the completely vanishing signal, when heating up the sample above 27 K. The polarization analysis of the SHG intensity at 11 K (**figure 5.11b**) can nicely be explained with the χ_{yyy} , χ_{yxx} and χ_{xxy} tensor components allowed for an electric polarization in \vec{c} -direction. This is in accordance to bulk behavior.

As the SHG signal scales with the order parameter squared, **figure 5.11a** shows the square root of the measured intensity. There is a clear drop of the larger tensor components (and thus the electric polarization) below $10\,\mathrm{K}$, which we explain with the onset of the Tb order at $T_{N_{Tb}}$. This points towards a contribution of Tb to the ferroelectricity, which is not present in bulk $TbMnO_3$, but can be found in $DyMnO_3$. The main difference between both compounds is the size of the rare earth ions and thus even small strain from the substrate could be the reason for this behavior. Additional components arising below $T_{N_{Tb}}$ have not yet been explained but could originate from the Tb magnetic order, which needs to be treated differently from ferroelectricity as the time reversal has to be considered, too.

5.4 Microscopic magnetization

5.4.1 Polarized neutron diffraction

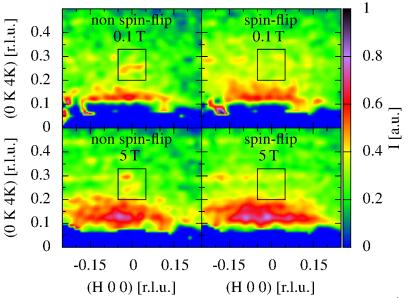
The antiferromagnetic order in a stack of \mathbb{T}^{PLD}_{200} samples has been measured using polarized neutron diffraction at the DNS instrument. This allows the investigation of antiferromagnetic order within a large \vec{Q} -range together with selectivity for the direction of the magnetic moments. The samples were mounted in the cryostat with the TbMnO₃ \vec{a} -direction perpendicular to the scattering plane, parallel to the neutron polarization vector. In this geometry (the same as shown in **figure 6.10** on page 72) the whole bc-plane can be investigated and magnetic moments in the scattering plane lead to spin-flip scattering, while magnetic moments in \vec{a} -direction contribute to the intensity in the non spin-flip channel.



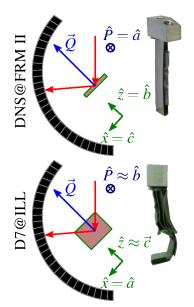
(a) Reciprocal space map measured at 2.5 K. The Bragg peaks in the spinflip channel verify the long range magnetic order with magnetic moments in netic (0 τ_{Mn} 1) reflection measured the TbMnO₃ bc-plane.

(b) Integrated intensities of the magin the spin-flip channel.

Figure 5.12: Polarized neutron diffraction on $\mathbb{T}_{200}^{\text{PLD}*}$ with polarization in TbMnO₃ \vec{a} -direction measured with DNS. In this geometry magnetic moments lying in \vec{a} -direction lead to non spin-flip, moments in the bc-plane to spin-flip scattering. The strong, sharp peaks originate from the substrate crystal structure and are visible due to the finite flipping ratio of the instrument.



(a) PND measured at the D7 instrument with magnetic field applied in \vec{b} direction at 10.5 K. No switching of magnetic moments to the ac-plane is observed in the spin-flip channel. The large background in the smaller Q region can be explained by magnetic scattering from the large Tb moments, as it is lower for \vec{Q} in \vec{a} - than in $\approx \vec{c}$ -direction due to the strong anisotropy axis of Tb, which lies in the ab-plane. Additionally the background rises with increasing magnetic field.



(b) Sample geometry of PND measurements performed at ILL and FRM II. Although the scattering plane in the two measurements is quite different, both allow to access the magnetic reflection at $\approx (0.0.251)$

Figure 5.13: Polarized neutron diffraction on $\mathbb{T}_{200}^{\text{PLD}*}$

A part of an overview θ -scan at base temperature is shown in **figure 5.12a**. Despite the Be-filter some small contamination ($\approx 2\%$) of $\lambda/2$ is still left in the incident beam and is depolarized by the spin flipper, which leads to a noticeable contribution of structural substrate reflections in the spin-filp channel. Additional strong peaks from the substrate can be seen in the non spin-flip channel and as result of the finite polarization in the spin-flip channel with reduced intensity. The only magnetic reflections found in this scattering plane were the TbMnO₃ (0 $\pm \tau_{Mn}$ 1) peaks with $\tau_{Mn} = 0.27$ similar to the bulk value. A small omega scan around this peak was measured temperature dependent with an integrated intensity shown in **figure 5.12b**. The transition temperature T_{N_{SDW}} ≈ 40 K is close to the bulk values, too. As the peak intensity of these thick layers is only 50% of the instrumental background and had to be measured with 10 min per θ position, no thinner layers have been investigated.

A similar experiment at the D7 instrument with a second batch of samples could reproduce this result. For the measurements shown in **figure 5.13a** the samples were mounted with the \vec{b} -axis slightly tilted to the magnetic field, to make it possible to measure the magnetic reflection at $\approx (0.0.25 \, 1)$, while applying the field in \vec{b} direction (see **figure 5.13b** for a sketch of the geometry). Unfortunately, in this geometry the alignment of the sample is hardly possible, as no substrate reflection in the (0.14)-direction can be reached at $\lambda_n \approx 4.8 \, \text{Å}$. In this geometry a magnetic moment in the \vec{b} -direction leads to non spin-flip scattering, which can be observed at $K\approx 0.26$ for 0.1 and 5 T. In this experiment, in contrast to bulk TbMnO₃, the magnetic structure could not be switched from the bc-plane to the ac-plane by applying a magnetic field up to 5 T, which would result in a magnetic reflection in the spin-flip channel.

5.4.2 Soft x-ray resonant magnetic scattering

The strong resonance enhancement at the ^{Mn}L -, ^{Dy}M - and ^{Tb}M -edges was used to perform resonant magnetic scattering experiments at the UE46-PGM-1 beamline of BESSY-II. The long wavelengths of $\lambda_{Mn}L_{III}\approx 19\,\text{Å}$, $\lambda_{Dy}M_V\approx 7.4\,\text{Å}$ and $\lambda_{Tb}M_V\approx 10\,\text{Å}$ limits the available Q-range, so that no allowed crystal reflections can be reached to align the sample. The Tb and Dy 4f orbitals have a non spherical charge distribution, which breaks the mirror symmetry of the unit cell and cancels out some selection rules so that the (0 1 0) reflection gets allowed at the resonance (anomalous tensor or Templeton-Templeton scattering [119]). This fact allows the precise orientation of the crystal direction needed due to the low mosaicity of the films. **Figure 5.14** shows an example (δ k 0) scan with σ polarization, energy corresponding to σ and σ in the direction of the sample surface (σ and σ and σ and σ in the direction of the reflectivity part (**figure 5.15**).

At elevated temperatures the absorption spectra around the ${}^{O}K$ -, ${}^{Mn}L$ -, ${}^{Dy}M$ - and ${}^{Tb}M$ -edges were measured for both linear polarizations using TEY in θ =90° geometry. The measurements at the ${}^{O}K$ -edge could be used to check the ϕ alignment of the samples, as TbMnO₃ and DyMnO₃ show a large difference in the absorption spectrum for the light field oscillating in the \vec{a} - and \vec{c} -directions. This effect has been measured for bulk TbMnO₃ single crystals [30] and was explained with anisotropic bonds between oxygen and manganese. As can be seen in **figure 5.16a** especially the sharp feature around 530 eV and the split peak at 535 eV can be used to distinguish both crystal directions. From theoretical calculations [30] the features can be attributed to hybridizations to the following orbitals:

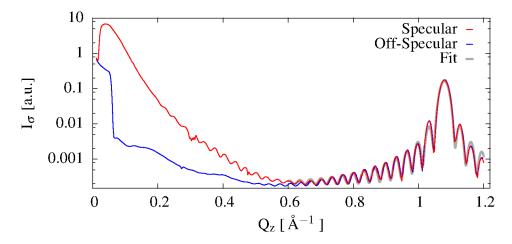


Figure 5.14: Reciprocal lattice scan in out-of-plane (Q_z) direction on \mathbb{D}_{20} performed with \vec{Q} in the direction of the surface normal (Specular) and with a slight offset (Off-Specular). The (0 1 0) reflection and it's Laue oscillations were simulated with the same model used for the laboratory XRD experiments (see section 3.5.7 and 2.4.2) including surface roughness and x-ray absorption. (d=18.4(5) nm, σ =0.3(9) nm, b=5.82(1) Å)

1 2,3 4 5,6 7
Mn
$$e_{g\uparrow}$$
 Mn $t_{2g\downarrow}+e_{g\downarrow}$ Mn $e_{g\downarrow}$ Tb 5d Mn 4sp and Tb 6s

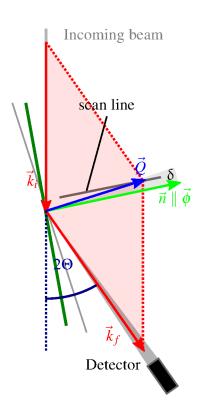
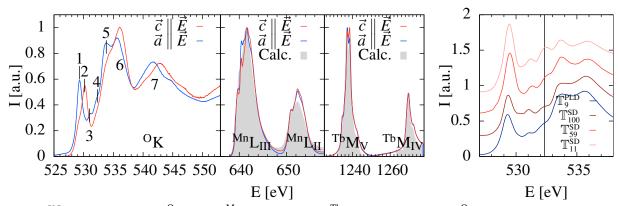


Figure 5.15: Scan geometry

The spectrum of the $^{\text{Tb}}\text{M}$ -edges fits the calculations in [48] and the $^{\text{Mn}}\text{L}$ absorption reproduces the $^{\text{Mn}3+}$ spectrum published by Paterson et al. [93] quite well. (The experimental data on bulk $^{\text{Tb}}\text{MnO}_3$ [30] comes even closer to the measured Mn spectrum.) For the later produced samples, which had disoriented crystallites in the substrate (section 5.1/section A.3), the oxygen spectra show an increase of the intensity of some features figure 5.16b because of parts of the layer with \vec{b} oriented in-plane. The measured absorption spectra were used to determine the resonance energies for the scattering experiments.

The long wavelength of the Mn resonance limits the search for magnetic order as the available Q-range is $\lesssim 0.75 \,\text{Å}^{-1}$. Thus the propagation vector of the manganese order found by neutron diffraction $(0 \, \tau_{Mn} \, 1)$ (A-type) with $0.9 \, \text{Å}^{-1}$ cannot be reached. The magnetic order can be described as a propagating SDW/cycloid in the \vec{b} -direction with periodicity τ_{Mn} and an antiferromagnetic stacking in \vec{c} -direction. For a perfect collinear SDW and proper cycloid the $(0 \, \tau_{Mn} \, 0)$ (F-type) peak, corresponding to the periodicity of the magnetic order in \vec{b} -direction, is forbidden as the magnetic moment averaged in \vec{c} -direction is zero. It has been found experimentally, that there is a small F-type component in

the magnetic structure, which was recently explained by a Dzyaloshinsky-Moriya interaction induced spin canting leading to a SDW component with magnetization in \vec{c} -direction and a so called off-phase synchronized bc-cycloidal for the low temperature phase [64]. Because of this, the soft x-rax magnetic scattering at $(0 \tau_{Mn} \ 0)$ can be used to measure the c-component of the



(a) \mathbb{T}_9^{PLD} measured on the ${}^{O}K$ (left), ${}^{Mn}L$ (middle) and ${}^{Tb}M$ (right) edges. (b) ${}^{O}K$ resonance from different Anisotropic Mn-O bonds lead to a pronounced difference in the oxygen spectra samples with $\vec{E} \parallel \vec{a}$. For an explanor the different polarization directions. Calculations (gray) from [48, 93].

Figure 5.16: X-ray absorption near edge structure (XANES) from TbMnO₃

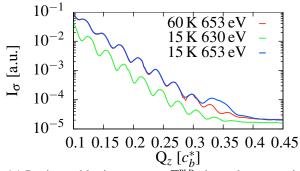
SDW and the off-phase bc-component of the cycloid.

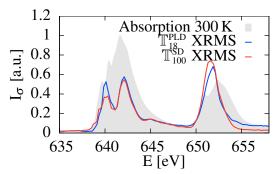
To distinguish the SDW from the cycloidal magnetic order, the samples were mounted with \vec{c} perpendicular to the scattering plane. In this geometry the selection rules for x-ray magnetic scattering for the magnetic moments in \vec{c} leads to intensity in the $\pi\pi'$ and for moments in the ab-plane in the $\sigma\pi'$ and $\pi\sigma'$ channels [28]. Although the instrument does not analyze the polarization, magnetic signals measured with σ polarization can only be present for magnetic moments in the ab-plane, while the π polarized beam can be used to search for any magnetic order (see equation 5.2)⁵. As the sample surfaces are cut in the ab-plane, the reflectivity of the surface lies in the (0 k 0)-direction. To be able to measure low intensity signals, a small offset δ was used to reduce the reflectivity signal by two orders of magnitude, as the crystal mosaicity is much wider than the reflectivity (**figure 5.14**).

For all investigated samples except \mathbb{T}_2^{PLD} a magnetic peak has been found. **figure 5.17** shows an example of magnetic scattering measured at 15 K. The reciprocal space scan **figure 5.17a** compares the π incident measurements above the ordering temperature, at 15 K below the resonance and the resonant scattering. It is obvious, that the peak at (0.0.340) is only present below the ordering temperature and at the ^{Mn}L -edge. The comparison of both resonant measurements show, that the background from reflectivity is independent of temperature and is subtracted to extract the pure magnetic signal for all later plots. The resonant nature of the magnetic signal was further investigated by a constant \vec{Q} energy scan at the peak position shown in **figure 5.17b**. The peaks for \mathbb{T}_{18}^{PLD} and \mathbb{T}_{100}^{SD} are clearly of resonant nature. There is a prominent difference between the structure of the XRMS signal and the absorption, which reflects the specific selection rules for the transitions involved in the magnetic state in contrast to the full spectrum of the absorption edge.

The temperature dependence of I_{π} for the investigated samples is shown in **figure 5.18**. The maps show the background subtracted measured intensity against the reciprocal space position and temperature. Each \vec{Q} -scan has been fit with a Gaussian and the positions are shown in the

⁵This only holds for measuring magnetization at a dipole transition. As no contributions of quadrupole transitions were reported in earlier measurements on bulk TbMnO₃ and DyMnO₃ [64, 107] this was assumed for the data evaluation on the thin films, too.





(a) Reciprocal lattice scans on \mathbb{T}_{18}^{PLD} above the magnetic ordering temperature on the resonance, below the ordering temperature below the resonance and with magnetic peak in resonance.

(b) Comparison of the resonance enhancement at the magnetic ($\delta \tau_{Mn}$ 0)-peak for PLD and sputter samples with the absorption measured at room temperature.

Figure 5.17: Resonant magnetic scattering at the $^{Mn}L_{II}$ -edge with σ -polarization

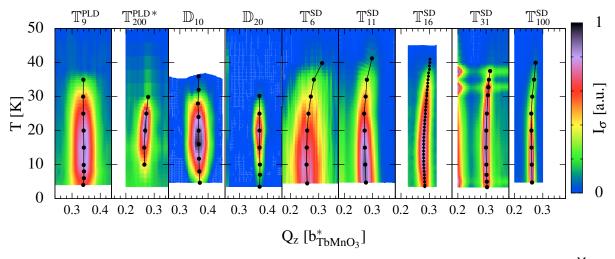


Figure 5.18: Temperature dependence of the (δ τ_{Mn} 0) reflection of several films, measured at the ^{Mn}L_{III} resonance with σ -polarization. The fitted peak positions from each measured temperature are indicated with the black dots. For the PLD samples (except $\mathbb{T}^{\text{PLD}*}_{200}$ with wrong stoichiometry) there is no noticeable shift in the peak positions in contrast to the sputter samples on the right side.

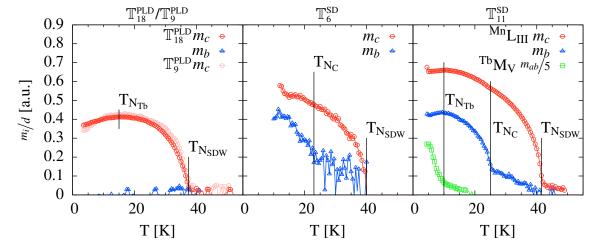
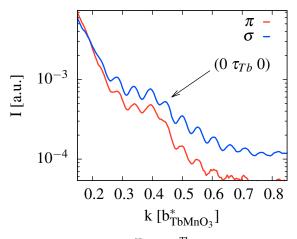
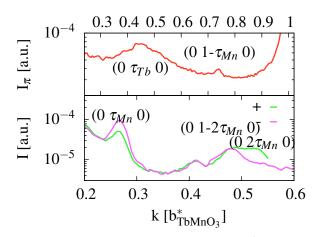


Figure 5.19: Magnetic order parameter per film thickness extracted from $(\delta \tau_{Mn} 0)$ on $^{Mn}L_{III}$ and $(\delta \tau_{Tb} 0)$ on $^{Tb}M_V$ peak intensities versus temperature. The PLD samples do not show the transition to a cycloidal magnetic structure T_{N_C} in contrast to the films deposited with sputtering.





- (a) Measurements on \mathbb{T}_{11}^{SD} at the $^{Tb}M_V$ -edge for both polarizations at 4 K, the broad reflection at $(\delta \tau_{Tb} 0)$ is superimposed with the reflectivity background
- (b) Reciprocal lattice scans on $\mathbb{T}^{\text{SD}}_{\text{100}}$ at the $^{Tb}M_{V^{\text{-}}}$ (top) and MnLIII-edges showing additional peaks from the manganese order.

Figure 5.20: Resonant magnetic scattering showing the ordering of the Tb-subsystem at $(0 \tau_{Tb} 0)$, coupling from the Tb- to the Mn-order and second harmonic reflections at $(0.2\tau_{Mn} 0)$ and $(0.1-2\tau_{Tb} 0)$

plot as black points. The peak widths stay constant below the transition temperature and correspond to a magnetic order with a correlation length >2/3 of the film thickness⁶. The behavior of the sputter deposited samples is very similar with T_{NSDW} slightly above 40 K and a clear temperature dependent peak position. This is well known from bulk TbMnO₃ and the propagation τ_{Mn} ≈ 0.28 (except for \mathbb{T}_{31}^{SD}) corresponds to the bulk values, too. For the PLD samples the transition temperatures are lowered. The peaks appear at positions different from bulk and there is no significant change in peak positions. At lower temperatures the intensity of all peaks decreases again, which was attributed to the $T_{N_{Tb}}$ and $T_{N_{Dv}}$ order.

The polarization dependence was used to extract the magnetic order parameter, as the maximum site specific local magnetic moment m_i is related to the measured intensity (assuming purely dipolar transitions and a T-independent transition matrix element):

$$I_{\sigma} \propto |S_{\sigma\sigma'}|^2 + |S_{\sigma\pi'}|^2$$
 $I_{\sigma} \propto |S_{\pi\pi'}|^2 + |S_{\pi\sigma'}|^2$ (5.1)

[7]
$$I_{\sigma} \propto m_a^2 \cos^2(\theta) + m_b^2 \sin^2(\theta) \quad I_{\pi} \propto m_a^2 \cos^2(\theta) + m_b^2 \sin^2(\theta) + m_c^2 \sin^2(2\Theta) \quad (5.2)$$

[7]
$$I_{\sigma} \propto |S_{\sigma\sigma'}| + |S_{\sigma\pi'}| \qquad I_{\sigma} \propto |S_{\pi\pi'}| + |S_{\pi\sigma'}| \qquad (5.1)$$

$$I_{\sigma} \propto m_{a}^{2} \cos^{2}(\theta) + m_{b}^{2} \sin^{2}(\theta) \qquad I_{\pi} \propto m_{a}^{2} \cos^{2}(\theta) + m_{b}^{2} \sin^{2}(\theta) + m_{c}^{2} \sin^{2}(2\Theta) \qquad (5.2)$$

$$for m_{a}=0 \qquad m_{b} \propto \frac{\sqrt{I_{\sigma}}}{\sin(\theta)} \qquad m_{c} \propto \frac{\sqrt{I_{\pi} - I_{\sigma}}}{\sin(2\Theta)} \qquad \frac{m_{a}=?}{\Rightarrow} \quad m_{ab} \propto \sqrt{I_{\sigma}} \qquad (5.3)$$

These magnetization components were extracted from the measured intensities on the MnL_{II}edge at $(\delta \tau_{Mn} 0)$ and are shown in **figure 5.19**. For comparison the results are scaled with the inverse film thicknesses. For some samples it was even possible to measure the Tb order on ${}^{\text{Tb}}\text{M}_{\text{V}}$ with moments in the ab-plane at $(\delta \tau_{Tb} 0)$ $(\tau_{Tb} \approx 0.42$, see **figure 5.20** for $\mathbb{T}_{11}^{\text{SD}}$ and \mathbb{T}_{100}^{SD}). All samples exhibit a magnetic order in \vec{c} at $T_{N_{SDW}}$, which corresponds to the F-type spin canting of the SDW with primary spin orientation in \vec{b} . Only the sputter samples show an additional transition T_{N_C} , where a \dot{b} component develops. This behavior perfectly agrees with the F-type component of the off-phase cycloid, as measured on bulk TbMnO₃ [64]. The

⁶The correlation length is limited due to the large absorption ($\leq 100 \, \mathrm{nm}$), especially for large film thicknesses.

Tb transition measured for $\mathbb{T}_{11}^{\text{SD}}$ proves the association of the decrease in Mn order with the Tb antiferromagnetic order below $T_{\text{N}_{\text{Tb}}}$. For the sample with the strongest magnetic scattering $\mathbb{T}_{100}^{\text{SD}}$ additional $(0\ 2\tau_{Mn}\ 0)$ and $(0\ 1-2\tau_{Mn}\ 0)$ peaks have been observed, which originate from the third term in equation 2.56 and thus have a different polarization dependence. In the cycloidal phase a weak reflection at $(0\ 1-\tau_{Mn}\ 0)$ appears at the $^{\text{Tb}}M_{\text{V}}$ resonance as evidence for the coupling of the Tb spins to the Mn ordering (**figure 5.20b**).

The pure existence of m_b and m_c magnetization components is no direct proof for the cycloidal magnetic structure. For this the helicity of the magnetic components can be probed with circular polarized x-rays due to the magnetic structure factor [39, 86]. The intensity of the resonant magnetic scattering with circular polarization can be written as:

$$I_{\pm} = \frac{1}{2} \left(|S_{\sigma\sigma'}|^2 + |S_{\pi\pi'}|^2 + |S_{\sigma\pi'}|^2 + |S_{\pi\sigma'}|^2 \right) \pm \Im \left(S_{\sigma\sigma'} S_{\pi\sigma'}^* + S_{\sigma\pi'} S_{\pi\pi'}^* \right) \tag{5.4}$$

In most cases the second term vanishes and both circular polarizations have equal intensity as the average of I_{σ} and I_{π} . The interference structure factors for the different chirality (\circlearrowleft and \circlearrowright) cycloids can be derived from the resonant magnetic scattering form factor [86] of the corresponding magnetic moments \vec{m}_i presented in **section 2.4.5**:

$$\stackrel{\text{equation 2.56}}{\Longrightarrow} f_{j}^{XRMS} = -i\frac{3}{4}r_{e}(\hat{e}_{i} \times \hat{e}_{f}) \cdot \hat{m}_{j}[F_{11} - F_{1-1}] \qquad (5.5)$$

$$\vec{m}_{j} = m \begin{cases}
\hat{b} \cdot \cos(\vec{\tau}\vec{r}_{j}) + \hat{c} \cdot \sin(\vec{\tau}\vec{r}_{j}) = \frac{1}{2} \left(\hat{e}_{\mp}e^{i\vec{\tau}\vec{r}_{j}} + \hat{e}_{\pm}e^{-i\vec{\tau}\vec{r}_{j}} \right) & \text{for } \circlearrowleft \\
\hat{b} \cdot \cos(\vec{\tau}\vec{r}_{j}) - \hat{c} \cdot \sin(\vec{\tau}\vec{r}_{j}) = \frac{1}{2} \left(\hat{e}_{\mp}e^{i\vec{\tau}\vec{r}_{j}} - \hat{e}_{\pm}e^{-i\vec{\tau}\vec{r}_{j}} \right) & \text{for } \circlearrowleft \\
\end{aligned}$$
(5.5)

with
$$\hat{e}_{+} = \hat{b} + i\hat{c} \quad \text{and } \hat{e}_{\mp} = \hat{b} - i\hat{c} \qquad (5.7)$$

The polarization terms in equation 5.5 are $\hat{\sigma}' \times \hat{\sigma} = 0$, $\hat{\pi}' \times \hat{\pi} = \hat{c}$, $\hat{\sigma}' \times \hat{\pi} = \hat{k}_i$ and $\hat{\pi}' \times \hat{\sigma} = -\hat{k}_f$. From this one derives the magnetic structure factors and the intensity for the cycloidal domains by summing over all magnetic moments:

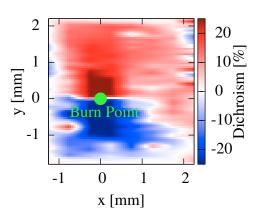
$$S_{e_i e_j}^{XRMS} = \sum_{i} -i\frac{3}{4} r_e(\hat{e}_i \times \hat{e}_j) \cdot \hat{m}_j [F_{11} - F_{1-1}]$$
 (5.8)

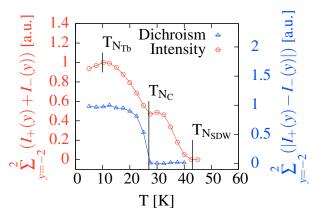
equation 5.2 and
$$I_{\pm} \propto \begin{cases} \sin^2(\theta) + \frac{1}{2}\sin^2(2\Theta) \mp \sin(\theta)\sin(2\Theta) & \text{for } \circlearrowleft \\ \sin^2(\theta) + \frac{1}{2}\sin^2(2\Theta) \pm \sin(\theta)\sin(2\Theta) & \text{for } \circlearrowleft \end{cases}$$
 (5.9)

Depending on the chirality of the magnetic structure, the sign of the circular dichroism is changed. Collinear magnetic structures, on the other hand, do not produce any dichroism through the structure factor⁷.

To proof the cycloidal magnetic order, the circular dichroism on a single domain needs to be measured. For samples with low electric conductivity the photoelectric ionization at an absorption edge can be used to generate a charged area at the beam footprint while cooling the sample. At this position the ferroelectric domains will have a domain wall with the adjacent polarization pointing away from the positive charge. Below the transition temperature a lower intensity circular beam can be used to measure the domains above and below the "burn point" (**figure 5.22**), as has been done for DyMnO₃ bulk crystals [107].

⁷Magnetic dichroism through XMCD is still possible for collinear structures.





(a) Dichroism measured over the whole sample area at 5 K. There are two large domains separated by a sharp domain wall at y=0. The strength of the dichroism decreases with the distance to the burn point at 0.

(b) Temperature dependence of the dichroism. The sum and absolute differences of intensities I_+ and I_- for y-scans at each temperature are shown, normalized to the maximum.

Figure 5.21: X-ray circular dichroism of \mathbb{T}^{SD}_{100} at $(\delta \tau_{Mn} 0)$ at $^{Mn}L_{II}$

Circular dichroism was measured for $\mathbb{T}_{6}^{\text{SD}}$, $\mathbb{T}_{11}^{\text{SD}}$ and $\mathbb{T}_{100}^{\text{SD}}$. The written domains are more stable than for the bulk DyMnO₃ samples, making it possible to measure without attenuation of the beam. **figure 5.21a** shows the spatial resolved dichroism $\frac{I_+-I_-}{I_++I_-}$ of $\mathbb{T}_{100}^{\text{SD}}$, calculated from two xy-meshes with circular polarization. There are only two large domains on the whole sample area of 5×5 mm² and the intensity of the dichroic signal decreases with the distance to the burn point. The magnetic intensity varies over the sample area as result of the imperfect substrate and low intensity positions could be correlated to areas with higher amount of wrong crystallites by 4-circle measurements (see **section A.3**). The temperature dependence of the dichroism and the magnetic intensity was measured by y-scans over the phase boundary. For the measured points at each temperature the absolute value of the dichroism and the full magnetic signal were summed up and are plotted in **figure 5.21b**.

The measurements on \mathbb{T}_6^{SD} and \mathbb{T}_{11}^{SD} are shown in **figure 5.23**. For the thinner films the lower magnetic signal complicates the measurement and the substrates of these samples turned out to have even more imperfections. Nevertheless both samples show a clear switch of the dichroism sign at the domain boundary. Cooling the sample with the beam at different positions clearly changes the position of the domain wall (**figure 5.23b**). Writing domains in the ordered state as possible in bulk [107] was not found due to very stable domains, only depolarization of domains far away (4 mm) from the burn point (close to one edge of the sample) was observed by two subsequent measurements.

These investigations do not only proof the cycloidal magnetic order in the films, but can only be explained, if the magnetic structure is coupled to a ferroelectric polarization, as there would not be any in-

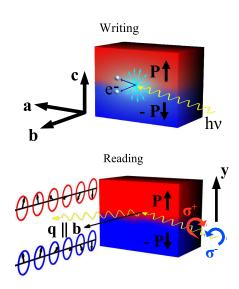


Figure 5.22: Schematics of domain writing with the photoelectric effect and reading via circular dichroism taken from [107]

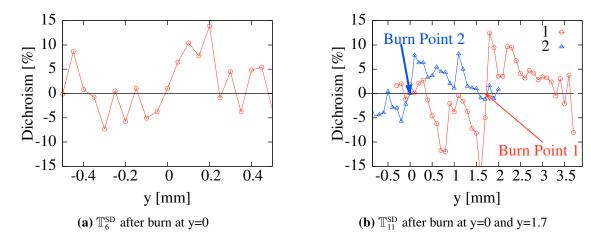


Figure 5.23: y-scans of x-ray circular dichroism at $(\delta \tau_{Mn} 0)$ at $^{Mn}L_{III}$. The error bars cannot be extracted from the measured data, as they are range dependent (described in **section 3.5.3**).

fluence of the x-ray beam on the domain structure without ferroelectric polarization.

5.5 Summary

Samples of TbMnO₃ and DyMnO₃ have been produced by PLD and sputter deposition. All samples show untwinned epitaxial growth with very good crystal quality (mosaicity <0.02°). The surface roughnesses were reasonably low in the order of 0.5 nm. For all samples the x-ray reflectivity could be simulated with an adapted model including surface layers with reduced density (section 5.1.2), which is explained by non-Gaussian roughness (section 5.1.3). The overall thickness inhomogeneity is much higher (some %) for the PLD samples than for sputter deposition, but is not important for the local quality of the films (crystal structure and roughnesses). The crystal structure of the films is strained to the substrate even for large layer thicknesses of 100 nm (section 5.1.4). The Laue oscillations of the layer (0 2 0) reflection could be modeled and yield a comparable thickness as the reflectivity reduced by a small layer of undefined crystal structure (\approx 1.5 nm).

The magnetic and ferroelectric behavior of the samples was studied in detail with macroscopic and microscopic methods. The SQUID magnetometry (section 5.2) could show a weak ferromagnetism developing below $T_{N_{SDW}}$. For a few samples even T_{N_C} and $T_{N_{Tb}}$ could be estimated from small kinks in the magnetization curves. Due to impurities in the substrate, leading to large paramagnetic and ferromagnetic background, not all samples could be measured. The microscopic magnetism measured with neutron diffraction and resonant magnetic scattering show a antiferromagnetic order below $T_{N_{SDW}}$ comparable to the bulk behavior. The transition temperatures and propagation vectors for the PLD samples don't always fit to the bulk values and don't show a temperature dependence, which can be interpreted as sign for commensurability. For these samples the transition to the cycloidal magnetic order seems not to be present, as the second magnetic component was not measured. Thus these samples cannot be ferroelectric. For three sputter samples the transition to the cycloidal state has been observed directly with circular dichroic XRMS (section 5.4.2), proving the ferroelectricity for these samples. For the

100 nm TbMnO₃ film the macroscopic ferroelectricity could be confirmed using SHG (**section 5.3**).

The quality of the sputter samples is reduced due to imperfections in the substrates, which could be directly correlated by position dependent XRMS and 4-circle diffraction measurements **section A.3**. Although the structural quality of the PLD and sputter samples are almost equal, there is a substantial difference in their properties. The origin of this is yet unclear, but could be the chemical purity of the films⁸, which is very challenging to detect. To finalize the study of multiferroic manganite thin films, additional resonant x-ray measurements on sputtered DyMnO₃ and HoMnO₃ samples should be performed, especially to investigate the influence of the rare earth moments.

TbMnO $_3$ deposited on YAlO $_3$ substrates has thus been proven to be multiferroic with a behavior almost exactly following the bulk properties. The cycloidal magnetic order is present up to film thicknesses below three periods of the spin spiral with only slightly reduced transition temperatures. The only prominent difference to the bulk behavior is the higher ordering temperature of the Tb moments ($T_{N_{Tb}} \approx 10 \, \text{K}$) and the reduction of the ferroelectricity and Mn magnetic order below this temperature. For the not multiferroic PLD samples this temperature is even higher and could be one reason for the inhibited cycloidal state. Due to these properties the system is very well suited to study interface effects of TbMnO $_3$ to any other material, as the substrate does not have a significant influence on the film properties.

⁸E.g. the oxygen used for the pulsed laser deposition could be less pure with regard to contaminations.

Chapter 6

Experiments II: LaCoO₃ Thin Films and [TbMnO₃-LaCoO₃]-Multilayers

For applications of multiferroic materials an antiferromagnetic structure will not be suitable, because it is not very sensitive to a magnetic field (for e.g. sensors) and does not have a spontaneous macroscopic magnetization. Because of this a strong coupling of such materials will be needed, which we investigated by introducing interfaces to a ferromagnetic compound with similar (Perovskite) crystal structure. The data shown in this chapter was taken for a LaCoO₃ single layer sample \mathbb{L}_{35} with 35 nm thickness and 4 nominally identical multilayers of 20 repetitions with 2 nm LaCoO₃ and 10 nm TbMnO₃ layers ($\mathbb{TL}^{18/3}_{\times 20}$) created with PLD.

6.1 Structural characterization

The structure of the LaCoO₃ layer was investigated with x-ray reflectivity and diffraction. Bulk LaCoO₃ has a rhombohedral structure with a=b=c=5.38 Å and α = β = γ =60° unit cell. Although the bulk crystal structure of LaCoO₃ differs from the orthorhombic substrate, the same deposition parameters as for the TbMnO₃ layers lead to epitaxial growth with good quality. The reflectivity measurement **figure 6.4a** reveals 0.5 nm surface roughness and \approx 2% thickness inhomogeneity for a 35 nm film. The crystal structure quality itself is proofed with the diffraction measurement **figure 6.4c** and could be simulated with the same roughness and (as for the TbMnO₃ and DyMnO₃ single layers) with 2 nm less thickness. The out-of-plane lattice constant was found to be 5.38 Å, as in the bulk crystal. Diffraction from the (2 2 0) reflection (**figure 6.4c**) confirmed, that even 35 nm films are already relaxed.

Because of the fast relaxation of the LaCoO₃ layers a small thickness of 3 unit cells was chosen for the multilayers with TbMnO₃. Reflectivity from the multilayers did not show any multilayer peaks due to the low contrast between LaCoO₃ and TbMnO₃ in addition to the thickness inhomogeneity. Therefore diffraction measured on the P09 beamline was used to get precise information on the multilayer structure (**figure 6.2**). From the simulation the LaCoO₃ layers have been found to be highly strained, as the out-of-plane lattice parameters of LaCoO₃ and TbMnO₃ were deduced as 5.7 Å and 5.75 Å. This can be explained by looking at the crystal structure of distorted Perovskites shown in **figure 6.1**. The rhombohedral and orthorhombic unit cells can be traced back to the unit cell of the undistorted cubic structure. For the rhombohedral the lattice parameter is $a_3 \approx \sqrt{2} \cdot a$ and for the orthorhombic cell the three lattice parameters are $a_4 \approx \sqrt{2} \cdot a \approx b_4$ and $c_4 \approx 2 \cdot a$. Constructing a notional orthorhombic unit cell from the LaCoO₃ bulk

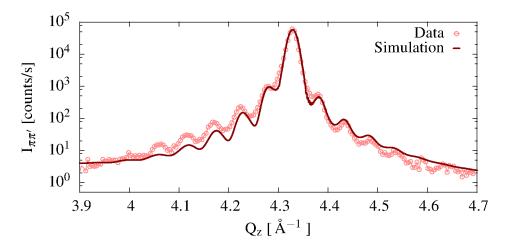


Figure 6.2: X-ray diffraction on (0 4 1)-peak of $\mathbb{TL}^{18/3}_{\times 20}$ taken with P09 at PETRA-III using $^{\text{Tb}}L_{\text{III}}$ at 100 K in the $\pi\pi'$ -channel. The shown simulation of the multilayer crystal structure was done with the following parameters: $b_{\text{LaCoO}_3} = 5.70 \,\text{Å}$, $N_{\text{LaCoO}_3} = 3.3$, $\delta N_{\text{LaCoO}_3} = 1.2$, $b_{\text{TbMnO}_3} = 5.75 \,\text{Å}$, $N_{\text{TbMnO}_3} = 17.6$ and $\delta N_{tb} = 0.8$

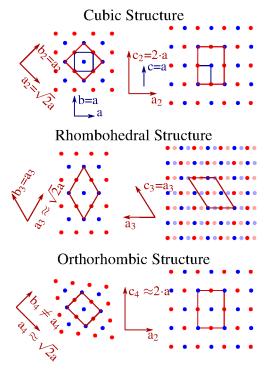


Figure 6.1: Compared unit cells of distorted Perovskite structures

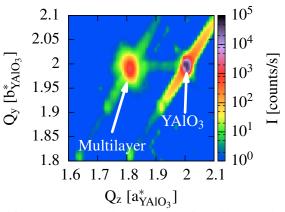
structure leads to lattice parameters $a_4 = b_4 = 5.38 \,\text{Å}$ and $c_4 = 7.61 \,\text{Å}$. To match these parameters to the YAlO₃ surface, the a_4 and mainly the c_4 parameters need to be compressed, which leads to an elongation of b_4 . Keeping the unit cell volume of the bulk LaCoO₃ structure of $112 \,\text{Å}^3$ constant and setting the in-plane lattice parameters fixed to the YAlO₃ values $a = 5.33 \,\text{Å}$ and $c = 7.37 \,\text{Å}$, one calculates an out-of-plane propagation vector of $b = 5.70 \,\text{Å}$.

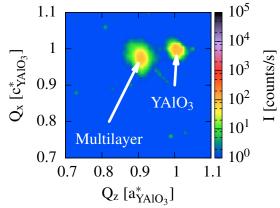
Thus the LaCoO₃ structure is strongly distorted (strained to the substrate **figure 6.3a**) in the multilayer. The roughnesses are in the order of 0.6 nm and the average layer thicknesses are 3.3 unit cells for LaCoO₃ and 17.6 unit cells for TbMnO₃. This parameters could be reproduced with diffraction data from the D8 instrument with limited quality. The roughnesses and the TbMnO₃ lattice parameter are similar to the single layer samples investigated previously.

6.2 Macroscopic magnetization

6.2.1 SQUID magnetometry

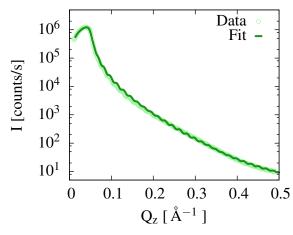
The LaCoO₃ layer was investigated with SQUID magnetometry showing ferromagnetism below $T_C \approx 62$ K. The magnetic moment per Co ion was calculated using the sample surface and

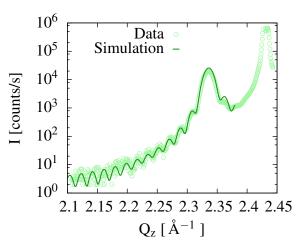




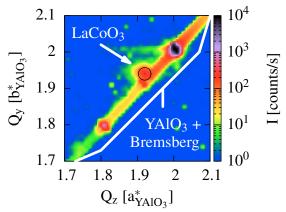
- (a) HK-mesh around (220)-peak of multilayer and substrate including Bremsberg (line to the origin)
- (b) KL-mesh around (1 3 1)-peak, no Bremsberg is seen in the measurement, as it lies in \vec{Q} -direction

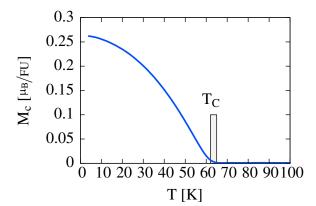
Figure 6.3: X-ray diffraction reciprocal lattice maps on $\mathbb{TL}^{18/3}_{\times 20}$ measured with the 4-circle diffractometer. The measurements in both in-plane directions show that the multilayer crystal structure is strained to the substrate.





- (a) X-ray reflectivity with refined model employing 34.8(3) nmLaCoO $_3$ with a roughness of σ =0.51(1) nm and a thickness inhomogeneity of 0.7%
- (b) Out-of-plane reciprocal lattice scan with the D8 instrument. The film (0 2 0)-5 peak is simulated with a thickness of 32.8 nm, b=5.38 Å and σ =0.6 nm





(c) Reciprocal lattice mesh on the (2 2 0)-peak measured with the 4-circle diffractometer. The film lattice is obviously relaxed.

(d) \vec{c} -direction thermal remanent magnetization cooled in 10 mT. There is a clear ferromagnetic transition at \approx 62 K without any anomalies below this temperature.

Figure 6.4: XRD and SQUID measurements performed on \mathbb{L}_{35}

measured thickness, which results in a systematic error of $\approx 2\%$. The thermal remanent magnetization in-plane is shown in **figure 6.4d** and has no sign for additional transitions below T_C . Although this behavior is not present in bulk LaCoO₃, it is known for strained films on different substrates [42]. Although the films are fully relaxed in out-of-plane direction, the remanent magnetization is comparable to those samples investigated on other substrates. The small remanent magnetization can be explained by Co having the intermediate spin-state. The relaxation could reduce the effective magnetic layer thickness, leading to a further decrease of the magnetization.

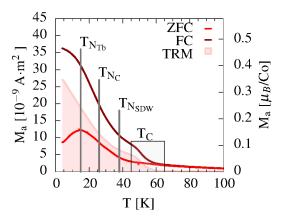
In contrast to the TbMnO₃ single layers the multilayer showed a reasonable magnetic signal due to the ferromagnetism of the LaCoO₃ layers. Temperature and field dependent magnetization measurements have been performed in all crystal directions and are depicted in **figure 6.5**. The systematic error on the moment per Co ion for these measurements is 5-10% due to the less precise thickness determination compared to the single layer. Field cooled measurements were performed in 10 mT before the corresponding thermal remanent magnetization. The sample shows a complex temperature dependence, different for each crystal direction. A broad ferromagnetic transition around 55-60 K is found in all crystal directions and attributed to the LaCoO₃ layers. Additional transitions due to the Mn order are most prominent in \vec{c} -direction as for the single layers. In contrast to the PLD single layers there is a trace of the cycloidal transition T_{N_C} in the zero field cooled measurement in \vec{c} . A transition attributed to Tb was found in \vec{a} -direction at 15 K.

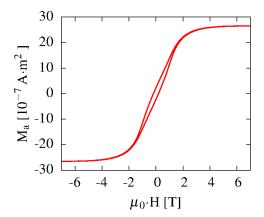
The hysteresis measurements in all directions show a small ferromagnetic component with low coercive field below T_C in all directions. The remanent magnetization in \vec{c} increases to lower temperatures presumably due to the Tb paramagnetic moment. Below $T_{N_{Tb}}$ the hysteresis shows a huge increase in coercive field as sign of a coupling between the ferromagnetic LaCoO₃ layers to the magnetic order, that sets in at $T_{N_{Tb}}$.

The interpretation of the different transitions below T_C need to be verified by microscopic magnetization measurements beyond the experiments in **section 6.3**.

6.2.2 X-ray magnetic circular dichroism

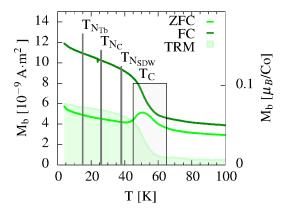
To clarify the origin of the ferromagnetic order in the multilayer, XMCD at the ^{Mn}L -, ^{Tb}M - and ^{Co}L -edges has been measured at the beamline 4-ID of the APS. In addition to the multilayer sample a TbMnO₃ and LaCoO₃ single layer was measured as reference, too. In the used setup (**figure 6.6**) the magnetic field is applied in beam direction and the sample surface is illuminated with 10° and 80° incident angle to measure the in-plane and out-of-plane magnetization components, respectively. The resistance of the substrate and the multilayer below 50 K is much too high to measure the absorption with electron yield, therefore a fluorescence detector was mounted at 2Θ =90°. For the total fluorescence yield a window of \approx 200 eV width reaching up to the excitation energy was used to get rid of background from e.g. oxygen fluorescence. For strong fluorescence signals, as for Tb, the beam needed to be attenuated to 10%, still leaving a detector dead time of 5-15% near the peak. As the incident beams with right and left circular polarizations did not have the same intensity, the non linearity of the detector due to dead time effects lead to a XMCD "ghost" signal even without magnetization. To get rid of this effect, measurements with positive and negative field have been performed at 5 T and 0.1 T to extract this measurement artifact, which than could be used to correct the data taken at other fields.

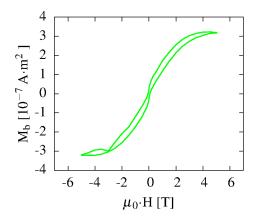




(a) M vs. T in \vec{a} -direction – Due to the large anisotropy axis of Tb the antiferromagnetic transition $T_{N_{Tb}}$ can be detected in the ZFC curve

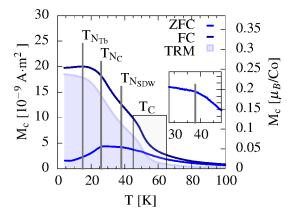
(b) Hysteresis at 4 K in \vec{a} -direction – The largest remanent magnetization is found in this direction with the smallest coercive field.

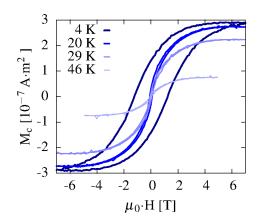




(c) M vs. T in \vec{b} -direction – Only the LaCoO₃ ferromagnetic transition is prominent in this direction

(d) Hysteresis at $4 \,\mathrm{K}$ in \vec{b} -direction – The shape anisotropy of the thin LaCoO₃ layers favors in-plane orientation, only a small remanent magnetization is left at zero field. Anomaly at -3 T from instrument error.





(e) M vs. T in \vec{c} -direction – The pronounced kinks in the ZFC measurement can only be explained by the Mn SDW and cycloidal ordering transition

(f) Hysteresis in \vec{c} -direction at different temperatures – Below $T_{N_{T_b}}$ the hysteresis shows a large splitting of more than 1 T, proving the coupling between Tb and La moments.

Figure 6.5: SQUID magnetometry on $\mathbb{TL}^{18/3}_{\times 20}$, all temperature dependent measurements were measured/cooled in 10 mT external field – Combining the temperature dependence of all crystal directions four transitions can be identified: The ferromagnetic order of LaCoO₃ at T_C , the spin-density wave transition of Mn at $T_{N_{SDW}}$, the cycloidal order transition at T_{N_C} and the Tb ordering temperature at $T_{N_{Tb}}$.

The extracted background signal for Tb is shown in **figure 6.7a** and has obviously no field dependence. No further corrections were applied to the TFY signal.



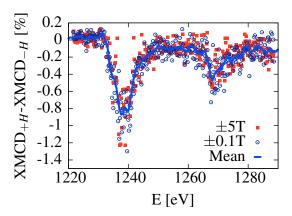
Figure 6.6: Setup used for XMCD

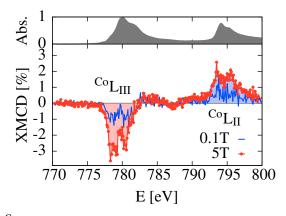
For the LaCoO₃ reference sample the magnetic field was applied in-plane. The 10 K measurement is shown in figure 6.7b. There is only a small XMCD with comparable weight on the ${}^{Co}L_{III}$ and ${}^{Co}L_{II}$ edges, which has a remanent component of approximately 40%. Using the L-edge sum rules described in section 2.4.5 one obtains the orbital and spin components of the magnetic moment by integrating over the two edges of the XMCD signal, shown in the graph **figure 6.7b** as blue and red regions, and dividing by the complete TFY signal over the number of holes (4 for Co, 3 for Mn and 6 for Tb). This formalism yields the magnetization components per ion directly from the measured absorption intensities and thus does not rely on any additional information about the samples (as e.g. elemental content). From this analysis no significant orbital moment was found while the spin components were $S_7(0.1 \,\mathrm{T}) =$ 0.074(2) and $S_7(5T) = 0.18(1)$, corresponding to a remanent magnetization of $\approx 0.15 \mu_B$.

The multilayer sample was mounted with \vec{a} parallel to the incident beam and the magnetic field. The XMCD measurements were performed in different magnetic fields as shown in **figure 6.8**. The remanent and saturation moments were extracted as for the single layer sample and were found to be $S_z(0.1\,\mathrm{T}) = 0.096(4)$ and $S_z(5\,\mathrm{T}) = 0.543(2)$ with a orbital contribution of $L_z(5\,\mathrm{T}) = 0.344(8)$. About 50% of the cobalt ions are in the intermediate spin state, the remaining ions in the low spin configuration. The calculated remanent moment of $\approx 0.21\mu_B$ is close to the values measured with SQUID thermal remanent magnetization of $\approx 0.3\mu_B$. The saturation and remanent moment measured on the multilayer is larger than for the single layer. A reasonable explanation for this effect is given by the crystal structure relaxation in the single layer, which lowers the magnetic moment especially close to the surface, where the XMCD signal is measured. The larger ratio between remanence and saturation for the multilayer can be interpreted as influence from the (rough) interfaces on the ferromagnetic coupling.

On the ^{Tb}M-edge only a small magnetization was found at 6 K in 5 T with $L_z = 0.063(4)$ and $(S_z + 3 \cdot T_z) = 0.087(5)$ pointing to antiferromagnetic correlations. There is no measurable remanent magnetization on Tb.

For the manganese absorption edge it is not possible to directly extract the absorption from the TFY measurement, as there is a large self absorption of the fluorescence photons in the material, leading to non linear response and in addition the proximity to the oxygen edge makes it difficult to fit the right energy window for the Mn fluorescence. Therefore a method proposed by Achkar et al. was applied [16]. The fluorescence detector window was set on the oxygen emission energy to measure the non resonant photo absorption inside the material. As the absorption coefficient far from the oxygen edge does not change very much over this small energy range, the oxygen ions can be used to measure the intensity of the direct beam inside the sample

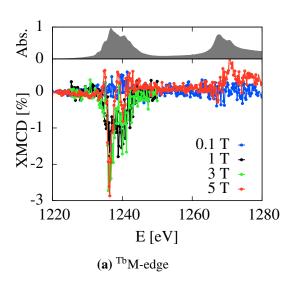




(a) XMCD background at 10 K at ^{Tb}M-edge due to saturation effects in the fluorescence detector

(b) ^{Co}L XMCD of \mathbb{L}_{35} at $10\,K$ in $0.1\,T$ and $5\,T$ with the associated TFY absorption.

Figure 6.7



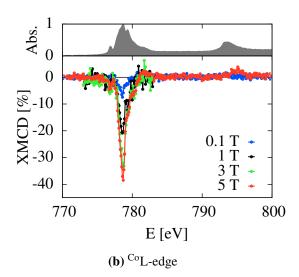
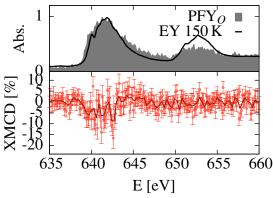
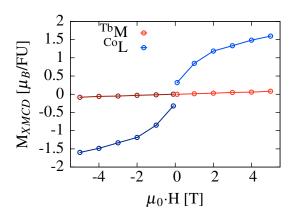


Figure 6.8: Field dependent XMCD measurements on $\mathbb{TL}^{18/3}_{\times 20}$ with corresponding absorption measured at 10 K. The 0.1 T and 5 T data was averaged from positive and negative field measurements.





(a) $^{\rm Mn}$ L-edge XMCD extracted from O_2 -fluorescence data at 6 K, ± 5 T

(b) Field dependent magnetization of $\mathbb{TL}^{18/3}_{\times 20}$ at 10 K approximated from data of **figure 6.8**

Figure 6.9

without strong self absorption effects. The reduced transmission at the ^{Mn}L -edge reduces the penetration depth of the incident beam and thus leads to lower intensity. It was shown, that the measured intensity is inverse proportional to the absorption of another element. **figure 6.9a** shows the absorption and XMCD signal around the Mn edge at $10 \, \text{K}$, $5 \, \text{T}$ extracted with this method. Although the statistics are much lower than for the other edges, a clean absorption spectrum could be extracted. There is no measurable remanent magnetization on manganese and the orbital and spin contributions are low even at $5 \, \text{T} \, (L_z = 0.12(3))$ and $S_z = 0.04(1)$.

The cobalt saturation and remanent magnetization was also measured with the incident beam in \vec{b} -direction. Although the penetration depth with normal incidence is higher, no significant remanent moment was found. The easy magnetic axis thus is lying in-plane, as is expected for thin magnetic layers. The 5 T measurements yielded $L_z = 0.16(4)$ and $S_z = 0.192(8)$. The orbital moment is quenched less than measured in \vec{a} -direction, which could be a result of the adjacent TbMnO₃ layers, which reduce the in-plane orbital moment contribution.

A field dependence of the approximated magnetization of Tb and Co is plotted in **figure 6.9b**, showing ferromagnetic behavior for Co and paramagnetism for Tb. Thus the macroscopic magnetization is governed by the LaCoO₃ ferromagnetism, which couples to the Tb and Mn moments. Although the Tb magnetization per ion is lower than for Co, the difference in layer thickness can lead to a reasonable enhancement of the magnetization by the Tb moments especially above $T_{N_{Tb}}$.

6.3 Microscopic magnetization

6.3.1 Polarized neutron diffraction

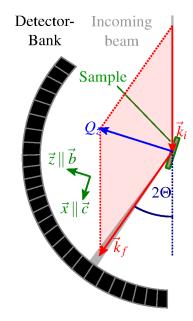
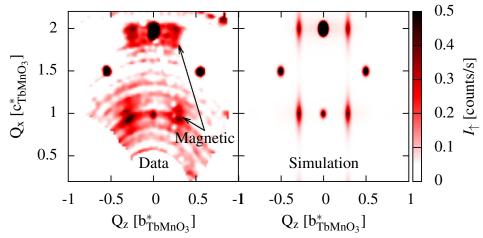


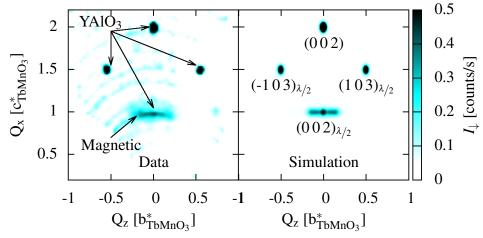
Figure 6.10: Setup of PND

The magnetic order of a stack of four samples was measured with polarized neutron diffraction at the DNS instrument. The samples were mounted with the \vec{a} axis parallel to the neutron polarization and perpendicular to the scattering plane (see figure 6.10), cooled down to 4 K and the spin-flip and non spin-flip intensities have been measured (figure 6.11). The measurement shows a strong deviation from the measurements on TbMnO₃ single layers shown in section 5.4.1. The magnetization in the bc-plane measured in spin-flip shows only a short range order in out-of-plane direction (broad peak in Q_z) with a long range antiferromagnetic stacking in the \vec{c} -direction. As \vec{Q} has mainly a Q_x component, which is parallel to \vec{c} , the magnetization measured, \dot{M}_{\perp} , in this region lies in \dot{b} -direction. An additional ordered component is found in the non spin-flip channel with magnetic moments in \vec{a} -direction, which is also long range correlated in out-of-plane direction and has a lower in-plane correlation length than found for the b-component.

¹Calculated from the orbital and spin momentum deduced by the sum rules, which needs to be considered with care (section 2.4.5).



(a) Non spin-flip channel, magnetic peaks from magnetic moment in \vec{a} -direction at $(0 \pm \tau_{Mn} \ 1)$ and $(0 \pm \tau_{Mn} \ 2)$



(b) Spin-flip channel, magnetic peaks with magnetic moment in the bc-plane at (0 0.12 1)

Figure 6.11: Polarized neutron diffraction data (left) of $\mathbb{TL}^{18/3}_{\times 20}$ measured with DNS at 4 K with simulation from proposed magnetic structure (right). Although the background from an empty sample holder measurement is subtracted, there is still some background visible due to the very low scattering intensity (originating from e.g. limited statistics of the background signal, paramagnetic scattering from the substrate and from the Tb-moments as found for the single layers in **section 5.4.1**).

The magnetic peaks are found at $(0\pm0.28\,\mathrm{L})$ positions with approximately equal structure factor. From this it is clear, that the order in \vec{c} -direction can be neither ferromagnetic nor antiferromagnetic, as these would forbid odd or even L reflections, respectively. All reflections are still found at 30 K, which is a clear sign, that order of the Tb moments cannot be the main source of the scattering, as their coupling is much weaker. The multilayer reflections in spin-flip and non spin-flip channel are clearly of magnetic nature, as they are much broader than the structural peaks, vanish above 40 K and appear at K<0.5 (where no structural peaks were found with x-ray diffraction at this temperature).

Although different magnetic structures could lead to the observed scattering, a model has been developed, which explains the results consistently with the structure model and magnetization measurements: A sketch of the model is shown in **figure 6.12**. The samples are cooled with the guide field in \vec{a} -direction, leading to ferromagnetic alignment of all Co spins in the LaCoO₃ layers in \vec{a} , too. The Mn moments in the adjacent TbMnO₃ monolayers are assumed to couple

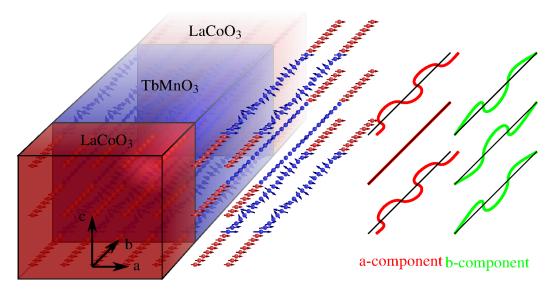


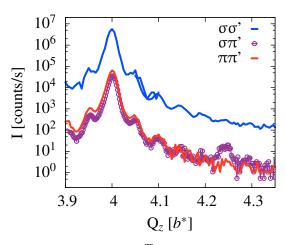
Figure 6.12: Magnetic structure model used for the simulation in **figure 6.11.** From left to right: Crystal directions and layer structure of the sample, spin orientations in LaCoO₃ (red) and TbMnO₃ (blue), a-component and b-component of the magnetization in the TbMnO₃ layer.

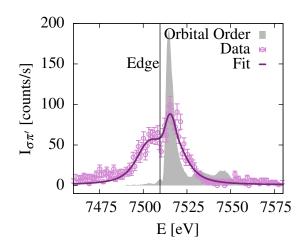
ferromagnetically to these ions, which leads to an \vec{a} -component of the magnetization, which forms a SDW with a propagation vector close to τ_{Mn} , fitting inside the layer. The antiferromagnetic superexchange in \vec{c} -direction contradicts this magnetic structure for every TbMnO₃ ab-plane, so that only every other Mn spin shows this magnetic order with parallel moments (A small anti-parallel component on the Mn ions in between could still be present. The quality of the data does not allow a final conclusion on the intensity ratio between the $(0 \tau 1)$ and $(0 \tau 2)$ reflections to compare it with the magnetic form factor and rule out antiferromagnetic correlations.). Through this mechanism the structure can form coherently through the whole multilayer, but has only a limited coherence length in \vec{c} -direction. For the \vec{b} -component the only constrains are nodal points at the interfaces (as the magnetization there is parallel to the adjacent Co). This allows SDW order with different periodicities governed by impurities and thickness fluctuations. This leads to magnetic structures without any inter layer coherence. The superexchange in \vec{c} can be fulfilled and thus leads to large coherence length in-plane.

This model explains the strong coupling of the ferromagnetic moment to the antiferromagnetic order parameter found in the SQUID measurements as well as the increased remanent magnetization found for the in-plane field direction below $T_{N_{\rm SDW}}$. The intensities calculated from this model are shown in **figure 6.11** and were derived by calculating the structure factor (**section B.3**) as FFT of the spin structure, building the absolute square of the structure factor, adding substrate delta peaks and convolving with a Gaussian resolution function.

6.3.2 X-ray resonant magnetic scattering

A multilayer sample was investigated with resonant magnetic scattering at the $^{\text{Tb}}\text{L-}$ and $^{\text{Mn}}\text{K-}$ edges at the P09 beamline of PETRA-III. Although the resonant enhancement at these edges is much lower than in the soft x-ray regime (especially for Mn) due to no direct involvement of the orbitals containing magnetic electrons in the scattering process, the larger \vec{Q} range accessible makes it possible to study higher order peaks. The experiments were performed with linear





- (a) Resonant signal at the $^{Tb}L_{III}$ -edge (\approx 7520 eV) for the different polarization channels at 4 K. The strong structural signal cannot be fully suppressed due to a finite polarization of \approx 99%.
- (b) Resonance enhancement of the magnetic $(0.4+\tau.1)$ reflection with two energy level fit from equation (4) in [115], compared to the scaled intensity of a reflection at (0.3.1) from the non spherical charge distribution of Tb.

Figure 6.13: Resonant magnetic x-ray scattering from $\mathbb{TL}_{\times 20}^{18/3}$ at $^{\text{Tb}}L_{\text{III}}$ -edge

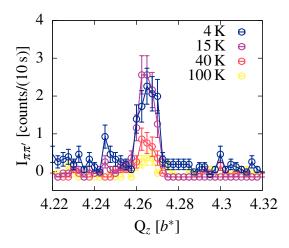
polarization and polarization analysis, the absorption edges were determined using metal foils. The sample was mounted in a cryostat with the \vec{b} -direction parallel to ϕ (z) and the \vec{a} -direction perpendicular to the scattering plane (y). Unfortunately the closed cycle cryostat, which was designated for the experiment, had a broken Joule-Thomson cooler and needed to be replaced with a backup system with higher base temperature. Only two days were left for the measurements after the replacement.

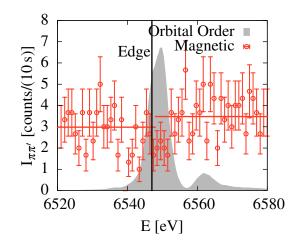
In resonance orbital order or Templeton scattering ([119]) of Mn and Tb have been found, as expected, on the forbidden (0 K L)-peaks with K odd. As can be seen in the measurement used to determine the structure of the multilayer **figure 6.2** the background from Thomson scattering of the multilayer crystal reflections is quite high, even far away from the Bragg-peaks. This made it impossible to measure the short range order found with neutron diffraction. To be able to measure magnetic scattering from the long range order, reflections with large $|\vec{Q}|$ were used to search for $(0 \text{ K} \pm \tau_{Mn} \ 1)$ reflections with K even.

At the ^{Tb}L_{III}-resonance a magnetic reflection was found at $(0.4+\tau_{Mn}\ 1)$ in the $\sigma\pi'$ channel (**figure 6.13a**). The energy dependence of this peak shown in **figure 6.13b** has a large shoulder 5 eV below the absorption edge and a peak directly at the resonance energy. A similar resonance shape is reported for bulk Tb metal and Er/Tb superlattices [115]. A fit to the resonant scattering interference of two excitation energies, as has been done in the former case (equation (4) of [115]), gives good agreement with the experimental data. As there is no peak in the $\pi\pi'$ channel, but only in $\sigma\pi'$, the major part of the magnetic moment lies in the bc-plane (cf. equation 2.56 with $\hat{e}_{\pi} \times \hat{e}_{\pi'} = \hat{a}$ and $\hat{e}_{\sigma} \times \hat{e}_{\pi'} \perp \hat{a}$), while there seems to be no large \vec{a} -component (which would lead to $\pi\pi'$ scattering). Thus the long range order of Tb in the low temperature phase reveals an additional complexity of the magnetic structure.

At the $^{Mn}K\text{-edge}$ the situation at the (0 4.25 1) position is providential, as the scattering angle 2Θ

²In contrast to magnetic neutron and Thomson scattering no form factor applies to resonant scattering as the spatial distribution of the initial state, the core level, determines the interaction region.





- (a) Non resonant (6520 eV) magnetic scattering in the $\pi\pi'$ channel. The background is extremely low because of prohibited Thomson scattering at $2\Theta \approx 90^{\circ}$.
- (b) Energy dependence of the magnetic peak at $4\,\mathrm{K}$ compared to a orbital order reflection at (010). There is hardly any resonance enhancement on the $^{\mathrm{Mn}}\mathrm{K}\text{-edge}$ visible.

Figure 6.14: Magnetic x-ray scattering from $\mathbb{TL}^{18/3}_{\times 20}$ close to the ^{Mn}K resonance

is almost exactly 90° . This has the consequence, that Thomson scattering with π polarization is completely forbidden, reducing the background several orders of magnitude. On the other hand, the resonance enhancement at this edge is very weak. At an energy slightly below the resonance a non resonant magnetic signal was detected (**figure 6.14a**) in $\pi\pi'$ with less than 1 cps but with a background level of only about one count per ten minutes. The peak shows a clear temperature dependence and is very narrow, evidencing the long range order through the multilayer stack. The magnetic moments have a component in the \vec{a} -direction, as the peak appears in the $\pi\pi'$ channel. There is hardly any resonance enhancement visible (**figure 6.14b**), which could be a sign that Tb and/or Co moments contribute to this magnetic order. These results do perfectly match the findings in **section 6.3.1**.

6.4 Summary

Thin films of strained LaCoO₃ and multilayers combining LaCoO₃ and TbMnO₃ have been created using PLD and investigated be different methods for their structural and magnetic properties. While single LaCoO₃ layers of 35 nm are already relaxed to the rhombohedral bulk structure, the multilayer with 20 bilayers is still strained to the YAlO₃ substrate **section 6.1**. The layer and crystal structure of the samples could be deduced from diffraction data obtained with synchrotron radiation at a multilayer Bragg-reflection.

SQUID magnetometry revealed, that the strained LaCoO₃ layers get ferromagnetic below \approx 62 K and comparing the moment deduced with XMCD with the multilayer reveals, that relaxation reduces the magnetism, an effect that leads to a larger magnetization at the substrate-film interface than at the sample surface. The orthorhombic distortion in the strained layers could thus be the major key to explain the ferromagnetism in LaCoO₃ thin films. Magnetization measurements on the multilayer show a complex anisotropic behavior with several transitions section 6.2.1. From element specific magnetization measurements with soft x-ray magnetic

circular dichroism (in-plane and out-of-plane) the only ferromagnetism found belongs to Co moments with easy axis in-plane section 6.2.2.

The antiferromagnetic order in the multilayer was probed with polarized neutron and resonant x-ray diffraction **section 6.3**. A long range order through the whole multilayer with the magnetic moments in \vec{a} -direction was observed with both methods and explained with a spin model, which was also used to model the neutron data. An additional magnetic moment component in \vec{b} -direction with long range in-plane, but only short range out-of-plane order, was observed with polarized neutrons. Even more complexity of the magnetic structure is evidenced by resonant diffraction on the Tb edge with magnetic moments in the bc-plane and long range correlations through the multilayer with a magnetic propagation vector $(0 \tau 1)$.

Although additional investigations of the magnetic order (especially in dependence of external fields and temperature) are needed to understand the full complexity of the magnetic structure, a strong coupling of the Mn and Tb moments in the TbMnO₃ layers to the ferromagnetic Co moments has been observed. To measure the layered ferromagnetism in the system with neutron reflectivity, large samples with homogeneous thicknesses and well defined periodicity are needed, which could be produced with sputter deposition as described in **chapter 5**.

The spin model introduced for the [TbMnO₃-LaCoO₃]-multilayers should be tested with further scattering measurements including xyz-polarization analysis and a more detailed temperature dependence. As the kinematic multilayer simulation proofed very useful to deduce the layer parameters of films with small contrast in reflectivity, a user interface in the evaluation program and an option to calculate arbitrary scattering directions will be implemented to allow fast evaluation of measured diffraction patterns.

Chapter 7

Experiments III: [EuTiO₃-BaTiO₃]-Multilayers

The emergent ferromagnetism observed in EuTiO₃ single layers (see **section 2.3.4**) was investigated for systems containing interfaces to BaTiO₃. Although the EuTiO₃ lattice in these heterostructures is highly strained, the interface to BaTiO₃ could inhibit long range magnetic order. Multilayers of different thickness ratios between EuTiO₃ and BaTiO₃ have been created on GdScO₃ substrates using PLD and are listed in **table 7.1**. The magnetization of the layers could not be measured with SQUID magnetometry because of the large paramagnetism of the GdScO₃ substrates and was thus investigated layer resolved with polarized neutron reflectivity at D17 of ILL. All samples have been additionally characterized with x-ray reflectivity and diffraction.

Polarized neutron and x-ray reflectivity measurements were refined together with the same model (**section 3.5.7**), only exchanging the elemental scattering powers for each radiation. The x-ray diffraction was simulated with a multilayer model (**section 3.5.7**), too. The refinements are challenging as the x-ray reflectivity contrast is limited and the thickness inhomogeneity modeling adds further parameters to the already large number of parameters in the model. Nevertheless, very well agreement of the reflectivity data with the refinement could be achieved as can be seen in **figure 7.1** and **7.3**.

7.1 Crystal structure

The simulation over a large \vec{Q} range requires the correct model parameters for each layer as well as the crystal unit cell (structure factor). Even if it can be assumed, that the model itself describes the samples very well, these parameters need to be found with a good first guess,

ID	d_{EuTiO_3}	d_{BaTiO_3}	$\sigma_{avg.}$
$\mathbb{EB}^{3/3}_{ imes 20}$	$1.0(1)\mathrm{nm}$	1.1(1) nm	0.7(1)
$\mathbb{EB}^{4/6}_{ imes 20}$	1.44(6) nm	2.48(5) nm	0.38(4)
$\mathbb{EB}^{4/10}_{ imes 20}$	1.8(1) nm	3.8(1) nm	0.18(5)
$\mathbb{EB}^{12/10}_{ imes 20}$	4.9(7) nm	3.9(5) nm	0.7(1)

Table 7.1: Parameters overview of [EuTiO₃-BaTiO₃]-multilayer samples created for the study. A complete list of all extracted parameters can be found in **table A.3**.

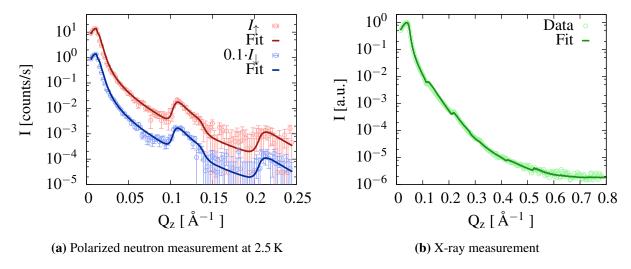


Figure 7.1: X-ray and neutron reflectivity from $\mathbb{EB}^{4/10}_{\times 20}$ refined with the same model: Bilayer periodicity D= $5.56(5) \pm 0.37$ nm, $d_{BaTiO_3}/D=0.68$, $\sigma_{BaTiO_3}=0.13(10)$ nm and $\sigma_{EuTiO_3}=0.30(2)$ nm

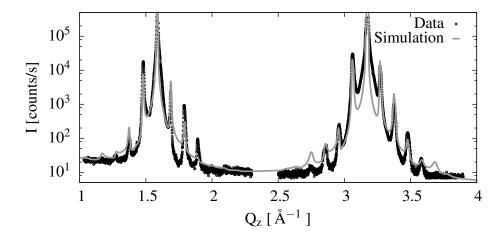


Figure 7.2: X-ray diffraction from $\mathbb{EB}_{\times 20}^{4/10}$ with kinematic simulation: Bilayer periodicity D= 6.01 nm, ratio $d_{\text{BaTiO}_3}/D=0.64$, $a_{BaTiO_3}=4.01$ Å, $a_{EuTiO_3}=3.90$ Å, $\delta N_A=0.3$, $\delta N_B=0.3$

as they do not always influence the intensity profile predictably. Refinement of the simulation parameters was not possible as the background of the Bremsberg from the substrate peaks dominates the spaces between the multilayer peaks. The high quality of the epitaxial growth is obvious in the sharp peaks on both sides of the substrate peaks in **figure 7.2** and **7.4**. Although the agreement with the simulation is qualitatively correct they could not be numerically refined to deduce the parameters with errors. It is found by varying the simulation parameters, that for more than 1 UC thickness variance (δN), the peaks are much broader than measured and vanish completely above 2-3 UCs. This fact is verified with the measurements done on $\mathbb{EB}^{3/3}_{\times 20}$ and $\mathbb{EB}^{12/10}_{\times 20}$, which have increased roughness values and do hardly show any peaks in the diffraction measurement. From the peak positions, the bilayer periodicity can be extracted precisely and, due to the inhomogeneity, is larger than the average as it is measured in the center of the sample. The lattice parameters extracted from the simulation can only be seen as estimates, as they are determined from the peak intensities together with the structure factor (determined by position and occupancy of elements in the unit cell).

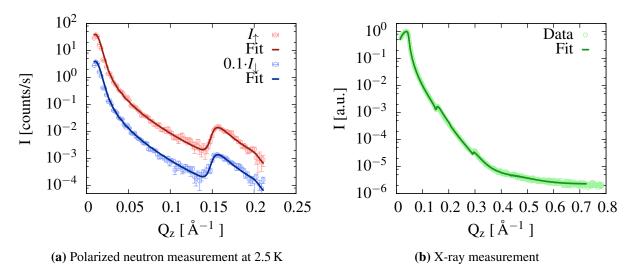


Figure 7.3: X-ray and neutron reflectivity from $\mathbb{EB}^{46}_{\times 20}$ refined with the same model: Bilayer periodicity D= 3.92(2) \pm 0.17 nm, d_{BaTiO_3}/D = 0.63, $\sigma_{BaTiO_3} = 0.42(3)$ nm and $\sigma_{EuTiO_3} = 0.35(2)$ nm

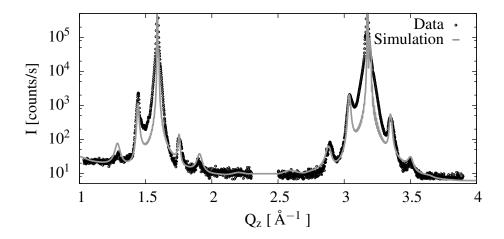


Figure 7.4: X-ray diffraction from $\mathbb{EB}_{\times 20}^{4/6}$ with kinematic simulation: Bilayer periodicity D=4.02 nm, ratio $d_{\text{BaTiO}_3}/D=0.67$, $a_{BaTiO_3}=3.97$ Å, $a_{EuTiO_3}=3.86$ Å, $\delta N_A=0.7$, $\delta N_B=0.1$

7.2 Layer structure and magnetization

Figure 7.1a and 7.3a show the spin-up and spin-down neutron reflectivity measured on $\mathbb{EB}^{4/10}_{\times 20}$ and $\mathbb{EB}^{4/6}_{\times 20}$ together with the refinements. The spin-down intensities are scaled by a factor of 10 for better visibility. As for the x-ray data figure 7.1b and 7.3b the main features are sharp drops at the total reflection angle and a broad multilayer peak with a sharp inclination at the low $|\vec{Q}|$ side. The position of the total reflection plateau is determined by the average scattering length density of the multilayer and the SLD of the substrate. On the other hand the peak height is determined by the difference in SLD and thickness ratio of the BaTiO₃ and EuTiO₃ layers. From both features together with the different contrast between neutrons and x-rays the ratio between both layers and their density can be extracted precisely. For multilayers with homogeneous thickness the multilayer reflection would be a symmetric peak, but the asymmetric thickness distribution explained in section 3.5.7 leads to a sharp increase and slow drop.

The combined neutron and x-ray refinement yielded large thickness inhomogeneities between 4% and 8%. The model also used in former chapters for reflectivity simulation has been verified, as the form of the multilayer Bragg-peak in the combined neutron and x-ray reflectivity data could only be fited using the implemented thickness variations. Although this imperfection in the samples reduce the Bragg intensity and broadens the peaks, the data can be simulated to gain precise information on roughness and magnetization. The roughnesses of the layers vary from sample to sample between 0.2 nm and 0.7 nm and are larger on top of the EuTiO₃ layers. For the neutron data taken at 2.5 K the multilayer Bragg-peaks in I_{\uparrow} and I_{\downarrow} are identical and the fit shows, that there is no ferromagnetism in the multilayers with an upper limit of $0.01\mu_B/\text{Eu}$. Although the wavelength spread of the D17 monochromator supermirror was measured in time-of-flight mode and included in the model, no significant change in the intensity profile is observed due to the broad multilayer peaks.

7.3 Summary

It has been shown with x-ray diffraction, that epitaxial strained [EuTiO₃-BaTiO₃]-multilayers were created with pulsed laser deposition. Although the EuTiO₃ layers are highly strained in the multilayer structures, ferromagnetism could be excluded with high precision using polarized neutron reflectivity down to 2.5 K. This contradicts the expectations, as single films have been found to exhibit ferromagnetism below 4 K in similar systems [76]. This effect can be explained by an electronic exchange mechanism between EuTiO₃ and BaTiO₃ layers, as the alloy Eu_{0.5}Ba_{0.5}TiO₃ does not order at all, although an influence of the sample quality can never be excluded. The refinements of the data proof the applicability of the introduced models to similar oxide systems, as has been done in the previous chapters. The different contrast in the neutron and x-ray reflectometry could be used to improve the reliability of the extracted physical parameters.

Chapter 8

Conclusion

In the framework of this dissertation several transition metal oxide compounds have been created in thin films and heterostructures by pulsed laser and oxide sputter deposition. The samples have been investigated for their structural, magnetic and ferroelectric properties using a variety of experimental methods. For the data treatment a general evaluation program with graphical user interface Plot.py (≈ 40000 lines - [137]) was written and several modules have been implemented, which allow the treatment of magnetometry, reflectivity, diffraction and small angle scattering in a modular, platform independent framework.

The layer dimensions, interface and surface roughnesses were explored with x-ray reflectivity and out-of-plane diffraction. For the reflectivity data standard Parratt modeling schemes were expanded by describing non-Gaussian roughness on the surfaces with additional layers and introducing lateral layer thickness variations by averaging intensities of multiple simulations with a custom weighting function. The diffraction patterns were modeled with kinematic simulations for single and multiple crystal layers incorporating meandering from the average layer thicknesses. Macroscopic magnetization measurements have been performed with SQUID magnetometry and element specific x-ray magnetic circular dichroism. Although the magnetization of the samples is low compared to background, due to inclusions in the substrates, different transitions could be observed. The orbital and spin contributions of the magnetic moment could be extracted by analyzing the XMCD spectra. Polarized neutron and resonant x-ray diffraction have been used to probe the microscopic magnetic structure inside the films. Different antiferromagnetic states could be observed including their temperature dependence. For the thin films the cycloidal magnetic structure and ferroelectricity has been probed with resonant x-ray diffraction and second harmonic generation.

On YAlO₃ substrates, epitaxial thin films of TbMnO₃ and DyMnO₃ with thicknesses between 2 nm and 400 nm were created by PLD and sputtering to analyze their multiferroic behavior in dependence of the film thickness. In contrast to earlier studies of TbMnO₃ thin films deposited on different substrates [73, 80, 102] ferromagnetism was not observed in these investigations. The spin density wave antiferromagnetic order of the Mn moments, found in bulk material, was observed in all samples with polarized neutron diffraction, soft x-ray resonant magnetic scattering and via a weak ferromagnetic component in SQUID magnetometry. A trace of the Tb and Dy order has been noticed in a reduction of the Mn order parameter below this temperature. In a few samples this order was directly observed with resonant scattering. While the ordering temperature ($T_{N_{Tb}}$) varies from sample to sample, it is generally elevated as compared to bulk values. The cycloidal magnetic structure, responsible for the ferroelectricity, was found in the TbMnO₃ sputter samples with circular dichroic soft x-ray resonant magnetic scattering. The dependence of the magnetic domain walls on the position of the photoelectric charge while

cooling (as observed for bulk DyMnO₃ [107]) and the second harmonic generation is the first direct observation of ferroelectricity in TbMnO₃ thin films. A significant structural or stoichiometric difference between samples produces with sputtering and PLD was not observed, thus the difference in magnetic behavior can be explained by the morphology of the layers (droplets, inclusions) and small deviations in the stoichiometry in the PLD samples. The ferroelectric ordering parameter also decreases below T_{N_{Tb}} which is known from DyMnO₃, but can't be observed in bulk TbMnO₃. Down to 6 nm film thickness no significant change in the magnetic behavior was found, a slight decrease of the ordering temperature of a few Kelvin could be observed. In summary the films behave similar to their bulk crystals concerning multiferroic properties, measured for the first time on orthorhombic TbMnO₃ films, as they are almost unstrained by the used substrates. The increased ordering temperature of the rare earth ions and the influence on the Mn order in TbMnO₃, that both have been found in all films are different, though. These characteristics proofed the combination of YAlO₃ substrates with TbMnO₃ perfectly suited to look for interlayer exchange processes in heterostructures with other transition metal oxides.

Due to the ferromagnetism reported for strained LaCoO₃ films [42], single layers of the material deposited with PLD were investigated as candidates to interface with TbMnO₃ in a multilayer system. Epitaxial growth on YAlO₃ could be verified with x-ray diffraction, although 35 nm films are already relaxed to their rhombohedral bulk crystal structure. A ferromagnetic transition at 62 K could be observed with SQUID magnetometry. Combining these results with XMCD analysis leads to the hypothesis, that only the strained regions close to the substrate get ferromagnetic due to orthorhombic distortion, as the measured magnetic moment per Co ion is lower than for the unrelaxed films in multilayers.

20 repetitions of 2 nm LaCoO₃ and 10 nm TbMnO₃ have been produced on YAlO₃ substrates with PLD, intended to probe interlayer exchange coupling between the ferromagnetism in the LaCoO₃ layers and the antiferromagnetic Mn order in TbMnO₃. The LaCoO₃ lattice parameters determined with x-ray diffraction are compatible with a fully strained orthorhombic crystal structure. The ferromagnetic components in the multilayer investigated with XMCD show Co contributions and are much stronger in average than for the single film due to the higher strain. The SQUID magnetometry measurements reveal a strong influence of the TbMnO₃ ordering transitions on the LaCoO₃ ferromagnetism. A complex magnetic order has been observed by polarized neutron diffraction. Correlations through the multilayer with magnetic moment in the TbMnO₃ \vec{a} -direction and short range correlations with moments in \vec{b} -direction have been found. The scattering intensities could be simulated from a spin structure with moments ordering in \vec{b} -direction only inside a single TbMnO₃ layer and the \vec{a} -component coupled ferromagnetically to the adjacent Co moments. The propagation vector and the high correlation length of this order could be confirmed with non resonant magnetic x-ray diffraction.

As a candidate for a artificial multiferroic compound, multilayers of the ferroelectric BaTiO₃ and EuTiO₃, which gets ferromagnetic in strained films [76] with a large magnetoelectric coupling [112], were produced by PLD with different thickness ratios. The good structural quality was confirmed by x-ray and neutron reflectivity and x-ray diffraction. From the refinement of the polarized neutron reflectivity with a well matched model, a ferromagnetic order could be excluded with high precision ($<0.01\mu_B/\text{Eu}$) down to a temperature of 2.5 K.

Finally, the combined results of the different systems testify, that x-ray diffraction on film Bragg-reflections together with x-ray (and neutron) reflectometry constitute the perfect tools

to gain precise structural information from oxide thin films. The pure reflectivity measurements are often limited due to low contrasts, while the diffraction (which gains contrast from different lattice constants) is complicated to model without further information and less precise in determining roughnesses. The implemented models show a perfect agreement with the measurements on all samples and are consistent between the different methods, using the same parameters. Non-Gaussian roughness, used to explain additional surface layers introduced for the reflectivity modeling, could be confirmed with atomic force microscopy on TbMnO₃ layers. In the future, an improvement of the model will be added, with a mathematic foundation to calculate the rms roughness from these additional layers. The lateral thickness variations, often found in large PLD samples, could be described with a simplified distribution function, leading to good agreement with the experimental data, most prominently evident in the combined x-ray and neutron refinement of the [EuTiO₃-BaTiO₃]-multilayers.

Acknowledgment

I want to thank the following people, who contributed a lot to the outcome of this work:

Prof. Thomas Brückel for the opportunity to work on this very interesting subject with a lot of freedom in choosing the direction of my investigation. I could profit from a rich pool of methods and know how working in this group.

Prof. Matthias Wuttig who agreed to take the second revision of this thesis.

Jörg Voigt for an extremely well mentoring. I always enjoyed our discussions in the coffee kitchen. You had an open door for me every day and the patience to sustain my eagerness to solve a problem. I would also like to thank you for the nice beamtimes we carried out together.

Jürgen Schubert for the sample creation with pulsed laser deposition and a lot of fruitful discussions. This collaboration could not have been better. Additional acknowledges for the RBS analysis together with **Willi Zander**.

Jörg Perßon for the expeditious help with the target and substrate preparation.

Eugen Weschke and Enrico Schierle for initiating a nice collaboration for the soft XRMS experiments. The beamtimes at BESSY were extremely interesting and had an outcome, which is one of the most important parts of this thesis.

Prof. Manfred Fiebig and Carsten Becher for the opportunity to measure SHG in four days of hard work. The interesting results always need to be found on Friday evening ...

Tom Fennell, John Freeland, Stefan Mattauch, Jörg Strempfer, Yixi Su and Andrew Wildes for their help and scientific support at the different x-ray and neutron experiments (D7, 4-ID, TREFF, P09, DNS and D17).

Daniel Schumacher for the assistance at the 4-id beamtime and a lot of nice discussions about out similar subjects.

Elisabeth Josten for joining us at the P09 measurement and your support during the whole work for this thesis.

With the words of another wise scientist **Dr. Boris Glavic**: I want to thank **my parents** for contributing to my existence and my father for trying to read this bunch of scientific rigmarole.

Last but not least I'm very grateful for the lovely atmosphere at the institute for scattering methods. I enjoyed working with everybody and getting some insight in very different fields of investigation, too.

Appendix A

Additional Figures and Tables

In this chapter additional figures are listed. The according descriptions can be found in the earlier chapters.

A.1 Sample parameters

The tables on the following pages list the quantitative results measured for the different samples described in **chapter 5**, **chapter 6** and **chapter 7**. The Δ values after each parameter denote the errors extracted from fits to the experimental data. Many parameter have asymmetric errorbars, in those cases the average of the upper and lower bounds were taken for simplicity. If the experiments could only be simulated without refinement the errors could not be calculated.

SHG			Sof	ft X	K-ra	ay	RN	1S			S	QU	ID				XF	RD									X	-ra	y I	Ref	lect	tivi	ty						
$rac{ extsf{T}_{ ext{N}_{ ext{C}}}\left[extsf{K} ight. ight]}{ extsf{T}_{ ext{N}_{ ext{Tb}}}}$	Δ	TbMnO $_3$ b [Å]	۵	layer roughness σ [Å]	magnetic corr. length d _{mag} [Å]	D	layer thickness d ₍₂₀₀₎ [Å]	$T_{N_{Tb}}$ [K]	$T_{ m N_C}$ [K]	$\mathrm{T_{N_{SDW}}}$ [K]	$T_{N_{Tb}}$ [K]	T_{N_C} [K]	${ m T_{N_{SDW}}}$ [K]	TbMnO ₃ b (D8) [Å]	TbMnO $_3$ c [Å]	TbMnO ₃ b [\mathring{A}]	TbMnO ₃ a [Å]	\D	Voigt $\gamma_{(200)}$ [°]	Δ	Voigt $\sigma_{(200)}$ [°]	inhom. standard deviation [%]	Δ	inhom. fraction of Lorentz	Δ	inhom. plateau width [%]	Δ	inhom. Lorentz γ [%]	Δ	substrate roughness σ [Å]	Δ	combined σ [Å]	Δ	cap layer σ [Å]	Δ	layer roughness σ [Å]	٥	thickness d [Å]	Sample
													21					0.002	0	0.003	0.01	20	0.5	0.25	13	18	5	20	0.1	1.5	0.1	3.7			0.1	3.7	0.5	22.4	$\mathbb{T}_2^{\mathrm{PLD}}$
																		0.002	0	0.001	0.015	7.8	0.15	0.7	0.8	7.14	0.25	17.7	0.2	1.56	0.04	4.16			0.04	4.16	0.3	49.9	Tşu.
					56			=		38			36					0.0009	0.001	0.0009	0.011	1.26	0.3	0.96	1.5	17	1.3	17.3	0.3	2	0.1	5			0.1	5	1	92.4	$\mathbb{T}_9^{ m PLD}$
	0.01	5.84	သ	3.2		2.3	179	15		37			36	5.85		5.67		0.0004	0.0006	0.0004	0.012	2.33	0.15	0.9	0.5	5.6	_	19	0.005	1.57	0.005	5.48			0.005	5.48	1.5	175.5	T18
																		0.0008	0.005	0.0005	0.013	4.2	0.1	0.73	2	4.5	0.3	2	0.1	1.9	0.4	10.9	0.3	9.34	0.2	5.67	2	544.6	T ₅₄ T ₅₄
					107			15		30	7							1.10^{-6}	0.02	0.026	0.																		TPLD 200
														5.57				0.001	0	0.001	0.02	16	0.25	0.5	5	24.8	1.6	18.75	0.1	1.1	0.5	6.3	0.5	5	0.07	3.9	0.4	20.1	$\mathbb{T}_2^{\mathrm{SD}}$
					34				23	40			39	5.75				0.0003	0.001	0.0003	0.015	1.01	0.02	0.936	0.1	30	0.3	2.12	0.2	_	0.3	8.5	0.13	6.79	0.3	5.08	0.3	58.75	T ₆ D
					80			10	25	41.5			40	5.82	7.39	5,66/5,74	5.39	0.0003	0.005	0.0003	0.0081	1.2	0.1	0.92	6	17.5	4	1.5	0.1	1	0.25	5.6	0.2	3.1	0.15	4.7	1.6	106	Tue
		5.74		သ	115		145							5.78		5.72		0.00005	0.0021	0.00005	0.011	0.7	0.03	0.95	2.5	13.6	0.6	1.1	0.1	2	:	3.7	_	0.6	0.02	3.6	1.3	159.2	T ₁₆
												29	43	5.83				0.0003	0.0015	0.0003	0.0128	0.15	0.1	0.991	3	18.5	3	3.9	0.2	1.1	0.9	8.4	0.8	6.5	0.5	5.3	0.3	196.2	TSD 20
		5.82		4	191		285						39	5.82				0.0003	0.0026	0.0002	0.01	0.6		0.85	5	2	0.5	_	0.1	_	0.1	4.8			0.1	4.8	1.5	309	T31
														5.83		5.735				0.00006	0.018	2.4	0.05	0.83	4	7.14	0.1	0.8	0.25	1.4	0.8	8.8	0.6	6.2	0.2	6.4	သ	461.7	T8D
27 12		5.81			195		1,000		27	42				5.83	7.32	5,83/5,85	5.32					0.43	0.2	0.69	0.2	1.8	0.1	1.56	0.1	1.6	0.2	14.5	0.2	12.4	0.05	7.6	2	1,007.3	T ₁₀₀
											9		42		7.37	5,76/5,86	5.32																						TSD 400

Table A.1: Sample parameters measured with different methods on TbMnO₃ single film samples

	Sample	\mathbb{D}_2	\mathbb{D}_5	\mathbb{D}_{10}	\mathbb{D}_{20}	\mathbb{D}_{100}
	thickness d [Å]	20.7	52.96	95.7	195.7	1,000
	Δ	0.3	0.4	1	1.8	
	layer roughness σ [Å]	5.06	7	4	5.3	3.3
	Δ	0.3	1	0.25	0.4	0.05
	cap layer σ [Å]	3.2	2.738	2.4	3.55	20
5	Δ	0.15	0.1	0.001	0.06	5
X-ray Reflectivity	combined σ [Å]	5.987	7.516	4.665	6.379	20.27
ect	Δ	0.335	1.005	0.25	0.404	5
Sef	substrate roughness σ [\mathring{A}]	1.2	1.5	1.36	2.2	
Iy F	Δ	0.3	-	0.1	1	
-ra	inhom. Lorentz γ [%]	35.8	18	22.9	17.6	
×	Δ	5	1	2	2.5	
	inhom. plateau width [%]	37	18	49.95	40	
	Δ	4	7	3	2	
	inhom. fraction of Lorentz	0.3	0.54	0.997	0.899	
	Δ	0.2	0.2	0.1	0.2	
	inhom. standard deviation [%]	11	5.3	13	10.8	
	Voigt $\sigma_{(200)}$ [$^{\circ}$]	0.013	0.017	0.0127	0.01	
	Δ	0.0004	0.0006	0.00006	0.0001	
₽	Voigt $\gamma_{(200)}$ [°]	0.00076	0.0015	0.0015	0.003	
XRD	Δ	0.0004	0.00056	0.00007	0.0001	
	$DyMnO_3$ a [Å]					5.30
	$DyMnO_3$ b [$ ext{Å}$]					5.84
	DyMnO $_3$ c [Å]					7.47
	$DyMnO_3$ b (D8) [Å]	5.6	5.84	5.86	5.85	
	$T_{N_{\mathrm{SDW}}}$ [K]		35(5)		33	30
	T_{N_C} [K]					
IS	$T_{N_{\mathrm{Dy}}}$ [K]				16	20
RMS	layer thickness $d_{(200)}$ [Å]				185	
a	Δ				4	
Soft X-ray	magnetic corr. length d _{mag} [Å]					
ft >	layer roughness σ [Å]				3.4	
So	Δ					
	DyMnO ₃ b [Å]				5.82	
	Δ				0.01	

Table A.2: Sample parameters measured with different methods on DyMnO₃ single film samples

Table A.3: Sample parameters measured with different methods on LaCoO₃ single layer, [EuTiO₃-BaTiO₃]-multilayer and [TbMnO₃-LaCoO₃]-multilayer 5

		XI	RD									R	efle	ecti	ivit	y									
lattice parameter b ₂ [Å]	thickness distributions δN_2	layer thickness d ₂ [Å]	lattice parameter b_1 [Å]	thickness distributions δN_1	layer thickness d ₁ [Å]	Δ	layer roughness σ_2 [Å]	Δ	thickness d ₂ [Å]	Δ	layer roughness σ_1 [Å]	Δ	thickness d ₁ [Å]	inhom. standard deviation [%]	Δ	inhom. fraction of Lorentz	Δ	inhom. plateau width [%]	Δ	inhom. Lorentz γ [%]	Δ	substrate roughness σ [Å]	Layer 2	Layer 1	Sample
						2	7	1	11.1	0.7	7.2	1	10	3.9	0.2	0.99	ယ	13.9	2	12	6	9.6	BaTiO ₃	EuTiO ₃	$\mathbb{EB}^{3/3}_{ imes 20}$
3.97	0.7	26.9	3.86	0.1	13.3	0.4	4.1	0.5	24.8	0.3	3.3	0.6	14.4	4.3	0.01	0.96	1	14.9	ယ	13.7	0.5	10.1	BaTiO ₃	EuTiO ₃	正
4.01	0.3	38.5	3.9	0.3	21.6	_	0.7	1	37.8	0.2	2.5	_	17.8	6.6	0.04	6.6	3	24.1	_	9.3		9.6	BaTiO ₃	EuTiO ₃	正跟 4/10 ×20
						1	6.8	5	39.3	0.5	7	7	48.7	7.8	0.1	0.99	ယ	28.5	2	17.6	1	6.1	BaTiO ₃	EuTiO ₃	正B ^{12/10} _{×20}
						5	SQI	UII	0																
						$\mathrm{T_{C}}\left[\mathrm{K}\left. ight]$	$\mathrm{T_{N_{Tb}}}\left[\mathrm{K} ight]$	$\mathrm{T_{N_C}}\left[\mathrm{K} ight]$	$\mathrm{T_{N_{SDW}}}$ [K]																
			5.38		328	62	ı	ı	ı	0.1	5.1	သ	348	0.68	0.1	0.71	10	2.1	_	6.6	0.1	3.4	ı	LaCoO ₃	\mathbb{L}_{35}
5.7	1.2	18.8	5.75	0.8	101	58	15	26	38														LaCoO ₃	TbMnO ₃	$\mathbb{TL}^{\mathbf{18/3}}_{ imes 20}$

A.2 X-ray reflectivity simulations

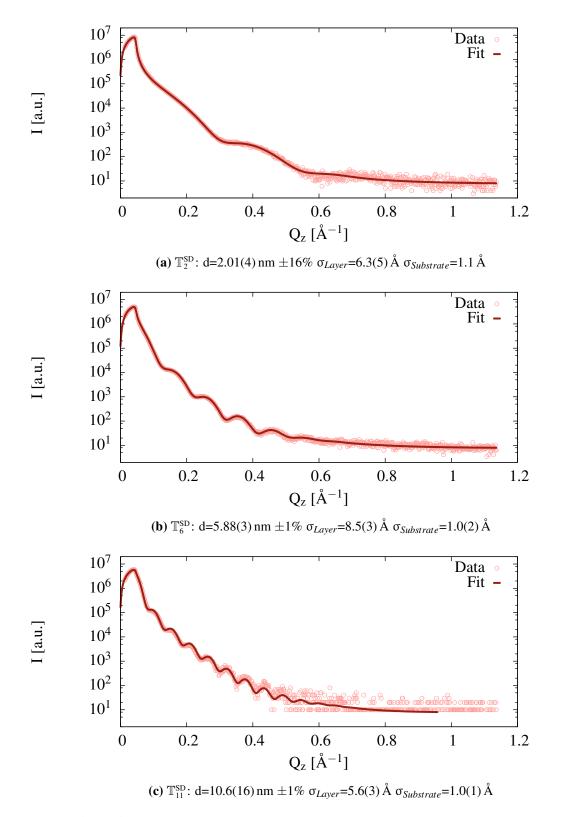


Figure A.1: X-ray reflectivity on TbMnO₃ single layers created by sputter deposition

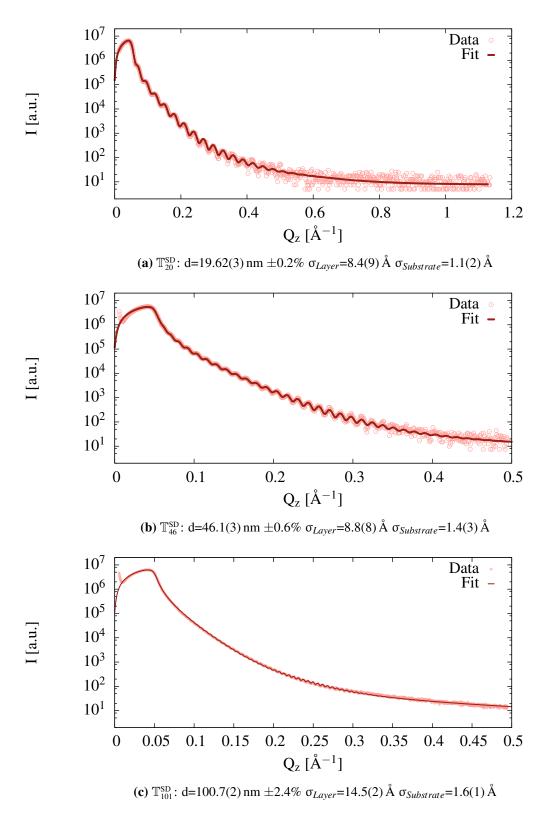


Figure A.2: X-ray reflectivity on TbMnO₃ single layers created by sputter deposition

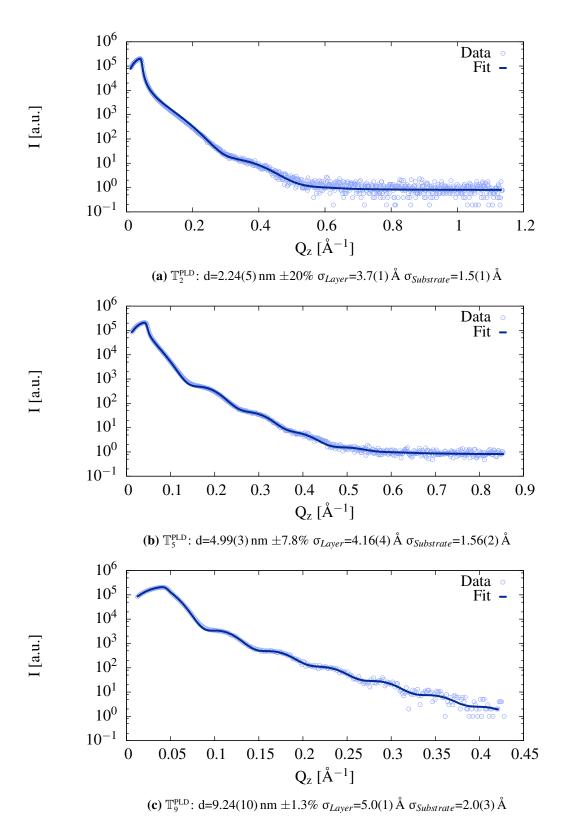


Figure A.3: X-ray reflectivity on TbMnO₃ single layers created by PLD

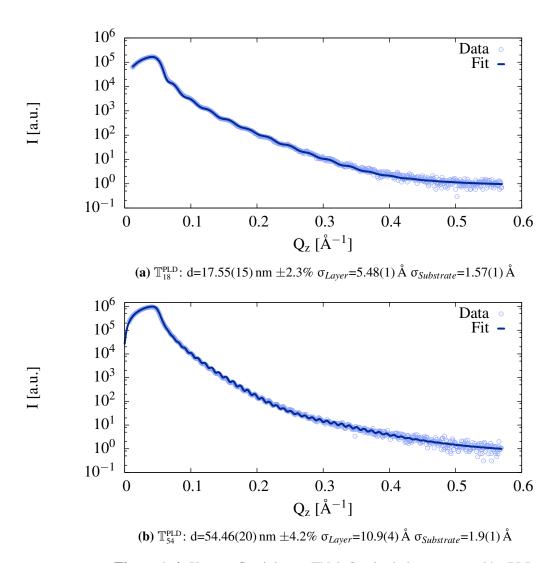


Figure A.4: X-ray reflectivity on TbMnO₃ single layers created by PLD

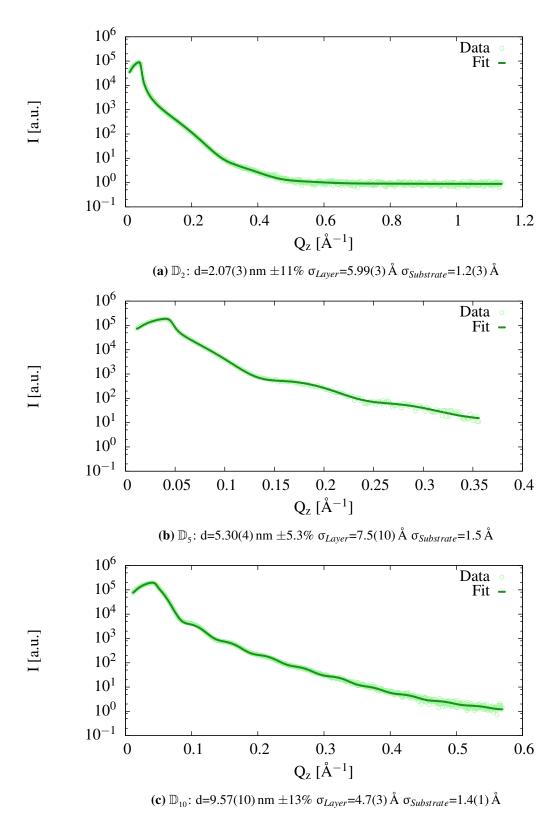


Figure A.5: X-ray reflectivity on DyMnO₃ single layers created by PLD

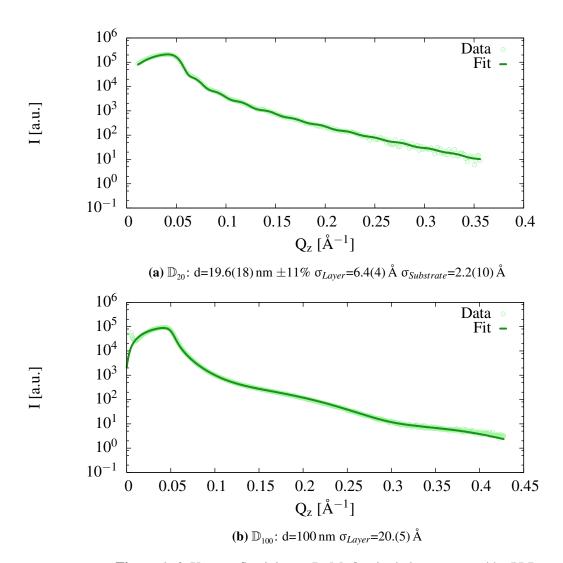


Figure A.6: X-ray reflectivity on DyMnO₃ single layers created by PLD

A.3 Substrate imperfections

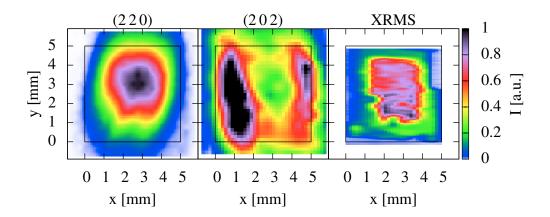
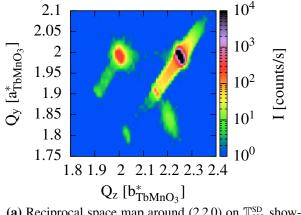
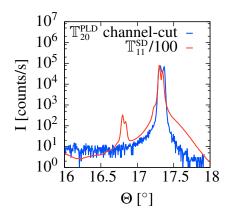


Figure A.7: Comparison of the xy-meshes measured on $\mathbb{T}^{\text{SD}}_{100}$ with the 4-circle diffractometer. Measurement on the TbMnO₃ (2 2 0) reflection with right crystal orientation (left), the (2 0 2) peak corresponding to the wrong orientation (center) and the resonant magnetic scattering signal measured on ($\delta \tau_{Mn}$ 0). Besides the lower resolution of the 4-circle measurements, the regions with lower magnetic signal coincide with an increased intensity of the wrong oriented crystallites.



(a) Reciprocal space map around (220) on \mathbb{T}^{SD}_{100} showing a second film peak as result of imperfections in the substrate



(b) Out-of-plane reciprocal lattice scan from the substrate (220) peaks of a sample with bad crystal quality and a good quality substrate measured with a channel cut monochromator for increased resolution.

Figure A.8: X-ray diffraction measurements investigating imperfections of wrong oriented crystallites in the substrate. The miss aligned crystal direction of the substrate directly lead to miss aligned film crystallites.

Appendix B

Used Models

B.1 Implementation of multilayer diffraction simulation

```
1 import os
2 import numpy
3 import scipy
4 import gtk
  from copy import deepcopy
   import fit_data
8 import collect_cif_info
   10
   SpaceGroupList=mmLibSpaceGroupList+sgtbxSpaceGroupList
11
   from diffpy.Structure import Lattice, Atom, Structure
12.
13
  FitFunction=fit_data.FitFunction
14
15
   class CrystalMultilayer(FitFunction):
16
       Simulate diffraction from a stack of crystaline bilayers with finite size and
17
          roughness.
18
       The class tries to implement the high scattering angle diffraction formalism for
            crystalline
19
       multilayers deduced in
20
         E. E. Fullerton et all .:
21
            Structural refinement of superlattices from x-ray diffraction
            Physical Review B, American Physical Society 45 (1992) 9292-
23
       Naming conventions are also taken from that paper.
24
25
       The code is focused on readability, not on speed!
26
27
28
     # define class variables.
29
     name="CrystalMultilayer"
30
     max_iter=50. # maximum numer of iterations
     parameters = [0.181584, 5.
31
32
                 20, 1., 3.8843, 1., 4.07864, 0.,
33
                 67.5205, 0.5, 0.2,
34
                 0.2, 3.963, 0.000125,
35
                 0.5, 0.99752006,
36
                 1
     parameter_names=['I', 'BG', # Multilayer intensity and background
37
                      'M', 'f1', 'a1', 'f2', 'a2', '\deltaA',
38
                       'D', 'd1/D', 'c',
39
40
                       'I_substrate', 'a_substrate', 'mu',
                      'I-\alphaK2', '\lambda-\alphaK2', # Relative intensity and wavelength of Cu-\alphaK2
41
                      ٦
42.
43
     parameter_description={
44
                             'I': 'Multilayer Intensity',
45
                             'BG': 'Background',
46
                             'M': 'Multilayer Periods',
                             'f1': 'Scatterin Power of layer 1',
47
                             'a1': 'd-spacing of layer 1',
```

```
49
                                'f2': 'Scatterin Power of layer 2',
50
                                 'a2': 'd-spacing of layer 2',
                                '\delta A': 'Distribution of scattering plane repetitions',
51
52
                                'D': 'Bilayer thickness',
53
                                'd1/D': 'Thickness ration of layer 1 compared to bilayer
                                     thickness',
54
                                'c': 'Width of interlayer spacing distribution',
55
                                'I_substrate': 'Substrate peak intensity',
'a_substrate': 'd-spacing of Substrate',
56
57
                                'mu': 'Absorption lengths',
                                'I-\alphaK2': 'Intensity ratio of \alphaK2',
58
59
                                '\lambda-\alphaK2': 'Wavelength ratio of \alphaK2',
60
61
       fit_function_text='Multilayer'
62
       def __init__(self, initial_parameters=[]):
63
64
65
           Constructor.
66
67
         FitFunction.__init__(self, initial_parameters)
68
         # By default only fit intensity
69
         self.refine_parameters=[0]
70
71
       def create_model(self, p, q):
72
73
           Create the model object from given parameters.
74
75
         M=p[2]
76
         f1=p[3]
77
         a1=p[4]
78
         f2=p[5]
79
         a2=p[6]
80
         delta=p[7]
81
         D=p[8]
82.
         d1=D*p[9]
83
         d2 = D - d1
         amin=(p[9]*a1+(1.-p[9])*a2)
84
85
         N1 = (d1 - amin)/a1 + 1
         N2 = (d2 - amin)/a2 + 1
86
87
         a=amin
88
         if delta==0.:
89
           N1=int(N1)
90
           N2=int(N2)
91
           a=(D-((N1-1)*a1+(N2-1)*a2))/2.
         c=p[10]
93
         # Single crystalline layers
94
         A=CrystalLayerStructureModel(q, a1, f1, N1, delta)
95
         B=CrystalLayerStructureModel(q, a2, f2, N2, delta)
96
         # Stack of bilayers
97
         Model=MultilayerModel(q, A, B, M, a, c)
98
         return Model
99
100
       def fit_function(self, p, x):
101
102
           Implements the complete model. Parameters are initialized and the model object
                is created, afterwards
103
           the basic function (7) is calculated. Substrate peaks are simulated as
               Lorentzian and Cu-Kalpha radiation
           is simulated as two descrete q-arrays, which are summed up in Intensity
104
               afterwards.
105
106
         I_0=p[0]
107
         BG=p[1]
108
         I_alpha2=p[14]
109
         lambda_alpha2=p[15]
110
         exp=numpy.exp
         q=numpy.array(x, copy=False, dtype=numpy.complex)
111
112
         # Create an additional q-array for K_alpha2 and join them as one array for the
             calculation
113
         if I_alpha2!=0:
114
           q=numpy.append(q, q*lambda_alpha2)
115
         Model=self.create_model(p, q)
```

```
116
          # Calculate Intensity from the multilayer stack
117
                  I=Model.I
                  # Substrate peaks
118
119
                  I_substrate=p[11]
120
                  a=p[12]
121
                  mu=p[13]
122
                   # Correct intensity for the scattering volume of the film dependent on \Theta
123
                  Theta=numpy.arcsin(1.54/(4.*numpy.pi)*numpy.abs(q))
124
                  I*=I_0/numpy.sin(Theta)
125
126
                  I+=I_substrate*self.F_substrate(q, a, mu)
127
                   # Combine the intensities of K_alpha1 and K_alpha2
128
                  if I_alpha2!=0:
129
                       items=len(q)/2
130
                       I=(I[:items]+I_alpha2*I[items:])/(1.+I_alpha2)
131
                   return I+BG
132
133
              def F_substrate(self, q, a, mu):
134
135
                      Substrate intensity as Lorentzian.
136
137
                   a_star=2.*numpy.pi/a
138
                  q=numpy.abs(q)
139
                   F\_substrate = numpy.zeros\_like(q)
140
                   for i in range(1, 20):
141
                       q_i=a_star*i
142
                       \# if q_i \le q. max() and q_i >= q. min():
143
                       F_substrate += 1./(mu**2+(q-q_i)**2)
144
                       # print q_i
145
                   \begin{array}{cccc} \textbf{return} & \textbf{F\_substrate} \\ \end{array}
146
147
        class CrystalMultilayerSF(CrystalMultilayer):
148
              # define class variables
149
              name="CrystalMultilayerSF"
150
              polarization=0.5
151
              max_iter=50. # maximum numer of iterations
             152
153
154
                                          67.5112, 0.6667, 0.,
155
                                          0.00005, 1., 0.000125,
156
                                          0.5, 0.99752,
157
                                          0., 15, 1.54]
158
159
              parameter_names = ['I', 'BG', # Multilayer intensity and background
                                                     'M', 'arel_A', 'arel_B', '\day, '\day, '\day, 'c',
160
161
162
                                                      'I_substrate', 'a_substrate', 'mu',
                                                      'I-\alphaK2', '\lambda-\alphaK2', # Relative intensity and wavelength of Cu-\alphaK2
163
                                                      'q-res', 'steps-res', '\lambda', # q resolution of the instrument,
164
                                                               steps for resolution, measured wavelength
165
166
              parameter_description={
                                                                    'I': 'Multilayer Intensity',
167
                                                                   'BG': 'Background',
168
169
                                                                   'M': 'Multilayer Periods',
170
                                                                    'arel_A': 'stratching factor of the out-of-plane lattice
                                                                            parameter of layer A',
171
                                                                    'arel_B': 'stratching factor of the out-of-plane lattice
                                                                          parameter of layer B',
172
                                                                    '\delta A': 'Distribution of scattering plane repetitions',
                                                                   {}^{,}\delta B\,{}^{,}\colon 'Distribution of scattering plane repetitions',
173
                                                                    'D': 'Bilayer thickness',
174
                                                                    'd1/D': 'Thickness ration of layer 1 compared to bilayer
175
                                                                           thickness',
                                                                   \ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}} , \ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}}\ensuremath{^{\prime}
176
177
                                                                    'I_substrate': 'Substrate peak intensity',
178
                                                                    'a_substrate': 'd-spacing of Substrate',
179
                                                                   'mu': 'Absorption lengths',
                                                                    'I-\alphaK2': 'Intensity ratio of \alphaK2',
180
                                                                    '\lambda-\alphaK2': 'Wavelength ratio of \alphaK2',
181
                                                                   \mbox{'q-res': 'q-resolution of the instrument (Gauss)',}
182
183
                                                                    \lambda': 'Wavelength used',
```

```
184
                               }
185
       fit_function_text='Multilayer'
186
       fittable_elements={
187
188
189
       def __init__(self, initial_parameters=[]):
190
191
         Constructor.
192
193
194
         \label{fitFunction.} FitFunction.\__init\_\_(self\,,\ initial\_parameters)
195
         # By default only fit intensity
196
         self.refine_parameters=[0]
         # use global parameter to initialize the crystal structure model
197
198
         self.bases=dict(model_basis)
199
200
       def create_model(self, p, q):
201
202
           Create the model object from given parameters.
203
204
         M=p[2]
205
         # calculate lattice steps from crystal structure, scaling and growth direction
206
         direction=self.bases['A'][1]
207
         lattice=self.bases['A'][0][0].lattice
208
         a1=p[3]/numpy.sqrt((numpy.dot(lattice.recbase,direction)**2).sum())
209
         direction=self.bases['B'][1]
210
         lattice=self.bases['B'][0][0].lattice
211
         a2=p[4]/numpy.sqrt((numpy.dot(lattice.recbase,direction)**2).sum())
212
         deltaA=p[5]
213
         deltaB=p[6]
214
         D=p[7]
215
         d1=D*p[8]
216
         d2 = D - d1
217
         amin=(p[8]*a1+(1.-p[8])*a2)
         N1 = (d1 - amin)/a1 + 1
218
219
         N2 = (d2 - amin)/a2 + 1
220
         a=amin
221
         if deltaA == 0. or deltaB == 0:
222
           N1=int(N1)
223
           N2=int(N2)
224
           a=(D-((N1-1)*a1+(N2-1)*a2))/2.
225
         c=p[9]
         f1=CrystalStructureFactor(p[3], self.bases['A'], q)
226
227
         f2=CrystalStructureFactor(p[4], self.bases['B'], q)
228
         # Single crystalline layers
229
         A = Crystal Layer Structure Model (q, a1, f1, N1, deltaA)
230
         B=CrystalLayerStructureModel(q, a2, f2, N2, deltaB)
231
         # Stack of bilavers
232
         Model=MultilayerModel(q, A, B, M, a, c)
233
         return Model
234
235
       def calc_I(self, p, q):
236
           Implements the complete model. Parameters are initialized and the model object
237
                is created, afterwards
238
           the basic function (7) is calculated. Substrate peaks are simulated as
               Lorentzian.
239
240
         Model=self.create_model(p, q)
241
         # Calculate Intensity from the multilayer stack
242
         I=Model.I
         # Substrate peaks
243
         direction=self.bases['substrate'][1]
244
245
         lattice=self.bases['substrate'][0][0].lattice
246
         a=p[11]/numpy.sqrt((numpy.dot(lattice.recbase,direction)**2).sum())
247
         mu=p[12]
248
         fs=CrystalStructureFactor(p[11], self.bases['substrate'], q)
249
         \label{lem:self.F_substrate(q, a, mu)} Is = numpy.abs(fs) **2*self.F_substrate(q, a, mu)
250
         # Combine the intensities of K_alpha1 and K_alpha2
251
         return I, Is
252
       def fit_function(self, p, x):
```

```
254
255
           Implements the complete model. Parameters are initialized and the model object
                is created, afterwards
256
           the basic function (7) is calculated. Substrate peaks are simulated as
               Lorentzian and Cu-Kalpha radiation
257
           is simulated as two descrete q-arrays, which are summed up in Intensity
               afterwards.
258
259
         numpy.seterr(all='raise')
260
         I_0=p[0]
261
        BG=p[1]
262
         I_substrate=p[10]
263
         I_alpha2=p[13]
264
         lambda_alpha2=p[14]
265
         sigma=p[15]
266
         sigma_steps=p[16]
         lambda_xray=p[17]
267
268
         if len(p)>18:
269
           self.use_additional_paramerters(p)
270
         q=numpy.array(x, copy=True, dtype=numpy.complex)
271
         if sigma==0:
272
           qs = [q]
273
           Ps=[1.]
274
         else:
275
           qi=numpy.linspace(-3.*sigma, 3.*sigma, int(sigma_steps))
276
           Ps=numpy.exp(-0.5*qi**2/sigma**2)
277
           Ps=(Ps/Ps.sum()).tolist()
278
           qs=[q+qii for qii in qi]
         # Create an additional q-array for K_alpha2 and join them as one array for the
279
             calculation
280
         if I_alpha2!=0:
281
           if sigma == 0:
282
             qs.append(q*lambda_alpha2)
283
             Ps.append(I_alpha2)
284
           else:
285
             qs+=[qi*lambda_alpha2 for qi in qs]
286
             Ps+=[Pi*I_alpha2 for Pi in Ps]
287
        # calculate Intensities for each q and P
288
         I=numpy.zeros_like(x)
289
         Is=numpy.zeros_like(x)
290
         for qi, Pi in zip(qs, Ps):
291
           Ii, Isi=self.calc_I(p, qi)
           if any(Ii == numpy.nan):
292
             print "I is NaN"
293
           if any(Isi == numpy.nan):
294
295
            print "Is is NaN"
296
           I += Pi * Ii
297
           Is+=Pi*Isi
298
         # Correct intensity for the scattering volume of the film dependent on \Theta
299
         theta=numpy.arcsin(q.real/4./numpy.pi*lambda_xray)
300
        I/=numpy.sin(theta)
301
         I\_sum = I*I\_0 + Is*I\_substrate
302
         # Correct intensity for the polarization factor
303
        \verb|polfac=self.polarization**2+(1.-self.polarization)**numpy.cos(2.*theta)**2.
304
         return I_sum*polfac+BG
305
306
      def use_additional_paramerters(self, p):
307
308
          User function to connect additional fit parameters to variables.
309
310
        b=self.bases
         for i, item in self.fittable_elements.items():
311
312
           elem=p[18+i]
313
           old=b[item[0]][item[1]]
           b[item[0]][item[1]]=(old[0], old[1], elem)
314
315
316
    class CrystalMultilayerSF2(CrystalMultilayerSF):
317
      # define class variables
318
      name="CrystalMultilayerSF2"
319
      max_iter=50. # maximum numer of iterations
320
      parameters = [0.000223394, 0.0,
321
            20.0, 5.34, 5.8, 0.4, 0.4,
```

```
322
                     10, 2, 0.1,
323
                     0.00005, 5.18, 0.000125,
324
                     0.5, 0.99752,
325
                     0., 15, 1.54]
326
       parameter_names=['I', 'BG', # Multilayer intensity and background
327
328
                          'M', 'a1', 'a2', 'δA', 'δB',
                           'NA', 'NB', 'c',
'I_substrate', 'a_substrate', 'mu',
329
330
                           'I-\alphaK2', '\lambda-\alphaK2', # Relative intensity and wavelength of Cu-\alphaK2
331
                           'q-res', 'steps-res', '\lambda', # q resolution of the instrument ,
332
                               steps for resolution, measured wavelength
333
334
       parameter_description={
335
                                 'I': 'Multilayer Intensity',
                                 'BG': 'Background',
336
337
                                 'M': 'Multilayer Periods',
338
                                 'a1': 'd-spacing of layer 1',
                                 'a2': 'd-spacing of layer 2',
339
                                 {}^{\backprime}\delta A\,{}^{\backprime}\colon 'Distribution of scattering plane repetitions',
340
341
                                 '\delta B': 'Distribution of scattering plane repetitions',
                                 'NA': 'Number of Monolayers',
342
343
                                 'NB': 'Number of Monolayers',
                                 'c': 'Width of interlayer spacing distribution',
344
345
                                 'I_substrate': 'Substrate peak intensity',
                                 'a_substrate': 'd-spacing of Substrate',
346
347
                                 'mu': 'Absorption lengths',
348
                                 'I-\alphaK2': 'Intensity ratio of \alphaK2'
                                 \lambda-\alphaK2': 'Wavelength ratio of \alphaK2',
349
                                 \hbox{`q-res': `q-resolution of the instrument (Gauss)',}\\
350
351
                                 \lambda': 'Wavelength used',
352
353
       fit_function_text='Multilayer'
354
355
       def create_model(self, p, q):
356
         Create the model object from given parameters.
357
358
359
         M=p[2]
360
         a1=p[3]
361
         a2=p[4]
362
         deltaA=p[5]
         deltaB=p[6]
363
364
         N1=p[7]
365
         N2 = p[8]
366
         amin=((N1/(N1+N2))*a1+(N2/(N1+N2))*a2)
367
         a=amin
368
         if deltaA == 0. or deltaB == 0:
369
           N1 = int(N1)
370
           N2=int(N2)
           a=(D-((N1-1)*a1+(N2-1)*a2))/2.
371
372
         c=p[9]
373
         f1=CrystalStructureFactor(a1, self.bases['A'], q)
374
         f2=CrystalStructureFactor(a2, self.bases['B'], q)
375
         # Single crystalline layers
376
         \verb|A=CrystalLayerStructureModel(q, a1, f1, N1, deltaA)|
377
         B=CrystalLayerStructureModel(q, a2, f2, N2, deltaB)
378
         # Stack of bilayers
379
         Model=MultilayerModel(q, A, B, M, a, c)
380
         return Model
381
382
     class AtommicFormFactor(object):
383
384
         Form factor of an atom represented as bessel functions.
385
386
387
       def __init__(self, parameters):
388
         \verb|self.parameters=parameters|
389
         a=[parameters[0]]
390
         b=[parameters[1]]
391
         a.append(parameters[2])
392
         b.append(parameters[3])
```

```
393
        a.append(parameters[4])
394
        b.append(parameters[5])
395
        a.append(parameters[6])
396
        b.append(parameters[7])
397
        c=parameters[8]
398
        self.a=a
399
        self.b=b
400
        self.c=c
401
402
      def __call__(self, q):
403
404
          Calculate the formfactor of q when an instance gets called.
405
406
        f=numpy.zeros_like(q)
407
        q_over_4pi_2=(q/(4.*numpy.pi))**2
408
        exp=numpy.exp
409
        a=self.a
410
        b=self.b
411
        c=self.c
412
        for i in range(4):
413
          f+=a[i]*exp(-b[i]*q_over_4pi_2)
        f += c
414
415
        return f
416
417
    from ml_includes.form_factors import FORM_FACTOR_PARAMETERS
418
419 class CrystalStructureFactor(numpy.ndarray):
420
421
        A ndarray object which calculates the structure factor of a crystal basis
422
        each time the q vector is changed.
423
424
425
      # Form factors for common atoms/ions
426
      f=dict( [(key, AtommicFormFactor(value)) for key, value in FORM_FACTOR_PARAMETERS.
          items()])
427
      # crystal elongation in out-of-plane direction
428
      scale=1.0
429
      # Direction of the layer growths
430
      n_qz=numpy.array([1., 0., 0.])
431
      \# zero out-of-plane q position
432
      q_0=numpy.array([0., 0., 0.])
433
        one over volume of the unit cell devided by the out-of-plane lattice parameter
434
      volume_scale=1.
435
436
      def __new__(subtype, a, basis, q, dtype=numpy.complex, buffer=None, offset=0,
437
                   strides=None, order=None):
438
        shape=len(q)
439
        instance=numpy.ndarray.__new__(subtype, shape, dtype, buffer, offset, strides,
             order)
440
        lattice=basis[0][0].lattice
441
        instance.a=lattice.stdbase
442
        instance.scale=a
443
        instance.basis=collect_cif_info.get_all_atoms(*basis[0]) # expand the lattice
             and symmetry to all atom positions
444
        instance.n_qz=numpy.array(basis[1])/numpy.sqrt((basis[1]**2).sum())
445
        dqz=a/numpy.sqrt((numpy.dot(lattice.recbase,basis[1])**2).sum())
446
        instance.q_0=2.*numpy.pi*numpy.dot(lattice.recbase, basis[2]) # origin of the
        volume=numpy.dot(lattice.stdbase[:, 0], numpy.cross(lattice.stdbase[:, 1],
447
            lattice.stdbase[:, 2]))
448
        instance.volume_scale=dqz/volume
449
        instance.q=q
450
        return instance
451
452
      def _get_q(self):
453
        return self._q
454
455
      def _set_q(self, qz):
456
457
           Calculate the structure factor as function of the new q and set the
458
           array values accordingly.
459
```

```
460
                 qz=self.scale*qz
461
                 self._q=qz
462
                 a=self.a
463
                 f=self.f
464
                 q_0=self.q_0
465
                 n_qz=self.n_qz
466
                 exp=numpy.exp
467
                 if len(qz)!=len(self):
468
                      self.resize(len(qz), refcheck=False)
469
                 numpy.ndarray.__setslice__(self, 0, len(self), 0.)
470
                 # calculate q-vector
471
                 q=(n_qz*(qz.transpose())[:, numpy.newaxis])+q_0
                 absq=numpy.sqrt((q**2).sum(axis=1))
472
473
                 for atom in self.basis:
474
                      #f(|q|)*occupancy*exp(i \cdot q \cdot r)
                      \verb|self+=f[atom.element.lower()](absq)*atom.occupancy*exp(1j*numpy.dot(q, numpy.dot(q, numpy.do
475
                              dot(atom.xyz, a)))
476
477
             q=property(_get_q, _set_q)
478
479
         class CrystalLayerStructureModel(object):
480
481
                  Structural model of single crystalline layer.
482
                 For better readablility of code using this object, all functions are wrapped as
                          properties
483
                     (e.g. object.F returns object._get_F())
484
485
486
             def __init__(self, q, d, f, N, deltaN=0.):
487
488
                     Create the structure model for a given q.
489
490
                 self.q=numpy.array(q, copy=False, dtype=numpy.complex) # q-vector
491
                                                             lattice plane distance
492
                 self.f=f
                                                          # scattering power, can be a function of q
493
                 self.N=N
                                                          # Averadge number of lattice planes (Integer)
494
                 self.deltaN=deltaN # Spread of number of lattice planes
495
496
             def _get_F(self):
497
                      Return the averadge scattering amplitude factor <F> of the layer. (F-bar in
498
                             equation (6))
499
500
                 exp=numpy.exp
501
                 matrix=numpy.asmatrix
502
                 q=self.q
503
                 N = self.N
504
                 d=self.d
505
                 f=self.f
506
                 deltaN=self.deltaN
                 if deltaN == 0.:
507
508
                     # no spread in thickness (8)
509
                     F=f*(1.-exp(1j*q*N*d))/(1.-exp(1j*q*d))
510
                  else:
511
                     # descrete fluctuation of layer thicknesses (10)
512
                     Nj = self.Nj
513
                     P=self.P
                      # \Sigma P(Nj) · Fj implemented as matrix multiplications ((column·line)·column\rightarrow
514
                              matrix · column→ sum_column)
515
                     F = f * (numpy.array(((1.-exp(1j*matrix(q).transpose()*matrix(Nj)*d))*matrix(P).
                             transpose())).flatten()/\
516
                                                                                                    (1.-\exp(1j*q*d)))
517
                 return F
518
519
             def _get_FFstar(self):
520
521
                     Return the averadge structure factor <FF*> of the layer.
522
523
                 exp=numpy.exp
524
                 matrix=numpy.asmatrix
525
                 q=self.q
526
                 N = self.N
```

```
527
                   d=self.d
528
                   f = self.f
529
                   deltaN=self.deltaN
                    if deltaN == 0.:
530
531
                        # no spread in thickness
532
                        F=f*(1.-exp(1j*q*N*d))/(1.-exp(1j*q*d))
533
                        FFstar=F*F.conj()
534
                    else:
535
                        # descrete fluctuation of layer thicknesses (10)
536
                        Nj = self.Nj
537
                        P=self.P
538
                        # \Sigma P(Nj) · Fj · Fjst implemented as matrix multiplications ((column·line) ·
                                 column→matrix · column→ sum_column)
539
                        \label{eq:final_problem} Fpart = numpy. as array (1.-exp(1j*matrix(q).transpose()*matrix(Nj)*d))
540
                        Fpart*=Fpart.conj()
                        FFstar=f**2*(numpy.asarray(matrix(Fpart)*matrix(P).transpose()).flatten()
541
                                  /((1.-exp(1j*q*d))*(1.-exp(1j*q*d)).conj()))
542
                    return numpy.abs(FFstar)
543
               def _get_T(self):
544
545
                    Averadge phase factor \langle \exp(iqt) \rangle of the layer. (T in equation (6))
546
547
548
                   exp=numpy.exp
549
                   matrix=numpy.asmatrix
550
                   N = self.N
551
                   d=self.d
                   q=self.q
552
553
                   deltaN=self.deltaN
554
                   if deltaN == 0.:
555
                        # no spread in thickness
556
                        t = (N-1)*d
557
                        T=exp(1j*q*t)
558
                    else:
559
                        # descrete fluctuation of layer thicknesses (10)
560
                        Nj = self.Nj
561
                        P = self.P
                         \  \, \# \, \, \Sigma \, \, P(Nj) \, \, \cdot \, \, exp \, ((Nj-1)iqd) \, \, implemented \, \, as \, \, matrix \, \, multiplications \, \, ((column \cdot line \, line 
562
                                  ) \cdot column \rightarrow matrix \cdot column \rightarrow sum\_column)
563
                        T=numpy.\,asarray\,((\,exp\,(1\,j*matrix\,(q)\,.\,transpose\,()*matrix\,(Nj\,-1\,.)*d)\,)*matrix\,(P)\,.
                                 transpose()).flatten()
564
                    return T
565
               def _get_Phi(self):
566
567
568
                        Averadge phase and complex conjugated amplitude <exp(iqt)F*> of the layer. (
                                 Phi in equation (6))
569
570
                   exp=numpy.exp
571
                   matrix=numpy.asmatrix
572
                   q=self.q
573
                   N = self.N
574
                   d=self.d
575
                   f=self.f
576
                    deltaN=self.deltaN
577
                   if deltaN == 0.:
578
                        # no spread in thickness
579
                        t = (N-1.)*d
580
                        F=f*(1.-exp(1j*q*N*d))/(1.-exp(1j*q*d))
581
                        Fstar=F.conj()
582
                        Phi=exp(1j*q*t)*Fstar
583
                    else:
584
                        # descrete fluctuation of layer thicknesses (10)
585
                        Nj = self.Nj
586
                        P=self.P
587
                        # \Sigma P(Nj) · exp((Nj-1)·iqd) · Fj* implemented as matrix multiplications ((
                                 column·line)·column→matrix·column→ sum_column)
588
                         exp_part=numpy.asarray(exp(1j*matrix(q).transpose()*matrix(Nj-1.)*d))
589
                        q_iqNj = exp(matrix(1j*q).transpose()*matrix(Nj)*d)
                        factor=f/(1.-exp(1j*q*d))
590
591
                        \label{eq:final_problem} Fpart = \texttt{numpy.asarray} \, ( \, (\, (\, 1\, . - q\_iq \, \mathbb{N}\, j\,) \, . \, transpose \, (\, )\,) \, . \, transpose \, (\, )\,)
```

```
592
           Phi=numpy.asarray(numpy.matrix(exp_part*Fpart.conj())*matrix(P).transpose()).
               flatten()*factor.conj()
593
         return Phi
594
595
       def _get_Nj(self):
596
597
           Get an array of integers between 0 and 2 \cdot N.
598
599
         N = self.N
600
         deltaN=self.deltaN
601
         return numpy.arange(int(N-3.*deltaN)-1, N+3.*deltaN+2, 1)
602
603
       def _get_P(self):
604
605
           Get an array of the gaussian propabilities for a specific number of
606
           lattice plane repititions Nj.
607
608
         N = self.N
609
         Nj = self.Nj
610
         deltaN=self.deltaN
611
         if deltaN<1. and int(N)!=N:</pre>
           # the descrete gaussian does not produce the right averadge
612
613
           # for small sigma values so we integrate the propabilities
           # with smaller steps
614
615
           N_down=int(N)
616
           N_{up}=int(N)+1.
           P_{up}=numpy.exp(-0.5*(Nj-N_{up})**2/deltaN**2)
617
618
           P_up/=P_up.sum()
619
           P_down=numpy.exp(-0.5*(Nj-N_down)**2/deltaN**2)
620
           P_down/=P_down.sum()
621
           a=(N-N_down)/(N_up-N_down)
622
           P = a*P_up + (1.-a)*P_down
623
         else:
624
           P = numpy.exp(-0.5*(Nj-N)**2/deltaN**2)
625
           P/=P.sum()
626
         return P
627
628
      F=property(_get_F)
629
      FFstar=property(_get_FFstar)
630
      Phi=property(_get_Phi)
631
      T=property(_get_T)
632
       # Only for distribution of thicknesses
633
      Nj=property(_get_Nj)
634
      P=property(_get_P)
635
636
    class MultilayerModel(object):
637
         Structural model of a multilayer consiting of bilayers. It is general in the
638
639
         that the Layers can be calculated separately.
         For better readablility of code using this object, all functions are wrapped as
640
             properties.
           (e.g. object.F returns object._get_F())
641
642
643
644
       def __init__(self, q, A, B, M, a, c):
645
646
           Create the structure model for a given q.
647
648
         \verb|self.q=numpy.array(q, copy=False, dtype=numpy.complex)| \# q-vector|
649
         self.A=A # Structure model of layer 1
         self.B=B # Structure model of layer 2
650
651
         self.M=M # Repititions
652
         self.a=a # distance between adjecent layers (region without defined crystal
             lattice)
653
         self.c=c # fluctuations of a \sigma()
654
655
       def _get_psi(self):
656
657
           Phase between layer (defined between equation (5) and (6)).
658
659
         q=self.q
```

```
660
               a=self.a
661
                exp=numpy.exp
662
                c=self.c
663
               psi=1j*q*a-q**2*c**2/2.
664
                return psi
665
666
            def _get_I(self):
667
                    Calculate the scattering intensity of the multilayer using equation (7).
668
                    Subscripted items in the equation are written as attributes of the associated
669
670
                           (E.g. T_A \le A.T or \le A.F. A = A.F. A
671
672
                exp=numpy.exp
673
                A = self.A
674
               B=self.B
675
               M=self.M
676
                psi=self.psi
                I=numpy.zeros_like(numpy.abs(self.q)).astype(numpy.float64) # the result should
677
                       be of type float
678
                I+=M* ( A.FFstar + 2.*( exp(psi)*A.Phi*B.F ).real + B.FFstar ) # first term in
679
                s1=( exp(-psi)*B.Phi*A.F/(A.T*B.T) + A.Phi*A.F/A.T + B.Phi*B.F/B.T + exp(psi)*A.
                       Phi*B.F ) # second term in (7)
                s2 = ((M-(M+1)*exp(2.*psi)*A.T*B.T+(exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*A.T*B.T)**(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1))/(1.-exp(2.*psi)*(M+1)/(1.-exp(2.*psi)*(M+1)/(1.-exp(2.*psi)*(M+1)/(1.-exp(2.*psi)*(M+1)/(1.-exp(2.*psi)*(M+1)/(1.-exp(2.*psi)*(M+1)/(1.-exp(2.*psi)*(M+1)/(1.-exp(2.*psi)*(M+1)/(1.-exp(2.*psi)*(M+1)/(1.-exp
680
                       A.T*B.T)**2 - M) # third term in (7)
                I += 2.* (s1*s2).real
681
682
                return I
683
684
            psi=property(_get_psi)
685
            I=property(_get_I)
686
687
        model_basis={
688
                                 'B': [(Structure(atoms=[Atom('02-', [0., 0., 0.])],
                                                                  lattice=Lattice(3., 3., 3., 90., 90., 90)),
689
                                                                          SpaceGroupList[0]),
                                                                  numpy.array([1., 0., 0.]), numpy.array([0., 0., 0.])],
# out-of-plane direction and scan origin
690
691
                                 'A': [(Structure(atoms=[Atom('02-', [0., 0., 0.])],
692
                                                                  lattice=Lattice(3., 3., 3., 90., 90., 90)),
                                                                         SpaceGroupList[0]),
693
                                                                  numpy.array([1., 0., 0.]), numpy.array([0., 0., 0.])],
                                                                           # out-of-plane direction and scan origin
                                  'substrate': [(Structure(atoms=[Atom('02-', [0., 0., 0.])],
694
                                                                                 lattice=Lattice(3., 3., 3., 90., 90., 90)),
695
                                                                                         SpaceGroupList[0]),
696
                                                                  numpy.array([1., 0., 0.]), numpy.array([0., 0., 0.])],
                                                                           # out-of-plane direction and scan origin
697
                                 }
698
699
        700
        SESSIONS=['CircleSession', 'ReflectometerSession']
701
702
        def activate(window, session):
703
            # Add simulation to fit functions in the GUI
704
            fit_data.register_class(CrystalMultilayer)
705
706
       707
        def menu(window, session):
708
709
               Menu Entruies.
710
711
            global active_session, active_window
712
            active_session=session
713
            active_window=window
714
            string=
715
               <menu action = 'MLSimu'>
716
                   <menuitem action = 'MLNew Model' />
                   <menuitem action='MLEdit Model' />
717
            ,,,,
718
719
720
            # Create actions for the menu
```

```
721
      actions=(
722
              ( "MLSimu", None,
                                                              # name, stock id
                                                                    # label, accelerator
                 "Multilayer simulation", None,
723
                                                            # tooltip
724
                 None,
725
                 None),
              ( "MLNew Model", None,
726
                                                                   # name, stock id
                 "Create new multilayer model...", None,
                                                                              # label,
727
                    accelerator
728
                 None,
                                                            # tooltip
729
                 create_new_model ),
730
              ( "MLEdit Model", None,
                                                                    # name, stock id
731
                 "Edit multilayer model...", None,
                                                                        # label,
                    accelerator
732
                 None ,
                                                            # tooltip
733
                 edit_model ),
734
735
      return string, actions
736
737
    def create_new_model(action, widget):
738
739
        Open a dialog to input special model parameters and
        create the model for the active dataset.
740
741
742
      global model_basis
743
      dialog=ModelDialog(model_basis)
744
      result=dialog.run()
745
      if result == 1:
746
        model_basis=dialog.model_basis
747
        dataset=active_session.active_file_data[active_window.index_mess]
748
        if dataset.fit_object is None:
749
           dataset.fit_object=fit_data.FitSession(dataset)
750
        dataset.fit_object.functions.append([CrystalMultilayerSF([]),
751
                                               False, True, True, True])
752
      dialog.destroy()
753
754
    def edit_model(action, widget):
755
756
        Open a dialog to input special model parameters and
757
        create the model for the active dataset.
758
759
      dataset=active_session.active_file_data[active_window.index_mess]
760
      fit=None
761
      for fititem in dataset.fit_object.functions:
762
        if hasattr(fititem[0], 'bases'):
763
          fit=fititem[0]
764
      if fit is None:
765
        return
766
      dialog=ModelDialog(fit.bases, copy=False, buttons=('Apply',1, 'Close', 0))
767
      dialog.show()
768
      dialog.connect('response', responde_edited, dataset)
769
770
    def responde_edited(dialog, id, dataset):
771
      if id==1:
772
       dataset.fit_object.simulate()
773
        active_window.replot()
774
      else:
775
        dialog.destroy()
776
777
    class ModelDialog(gtk.Dialog):
778
779
        Dialog that holds three entries for the structure of substrat,
       layer A and layer B plus additional options for the model creation.
780
781
782
      current_folder=os.path.curdir
783
      def __init__(self, model_basis, copy=True, buttons=('Create Model', 1, 'Cancel',
784
        0), **args):
785
        Create the Dialog and entries.
786
787
        if copy:
788
       self.model_basis=deepcopy(model_basis)
```

```
790
        else:
791
          self.model_basis=model_basis
792
        keys=self.model_basis.keys()
793
        keys.sort()
        gtk.Dialog.__init__(self, title='Model Parameters...', buttons=buttons, **args)
794
795
        # structure the dialog with options left and structure right
796
        hbox=gtk.HBox()
797
        hbox.show()
798
        self.vbox.add(hbox)
799
        vbox=gtk.VBox()
800
        vbox.show()
801
         self.structure_entries={}
802
        for key in keys:
803
          entries, table=self._create_structure_entries('Structure of %s:' % key, self.
              model_basis[key][0])
804
          self.structure_entries[key]=entries
805
          vbox.add(table)
          entries['load button'].connect('clicked', self._load_cif, key)
806
          entries['symmetry selection'].connect('changed', self._change_symmetry, key)
807
808
          entries['new button'].connect('clicked', self._add_atom, key)
809
        entries=self._create_option_entries()
810
        frame=gtk.Frame()
811
        frame.add(entries)
812
        frame.show()
813
        align=gtk.Alignment()
814
        align.add(frame)
815
        align.show()
816
        hbox.pack_start(align, expand=False)
817
        sw=gtk.ScrolledWindow()
        sw.set_policy(gtk.POLICY_NEVER, gtk.POLICY_AUTOMATIC)
818
819
        sw.add_with_viewport(vbox)
820
        sw.show()
821
        hbox.pack_end(sw)
822
823
      def _create_structure_entries(self, title, basis):
824
825
          Create entries for crystal structure information.
826
827
        unit_cell=basis[0]
828
        abcABG=unit_cell.lattice.abcABG()
829
        symmetry=basis[1]
830
        entries={'lattice parameters':{},'atoms':{}}
831
        # Create table with entries and labels
832
        table=gtk.Table(12, 6)
833
        label=gtk.Label(title)
834
        table.attach(label, 0, 9, 0, 1, 0, 0, 0)
835
        label.show()
        button=gtk.Button('Load CIF')
836
837
        table.attach(button, 9, 12, 0, 1, 0, 0, 0)
838
        button.show()
839
        entries['load button']=button
840
        #########
841
        label=gtk.Label('Space Group:')
842
        table.attach(label, 0, 6, 1, 2, 0, 0, 0)
843
        label.show()
844
        selection=gtk.combo_box_new_text()
845
        for i, sg in enumerate(SpaceGroupList):
846
          selection.append_text("%i: %s" % (sg.number, sg.short_name))
847
          if symmetry.number == sg.number:
848
             selection.set_active(i)
        table.attach(selection, 6, 12, 1, 2, gtk.EXPAND|gtk.FILL, 0, 0, 0)
849
850
        selection.show()
851
         entries['symmetry selection'] = selection
852
        label.show()
853
        ##########
854
        label=gtk.Label('Lattice Parameters')
855
        table.attach(label, 0, 6, 2, 3, 0, 0, 0)
856
        label.show()
857
        label=gtk.Label('Basis Angles')
         table.attach(label, 6, 12, 2, 3, 0, 0, 0)
858
859
        label.show()
        for i, item in enumerate(['a', 'b', 'c', '\alpha', '\beta', '\gamma']):
860
```

```
861
           label=gtk.Label(item)
862
           entry=gtk.Entry()
           entry.set_text("%.4g" % abcABG[i])
863
864
           entry.set_width_chars(5)
865
           table.attach(label,
                                              # Y direction
866
                   # X direction #
867
                   2*i, 2*i+1,
                                              3, 4,
                   0,
                                               Ο,
868
869
                   Ο,
                                               0)
870
           table.attach(entry,
                                              # Y direction
871
                   # X direction #
872
                   2*i+1, 2*i+2,
                                                3, 4,
873
                   gtk.EXPAND|gtk.FILL,
                                                           Ο,
874
                                                0)
                   0,
875
           label.show()
876
           entry.show()
877
           entry.connect('changed', self._change_lattice_parameter, unit_cell.lattice, i)
           entries['lattice parameters'][item]=entry
878
879
        #########
880
         atom_table=self._create_atom_table(unit_cell)
881
        align=gtk.Alignment(xalign=0.5, xscale=1.0)
882
        align.add(atom_table)
883
        align.show()
884
        table.attach(align,
885
                   # X direction #
                                             # Y direction
886
                   0, 12,
                                        4, 5,
887
                   gtk.EXPAND|gtk.FILL,
                                                0,
888
                   Ο,
                                                0)
        entries['atoms']=align
889
890
        ##########
891
        button=gtk.Button('New Atom')
892
        table.attach(button, 0, 6, 5, 6, 0, 0, 0)
893
        button.show()
894
        entries['new button']=button
895
        #########
896
        table.show()
897
        return entries, table
898
899
      def _create_atom_table(self, unit_cell):
900
901
          Create an entry table for atoms.
902
903
        table=gtk.Table(12, 1+len(unit_cell), False)
904
        label=gtk.Label('Atom')
        table.attach(label, 0, 2, 0, 1, 0, 0, 0)
906
        label.show()
907
        label=gtk.Label('Position')
908
        table.attach(label, 2, 4, 0, 1, 0, 0, 0)
909
        label.show()
910
        label=gtk.Label('x')
911
        table.attach(label, 4, 6, 0, 1, 0, 0, 0)
912
        label.show()
913
        label=gtk.Label('y')
914
        table.attach(label, 6, 8, 0, 1, 0, 0, 0)
915
        label.show()
916
        label=gtk.Label('z')
917
        table.attach(label, 8, 10, 0, 1, 0, 0, 0)
918
        label.show()
919
        label=gtk.Label('Occ.')
920
         table.attach(label, 10, 12, 0, 1, 0, 0, 0)
921
        label.show()
922
        entries=[]
923
        for i, atom in enumerate(unit_cell):
924
          button=gtk.Button('del')
925
           table.attach(button, 2, 4, 1+i, 2+i, 0, 0, 0, 0)
926
          button.show()
927
          widgets=[]
928
           button.connect('clicked', self._delete_atom, unit_cell, atom, table, widgets)
929
           elements=sorted(FORM_FACTOR_PARAMETERS.keys())
930
           atom_selection=gtk.combo_box_new_text()
931
           for element in elements:
            atom_selection.append_text(element)
932
```

```
933
           atom_selection.set_active(elements.index(atom.element.lower()))
934
           atom_selection.connect('changed', self._change_atom_type, atom)
           table.attach(atom_selection, 0, 2, 1+i, 2+i, 0, 0, 0, 0)
935
936
           atom_selection.show()
937
           widgets.append(atom_selection)
938
           entry=gtk.Entry()
939
           entry.set_text("%.4g" % atom.xyz_cartn[0])
940
           entry.set_width_chars(5)
941
           table.attach(entry, 4, 6, 1+i, 2+i, gtk.EXPAND|gtk.FILL, 0, 0, 0)
942
           entry.show()
943
           widgets.append(entry)
944
           entry.connect("changed", self._change_atom_position, atom, 0)
945
           entry=gtk.Entry()
           entry.set_text("%.4g" % atom.xyz_cartn[1])
946
947
           entry.set_width_chars(5)
           table.attach(entry, 6, 8, 1+i, 2+i, gtk.EXPAND|gtk.FILL, 0, 0, 0)
948
949
           entry.show()
950
           widgets.append(entry)
951
           entry.connect("changed", self._change_atom_position, atom, 1)
952
           entry=gtk.Entry()
953
           entry.set_text("%.4g" % atom.xyz_cartn[2])
954
           entry.set_width_chars(5)
955
           table.attach(entry, 8, 10, 1+i, 2+i, gtk.EXPAND|gtk.FILL, 0, 0, 0)
956
           entry.show()
957
           widgets.append(entry)
958
           entry.connect("changed", self._change_atom_position, atom, 2)
959
           entry=gtk.Entry()
           entry.set_text("\%.4g" % atom.occupancy)
960
961
           entry.set_width_chars(5)
962
           entry.connect("changed", self._change_atom_occupancy, atom)
963
           table.attach(entry, 10, 12, 1+i, 2+i, 0, 0, 0, 0)
964
           entry.show()
965
           widgets.append(entry)
966
         table.show()
967
         return table
968
969
       def _change_lattice_parameter(self, entry, lattice, index):
970
971
           entry_float=float(entry.get_text())
         except ValueError:
972
973
           return
974
975
           items = ['a', 'b', 'c', 'alpha', 'beta', 'gamma']
976
           lattice.setLatPar(**{items[index]:entry_float})
977
978
       def _change_atom_position(self, entry, atom, index):
979
         try:
           entry_float=float(entry.get_text())
980
981
         except ValueError:
982
           return
983
         else:
984
           atom.xyz_cartn[index]=entry_float
985
986
       def _change_atom_occupancy(self, entry, atom):
987
           entry_float=float(entry.get_text())
988
989
         except ValueError:
990
           return
991
         else:
992
           atom.occupancy=entry_float
993
994
       def _change_atom_type(self, selection, atom):
995
         elements=sorted(FORM_FACTOR_PARAMETERS.keys())
996
         atom.element=elements[selection.get_active()]
997
998
       def _delete_atom(self, button, unit_cell, atom, table, widgets):
999
         unit_cell.remove(atom)
1000
         for widget in widgets:
1001
           table.remove(widget)
1002
         table.remove(button)
1003
1004
       def _load_cif(self, button, key):
```

```
1005
1006
           Load parameters from a CIF file the user selects with another dialog.
1007
1008
         file_selection=gtk.FileChooserDialog(title='Select CIF file ...',
1009
                                                 parent=self,
                                                 action=gtk.FILE_CHOOSER_ACTION_OPEN,
1010
1011
                                                 buttons=('OK', 1, 'Cancel', 0))
1012
         file_selection.set_select_multiple(False)
1013
         file_selection.set_current_folder(self.current_folder)
1014
         filter = gtk.FileFilter()
1015
         filter.set_name('Crystallographic Information (CIF)')
         filter.add_pattern('*.cif')
1016
         filter.add_pattern('*.CIF')
1017
1018
         file_selection.add_filter(filter)
1019
         filter = gtk.FileFilter()
1020
         filter.set_name('All')
1021
         filter.add_pattern('*')
1022
         file_selection.add_filter(filter)
1023
         result=file selection.run()
1024
         if result == 1:
1025
           self.current_folder=file_selection.get_current_folder()
1026
           file_name=file_selection.get_filename()
1027
           if file_name is not None and os.path.exists(file_name):
             self.model_basis[key][0]=collect_cif_info.eval_cif_file(file_name)
1028
1029
              self.update_entries(key)
1030
         file_selection.destroy()
1031
       def _add_atom(self, button, key):
1032
1033
1034
           Add a new button to the unit cell.
1035
1036
         unit_cell=self.model_basis[key][0][0]
1037
         unit_cell.addNewAtom('o2-')
1038
         self.update_entries(key)
1039
1040
       def _change_symmetry(self, selection, key):
1041
1042
           Change the symmetry of the crystal from the dialog selection.
1043
1044
         self.model_basis[key][0]=(self.model_basis[key][0][0], SpaceGroupList[selection.
             get_active()])
1045
1046
       def update_entries(self, key):
1047
1048
           Update the entry settings after parameter change.
1049
1050
         entries=self.structure_entries[key]
         unit_cell, symmetry=self.model_basis[key][0]
1051
1052
         abcABG=unit_cell.lattice.abcABG()
1053
         entries['symmetry selection'].set_active([item.number for item in SpaceGroupList
             ].index(symmetry.number))
1054
         for i, item in enumerate(['a', 'b', 'c', '\alpha', '\beta', '\gamma']):
1055
           entries['lattice parameters'][item].set_text("%.4g" % abcABG[i])
1056
         align=entries['atoms']
1057
         align.remove(align.get_children()[0])
1058
         atom_table=self._create_atom_table(unit_cell)
1059
         align.add(atom_table)
1060
1061
       def _create_option_entries(self):
1062
           Create entries for the model not directly including the crystal unit cell.
1063
1064
1065
         keys=self.model_basis.keys()
1066
         keys.sort()
1067
         table=gtk.Table(8, 9)
1068
         label=gtk.Label('General Model Parameters:')
1069
         label.show()
1070
         table.attach(label, 0, 8, 0, 1, gtk.EXPAND|gtk.FILL, 0, 0, 0)
         # direction and origin of the scan
1071
         for i, key in enumerate(keys):
1072
1073
           direction_vector=self.model_basis[key][1]
1074
           label=gtk.Label('Growths direction %s:' % key)
```

```
1075
     label.show()
            table.attach(label, 0, 5, 1+i*2, 2+i*2, 0, 0, 0, 0)
1076
            # Add entries for the HKL direction of the epitaxial growth
1077
1078
            for j in range(3):
1079
             spinner=gtk.SpinButton(adjustment=None, climb_rate=1., digits=0)
1080
             spinner.set_range(0, 10)
1081
             spinner.set_increments(1, 10)
1082
             spinner.set_width_chars(2)
1083
             spinner.show()
1084
             spinner.set_value(direction_vector[j])
1085
             spinner.connect('changed', self._change_direction, key, j)
table.attach(spinner, 5+j, 6+j, 1+i*2, 2+i*2, 0, 0, 0, 0)
1086
            origin_vector=self.model_basis[key][2]
1087
1088
            label=gtk.Label('Scan origin %s:' % key)
1089
            label.show()
1090
            table.attach(label, 0, 5, 2+i*2, 3+i*2, 0, 0, 0, 0)
1091
            # Add entries for the HKL direction of the epitaxial growth
1092
            for j in range(3):
1093
             spinner=gtk.SpinButton(adjustment=None, climb_rate=1., digits=0)
1094
             spinner.set_range(0, 10)
1095
             spinner.set_increments(1,
1096
             spinner.set_width_chars(2)
1097
             spinner.show()
1098
             spinner.set_value(origin_vector[j])
1099
              spinner.connect('changed', self._change_origin, key, j)
              table.attach(spinner, 5+j, 6+j, 2+i*2, 3+i*2, 0, 0, 0, 0)
1100
1101
         table.show()
1102
         return table
1103
1104
       def _change_direction(self, spinner, key, index):
1105
1106
           Change the direction vector when the
1107
         item=self.model_basis[key][1]
1108
         new_value=spinner.get_value()
1109
1110
         item[index]=new_value
1111
1112
       def _change_origin(self, spinner, key, index):
1113
1114
           Change the origin vector when the
1115
1116
         item=self.model_basis[key][2]
1117
         new_value=spinner.get_value()
1118
         item[index]=new_value
```

B.2 Reflectivity model for oxide samples

```
Changed reflectivity model from spec_nx.py introducing typical imperfections
3
    for oxide layers. General help information in spec_nx.py.
4
5 from numpy import *
6 from scipy.special import wofz
8 import lib.paratt as Paratt
9 import lib.neutron_refl as MatrixNeutron
10 from lib.instrument import *
11
12 # Preamble to define the parameters needed for the models outlined below:
13 ModelID='SpecNXInhom'
   __pars__ = ['Layer', 'Stack', 'Sample', 'Instrument']
14
  instrument_string_choices = {'probe': ['x-ray', 'neutron', 'neutron pol',\
15
       'neutron pol spin flip', 'neutron tof', 'neutron pol tof'], 'coords': ['q','tth'
16
          ],\
       'restype': ['no conv', 'fast conv', \
17
18
        'full conv and varying res.', 'fast conv + varying res.', 'varying delta theta
           and asymmetric delta lambda'],\
       'footype': ['no corr', 'gauss beam', 'square beam'],
19
   'pol': ['uu','dd','ud']}
```

```
21
   InstrumentParameters={'probe':'neutron', 'wavelength':5.616, 'coords':'q',\
         'IO':1.0, 'res':0.001,\
23
        'restype':'no conv', 'respoints':5, 'resintrange':2, 'beamw':0.01,
24
        'lambdares': 0.03, 'asymmetry': 0.,
25
         'footype': 'no corr', 'samplelen':10.0, 'incangle':0.0, 'pol': 'uu',
26
        'Ibkg': 0.0}
27
    InstrumentGroups = [('General', ['wavelength', 'coords', 'IO', 'Ibkg']),
                         ('Resolution', ['restype', 'res', 'respoints', 'resintrange']), ('Neutron', ['probe', 'pol', 'incangle']),
28
29
30
                         ('Footprint', ['footype', 'beamw', 'samplelen',]),
31
32
    LayerParameters={'sigma':0.0, 'dens':1.0, 'd':0.0, 'f':0.0+1.0j*1e-20,\
         'b':0.0+1.0j*1e-20, 'xs_ai': 0.0, 'magn':0.0, 'magn_ang':0.0}
33
   LayerGroups = [('Standard',['f','dens','d','sigma']),
34
35
                    ('Neutron', ['b', 'xs_ai', 'magn', 'magn_ang'])]
    StackParameters={'Layers':[], 'Repetitions':1, 'sigma_gradient': 0., 'd_gradient':
36
        0.}
37
    SampleParameters = { 'Stacks':[], 'Ambient': None, 'Substrate': None,
                   'sigma_inhom': 1., 'lscale_inhom': 0.9, 'flatwidth_inhom': 0.3,'
38
                       steps_inhom': 20, 'type_inhom': 2,
39
                                    'cap_steps': 0, 'cap_sigma': 3, 'cap_step_height': 5,
                                         'cap_gauss_center': 0.}
40
41
   # A buffer to save previous calculations for spin-flip calculations
42
    class Buffer:
43
        Ruu = 0
        Rdd = 0
44
45
        Rdu = 0
        Rud = 0
46
47
        parameters = None
48
49
    def Specular(TwoThetaQz, sample, instrument):
50
51
          The model function. Averadging the intensities for different
52.
          layer thicknesses as found for e.g. large PLD samples.
53
54
        # averadge thicknesses before inhomogeniety averadge
55
        d0=[array([Layer.getD() for Layer in Stack.Layers]) for Stack in sample.Stacks]
        sigma_d=sample.getSigma_inhom()*0.01 # Inhomogeniety in \% (gamma for type 2)
56
57
        lorentz_scale=sample.getLscale_inhom()
58
        flat_width=sample.getFlatwidth_inhom()*0.01
59
        # Define the thicknesses to calculate and their propability
60
        if sigma_d==0 or flat_width==0: # no inhomogeniety
61
          d_fact=[1.]
62
          P = [1.]
          Lif sample.getType_inhom() == 1: # half gaussian chape inhomogeniety
d_fact = 1. + linspace(-2.*sigma_d, 0, sample.getSteps_inhom())
63
        elif sample.getType_inhom() ==1:
64
65
          P=exp(-0.5*(d_fact-sigma_d-1.)**2/sigma_d**2)
66
          P/=P.sum()
67
          mean_d=(P*d_fact).sum()
          d_fact+=1.-mean_d
68
69
        elif sample.getType_inhom() == 2: # inhomogeniety of a PLD line focus, better
            approximation
70
          d_fact=1.+linspace(-1.*max(2.*sigma_d, flat_width), 0, sample.getSteps_inhom()
              )
71
          Pg=where(d fact>flat width, lorentz scale*1./(1.+((d fact-1.)/sigma d)**2).
              0.)
72
          Pf=(1.-lorentz_scale)*where(d_fact>flat_width, 1., 0.)
73
          P = Pg + Pf
74
          P/=P.sum()
75
          mean_d=(P*d_fact).sum()
76
          d_fact += 1.-mean_d
77
        else: # gaussian inhomegeniety
78
          d_fact=1.+linspace(-sigma_d, sigma_d, sample.getSteps_inhom())
79
          P=exp(-0.5*(d_fact-1.)**2/sigma_d**2)
80
          P/=P.sum()
81
        # Empty reflectivity
82
        {\tt R=zeros\_like(spec\_raw(TwoThetaQz\,,\,\,sample\,,\,\,instrument))}
83
        for d_facti, Pi in zip(d_fact, P): # Reflectivity for each thickness
84
          di=[d_facti*d0i for d0i in d0]
85
          for i, Stack in enumerate(sample.Stacks):
86
           for j, Layer in enumerate(Stack.Layers):
```

```
87
               Layer.setD(di[i][j])
88
           R+=Pi*spec_raw(TwoThetaQz, sample, instrument)
        # Reset layer options
89
90
         for i, Stack in enumerate(sample.Stacks):
91
           for j, Layer in enumerate(Stack.Layers):
92
             Layer.setD(d0[i][j])
93
         # add instrumental resolution before returning the intensities
94
         return spec_res(TwoThetaQz, sample, instrument, R)
95
96
    def spec_raw(TwoThetaQz, sample, instrument):
97
         Calculate raw reflectivity without resolution.
98
99
100
        # preamble to get it working with my class interface
101
        restype = instrument.getRestype()
102
103
        if restype == 2 or restype == instrument_string_choices['restype'][2]:
104
             (TwoThetaQz, weight) = ResolutionVector(TwoThetaQz[:], \
105
                   \verb|instrument.getRes()|, \verb|instrument.getRespoints()|, \\
106
                    range = instrument.getResintrange())
107
         elif restype == 4 or restype == instrument_string_choices['restype'][4]:
108
             ({\tt TwoThetaQz}\,, {\tt weight}) \; = \; {\tt ResolutionVectorAsymetric}\,({\tt TwoThetaQz}\,[:]\,, \; \; \backslash \\
109
                   instrument.getRes(), instrument.getRespoints(),\
110
                   instrument.getLambdares(), instrument.getAsymmetry(),
111
                    range = instrument.getResintrange())
        # TTH values given as x
112
113
         if instrument.getCoords() == instrument_string_choices['coords'][1]\
         or instrument.getCoords() == 1:
114
115
             Q = 4*pi/instrument.getWavelength()*sin(TwoThetaQz*pi/360.0)
116
        # Q vector given ...
117
         elif instrument.getCoords() == instrument_string_choices['coords'][0]\
118
          or instrument.getCoords() == 0:
119
             Q = TwoThetaQz
120
         else:
             raise ValueError('The value for coordinates, coords, is WRONG!'
121
122
                              'should be q(0) or tth(1).')
123
124
         type = instrument.getProbe()
125
        pol = instrument.getPol()
126
127
        lamda = instrument.getWavelength()
128
        parameters = sample.resolveLayerParameters()
if type == instrument_string_choices['probe'][0] or type==0:
129
130
             fb = array(parameters['f'], dtype = complex64)
131
         else:
132
             fb = array(parameters['b'], dtype = complex64)*1e-5
133
134
        dens = array(parameters['dens'], dtype = complex64)
135
        d = array(parameters['d'], dtype = float64)
136
        magn = array(parameters['magn'], dtype = float64)
137
        #Transform to radians
138
        magn_ang = array(parameters['magn_ang'], dtype = float64)*pi/180.0
139
140
         sigma = array(parameters['sigma'], dtype = float64)
141
        sld = dens*fb*instrument.getWavelength()**2/2/pi
142
143
         # Ordinary Paratt X-rays
144
         if type == instrument_string_choices['probe'][0] or type == 0:
145
             R = Paratt.ReflQ(Q,instrument.getWavelength(),1.0-2.82e-5*sld,d,sigma)
146
         #Ordinary Paratt Neutrons
147
         elif type == instrument_string_choices['probe'][1] or type == 1:
148
             R = Paratt.ReflQ(Q,instrument.getWavelength(),1.0-sld,d,sigma)
149
         #Ordinary Paratt but with magnetization
150
         elif type == instrument_string_choices['probe'][2] or type == 2:
151
             msld = 2.645e-5*magn*dens*instrument.getWavelength()**2/2/pi
152
             # Polarization uu or ++
153
             if pol == instrument_string_choices['pol'][0] or pol == 0:
154
                 R = Paratt.ReflQ(Q,instrument.getWavelength(),\
155
                      1.0-sld-msld,d,sigma)
             # Polarization dd or
156
157
             elif pol == instrument_string_choices['pol'][1] or pol == 1:
158
                 R = Paratt.ReflQ(Q,instrument.getWavelength(),\
```

```
159
                 1.0-sld+msld,d,sigma)
160
             else:
                raise ValueError('The value of the polarization is WRONG.'
161
162
                     ' It should be uu(0) or dd(1)')
163
        # Spin flip
        elif type == instrument_string_choices['probe'][3] or type == 3:
164
             # Check if we have calcluated the same sample previous:
165
             if Buffer.parameters != parameters:
166
167
                 msld = 2.645e-5*magn*dens*instrument.getWavelength()**2/2/pi
                 np = 1.0 - sld - msld
168
                 nm = 1.0-sld+msld
169
170
                 wl = instrument.getWavelength()
171
                 (Ruu, Rdd, Rud, Rdu) = MatrixNeutron.Refl(Q, wl, np, nm, d, magn_ang)
172
                 Buffer.Ruu = Ruu; Buffer.Rdd = Rdd; Buffer.Rud = Rud
173
                 Buffer.parameters = parameters.copy()
174
             else:
175
                 pass
             # Polarization uu or ++
176
             if pol == instrument_string_choices['pol'][0] or pol == 0:
177
178
                 R = Buffer.Ruu
179
             # Polarization dd or
180
             elif pol == instrument_string_choices['pol'][1] or pol == 1:
181
                 R = Buffer.Rdd
182
             # Polarization ud or +-
183
             elif pol == instrument_string_choices['pol'][2] or pol == 2:
                 R = Buffer.Rud
184
185
             else:
186
                 raise ValueError('The value of the polarization is WRONG.'
187
                     ' It should be uu(0), dd(1) or ud(2)')
188
189
190
        elif type == instrument_string_choices['probe'][4] or type == 4:
191
             sld = dens[:,newaxis]*fb[:,newaxis]*\
192
                     (4*pi*sin(instrument.getIncangle()*pi/180)/Q)**2/2/pi
193
             R = Paratt.Refl_nvary2(instrument.getIncangle()*ones(Q.shape),\
194
                 (4*pi*sin(instrument.getIncangle()*pi/180)/Q),
195
                     1.0-sld,d,sigma)
196
        # tof spin polarized
197
        elif type == instrument_string_choices['probe'][5] or type == 5:
198
             sld = dens[:,newaxis]*fb[:,newaxis]*\
199
                 (4*pi*sin(instrument.getIncangle()*pi/180)/Q)**2/2/pi
200
             msld = 2.645e-5*magn[:,newaxis]*dens[:,newaxis]\
201
                     *(4*pi*sin(instrument.getIncangle()*pi/180)/Q)**2/2/pi
202
             # polarization uu or ++
203
             if pol == instrument_string_choices['pol'][0] or pol == 0:
204
                 R = Paratt.Refl_nvary2(instrument.getIncangle()*ones(Q.shape),\
205
                     (4*pi*sin(instrument.getIncangle()*pi/180)/Q),
206
                      1.0-sld-msld,d,sigma)
207
             # polarization dd or
208
             elif pol == instrument_string_choices['pol'][1] or pol == 1:
209
                 R = Paratt.Refl_nvary2(instrument.getIncangle()*ones(Q.shape),\
210
                  (4*pi*sin(instrument.getIncangle()*pi/180)/Q),\
211
                   1.0-sld+msld,d,sigma)
212
             else:
213
                 raise ValueError('The value of the polarization is WRONG.'
214
                      ' It should be uu(0) or dd(1)')
215
216
            raise ValueError('The choice of probe is WRONG')
217
        return R
218
219
    def spec_res(TwoThetaQz, sample, instrument, R):
220
221
           Calculate resolution. Resolution type 4 introduces asymmetric wavelength
              distribution.
222
223
        # preamble to get it working with my class interface
224
        restype = instrument.getRestype()
225
226
        if restype == 2 or restype == instrument_string_choices['restype'][2]:
             (TwoThetaQz, weight) = ResolutionVector(TwoThetaQz[:], \
227
228
                   instrument.getRes(), instrument.getRespoints(),\
229
                   range = instrument.getResintrange())
```

```
230
        elif restype == 4 or restype == instrument_string_choices['restype'][4]:
231
             (TwoThetaQz, weight) = ResolutionVectorAsymetric(TwoThetaQz[:], \
232
                   \verb|instrument.getRes()|, \verb|instrument.getRespoints()|, \\
233
                   instrument.getLambdares(), instrument.getAsymmetry(),
234
                    range = instrument.getResintrange())
235
        # TTH values given as x
236
         if instrument.getCoords() == instrument_string_choices['coords'][1]\
237
         or instrument.getCoords() == 1:
238
             Q = 4*pi/instrument.getWavelength()*sin(TwoThetaQz*pi/360.0)
        # Q vector given..
239
240
         elif instrument.getCoords() == instrument_string_choices['coords'][0]\
241
         or instrument.getCoords() == 0:
242
            Q = TwoThetaQz
243
         else:
244
            raise ValueError('The value for coordinates, coords, is WRONG!'
245
                              'should be q(0) or tth(1).')
246
247
         type = instrument.getProbe()
        pol = instrument.getPol()
248
249
250
        lamda = instrument.getWavelength()
        parameters = sample.resolveLayerParameters()
251
252
        if type == instrument_string_choices['probe'][0] or type==0:
            fb = array(parameters['f'], dtype = complex64)
253
254
         else:
255
             fb = array(parameters['b'], dtype = complex64)*1e-5
256
257
         dens = array(parameters['dens'], dtype = complex64)
        d = array(parameters['d'], dtype = float64)
258
259
        magn = array(parameters['magn'], dtype = float64)
         #Transform to radians
260
261
        magn_ang = array(parameters['magn_ang'], dtype = float64)*pi/180.0
262
263
         sigma = array(parameters['sigma'], dtype = float64)
264
        sld = dens*fb*instrument.getWavelength()**2/2/pi
265
266
        #FootprintCorrections
267
268
        foocor = 1.0
269
         footype = instrument.getFootype()
270
        beamw = instrument.getBeamw()
271
         samlen = instrument.getSamplelen()
272
        theta = arcsin(Q*instrument.getWavelength()/4.0/pi)*180/pi
273
         if footype == 1 or footype == instrument_string_choices['footype'][1]:
             foocor = GaussIntensity(theta, samlen/2.0, samlen/2.0, beamw)
274
275
         elif footype == 2 or footype == instrument_string_choices['footype'][2]:
276
             foocor=SquareIntensity(theta, samlen, beamw)
277
         elif footype == 0 or footype == instrument_string_choices['footype'][0]:
278
            pass
279
         else:
            raise ValueError('The choice of footprint correction, footype,'
280
281
                 'is WRONG')
282
283
        #Resolution corrections
284
         if restype == instrument_string_choices['restype'][1] or restype == 1:
285
             R = ConvoluteFast(TwoThetaQz,R[:]*foocor,instrument.getRes(),\
286
                  range=instrument.getResintrange())
287
         elif restype == instrument_string_choices['restype'][2] or restype == 2:
288
            R = ConvoluteResolutionVector(TwoThetaQz,R[:]*foocor,weight)
289
         elif restype == instrument_string_choices['restype'][3] or restype == 3:
290
             R = ConvoluteFastVar(TwoThetaQz,R[:]*foocor,instrument.getRes(),\
291
                range = instrument.getResintrange())
         elif restype == instrument_string_choices['restype'][4] or restype == 4:
292
293
            R = ConvoluteResolutionVector(TwoThetaQz,R[:]*foocor,weight)
294
         elif restype == instrument_string_choices['restype'][0] or restype == 0:
295
            R = R[:]*foocor
296
         else:
297
             raise ValueError('The choice of resolution type, restype,'
298
                 'is WRONG')
299
300
        return R*instrument.getIO() + instrument.getIbkg()
301
```

```
302
    def ResolutionVectorAsymetric(Q,dQ,points, dLambda, asymmetry,range=3):
303
          Resolution vector for a asymmetric wavelength distribution found in
304
305
          neutron experiments with multilayer monochromator.
306
307
        Qrange=max(range*dQ, range*dLambda*Q.max())
308
        Qstep=2*Qrange/points
309
        Qres=Q+(arange(points)-(points-1)/2)[:,newaxis]*Qstep
310
        Quse=transpose(Q[:,newaxis])
311
312
        gamma_asym=2.*dLambda*Quse/(1+exp(asymmetry*(Quse-Qres)))
313
        z=(Quse - Qres + (abs(gamma_asym)*1j)) / abs(dQ)/sqrt(2.)
        z0=(0. + (abs(gamma_asym)*1j)) / abs(dQ)/sqrt(2)
314
315
        weight=wofz(z).real / wofz(z0).real
316
        Qret = Qres.flatten()
317
        return (Qret, weight)
318
    def OffSpecularMingInterdiff(TwoThetaQz,ThetaQx,sample,instrument):
319
320
        raise NotImplementedError('Not implemented use model interdiff insteads')
321
        return TwoThetaQz, ThetaQx
322
323
    def SLD_calculations(z, sample, inst):
324
325
          Calculates the scatteringlength density as at the positions z
326
327
        parameters = sample.resolveLayerParameters()
328
        dens = array(parameters['dens'], dtype = complex64)
329
        f = array(parameters['f'], dtype = complex64)
        b = array(parameters['b'], dtype = complex64)
330
331
        type = inst.getProbe()
332
        magnetic = False
        mag_sld = 0
333
334
        if type == instrument_string_choices['probe'][0] or type == 0:
335
            sld = dens*f
        elif type == instrument_string_choices['probe'][1] or type == 1 or\
336
337
            type == instrument_string_choices['probe'][4] or type == 4:
            sld = dens*b
338
339
        else:
340
            magnetic = True
341
            sld = dens*b
342
            magn = array(parameters['magn'], dtype = float64)
343
            #Transform to radians
344
            magn_ang = array(parameters['magn_ang'], dtype = float64)*pi/180.0
345
            mag_sld = 2.645*magn*dens
346
347
        d = array(parameters['d'], dtype = float64)
348
        d = d[1:-1]
349
        # Include one extra element - the zero pos (substrate/film interface)
350
        int_pos = cumsum(r_[0,d])
351
        sigma = array(parameters['sigma'], dtype = float64)[:-1] + 1e-7
        if z == None:
352
353
            z = arange(-sigma[0]*5, int_pos.max()+sigma[-1]*5, 0.5)
354
        if not magnetic:
            rho = sum((sld[:-1] - sld[1:])*(0.5 -\
355
356
                0.5*erf((z[:,newaxis]-int_pos)/sqrt(2.)/sigma)), 1) + sld[-1]
357
            dic = {'real sld': real(rho), 'imag sld': imag(rho), 'z':z}
358
        else:
359
            sld_p = sld + mag_sld
360
            sld_m = sld - mag_sld
361
            rho_p = sum((sld_p[:-1] - sld_p[1:])*(0.5 -\
                0.5*erf((z[:,newaxis]-int_pos)/sqrt(2.)/sigma)), 1) + sld_p[-1]
362
363
            rho_m = sum((sld_m[:-1] - sld_m[1:])*(0.5 -\
364
                0.5*erf((z[:,newaxis]-int_pos)/sqrt(2.)/sigma)), 1) + sld_m[-1]
            365
366
367
        return dic
368
369
    SimulationFunctions={'Specular':Specular, \
370
                          'OffSpecular':OffSpecularMingInterdiff, \
371
                          'SLD': SLD_calculations
                        }
372
373
```

```
374
        import lib.refl as Refl
375
          (Instrument, Layer, Stack, Sample) = Refl.MakeClasses(InstrumentParameters,
376
                  {\tt LayerParameters}\;,\; {\tt StackParameters}\;,\; {\tt SampleParameters}\;,\; {\tt SimulationFunctions}\;, {\tt Name term}\;,\; {\tt Name te
377
                  ModelID)
378
379
        # Add gradient for sigma and thickness to multilayers
        def resolveLayerParameter(self,parameter):
380
381
                  if parameter == 'sigma':
382
                      \verb|sigma_gradient=self.sigma_gradient|
383
                      #parameters for layers with roughness gradient
384
                      par=[lay.__getattribute__(parameter)+0.0 for lay in self.Layers]
385
                       for i in range(self.Repetitions-1):
386
                           par+=[lay.__getattribute__(parameter)+(sigma_gradient*i/self.Repetitions)
                                  for lay in self.Layers]
387
                  elif parameter == 'd':
                      d_gradient=self.d_gradient
388
389
                      #parameters for layers with roughness gradient
390
                      par=[]
391
                      for i in range(self.Repetitions):
392
                           par+=[lay.__getattribute__(parameter)*((1.-d_gradient/2.+d_gradient*i/self.
                                   Repetitions)) for lay in self.Layers]
393
                  else:
394
                      par=[lay.__getattribute__(parameter)+0.0 for lay in self.Layers]*self.
                               Repetitions
395
                  return par
396
397
         Stack.resolveLaverParameter=resolveLaverParameter
398
399
         # Add cap with step-like drop in sld ontop of the sample
400
         def sample_resolveLayerParameters(self):
401
                  par=self.Substrate.__dict__.copy()
                  for k in par.keys():
402
403
                          par[k] = [self.Substrate.__getattribute__(k)+0.0]
404
                  cap_steps=int(self.getCap_steps())
405
                  if cap_steps > 0:
406
                      cap_sigma=self.getCap_sigma()
407
                      cap_center=self.getCap_gauss_center()
                      cap_step_height = (4.*cap_sigma)/cap_steps
408
409
                  for k in Layer().__dict__.keys():
                     for stack in self.Stacks:
    par[k] = par[k] + stack.resolveLayerParameter(k)
410
411
412
                      if cap_steps>0:
413
                          if k == 'd':
414
                               par[k][-1] = par[k][-1] - cap_step_height*cap_steps/2.
415
                               par[k] = par[k] + [cap_step_height]*cap_steps
                           elif k == 'dens':
416
417
                               dens=par[k][-1]
418
                               x=linspace(-2.*cap_sigma, 2.*cap_sigma, cap_steps)
419
                               sigma_asym=2.*cap_sigma/(1+exp(cap_center*x))
420
                               Pfac=exp(-0.5*x**2/sigma_asym**2)
                               Pfac/=Pfac.sum()
421
422
                               factors= [1.-Pfac[:i+1].sum() for i in range(cap_steps)]
                           par[k] = par[k] + [dens*fi for fi in factors]
elif k == 'sigma':
423
424
425
                               par[k][-1]=cap_step_height
                               par[k] = par[k] + cap_steps*[par[k][-1]]
426
427
                           else:
428
                               par[k] = par[k] + cap_steps*[par[k][-1]]
429
                      par[k] = par[k] + [self.Ambient.__getattribute__(k)+0.0]
430
431
432 \quad {\tt Sample.resolveLayerParameters = sample\_resolveLayerParameters}
```

B.3 Spin model and neutron diffraction calculation for

 $\mathbb{TL}^{\mathbf{18/3}}_{\times 20}$

```
1 from numpy import *
 2 import matplotlib.pyplot as plt
     from scipy.signal import fftconvolve
      def get_XY(steps, interpolations):
         # Get xy-grid for the simulation
          r=arange(-steps/2., steps/2.+1./interpolations,1./interpolations)
 8
          return meshgrid(r,r)
 9
10 def get_Z(X,Y):
         # create a periodic structure with limited coherence
11
12
         LX=1./(1.+(X/correlation_a)**2)
13
           LY=1./(1.+(Y/correlation_b)**2)
           14
15
          return where ((X%0.5==0.)*(Y%0.5==0.), Zf, 0.)
16
17
       def get_Z_reset(X,Y):
         # create a periodic structure with limited cohrernce with
           # a specific phase at the beginning of each layer
19
20
          LX=1./(1.+(X/correlation_a)**2)
21
           LY=1./(1.+(Y/correlation_b)**2)
            Zf = (a1*cos(2.*phi_a1*pi*X) + a2*cos(2.*phi_a2*pi*X))*cos(2.*phi_b*((Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y\%bilayer_period(Y
22
                  )*pi))*LX*LY
23
          return where ((X\%0.5==0.)*(Y\%0.5==0.), Zf, 0.)
24
25
       def get_I(Z):
         # calculate scattered intensity from a given spin structure
26
27
         S=fft.fft2(Z)
28
          I=abs(S**2)
29
          return T
31
       def get_resolution(X,Y,sigmax, sigmay):
32.
           \# calculate gaussian resolution function at 0,0
33
           G = \exp(-0.5*X**2/sigmax**2)*exp(-0.5*Y**2/sigmay**2)
34
          G/=G.sum()
35
           return G
37
       def make_layers(Y,Z):
         # crop spins from \la layers
          return where((Y%bilayer_period) <= layer_thickness, Z, 0.)</pre>
40
41
       def fill_layers(X,Y,Z):
         # set spins at \la layers to 1.
42
43
          return where((Y%bilayer_period) <= layer_thickness,Z, where((X%0.5==0.)*(Y%0.5==0.)
                   ,0.33/(1.+(X/correlation_a)**2),0.))
44
45
      def export_for_gnuplot(X,Y,Z, file_name):
46
47
          # export a dataset as x,y,z columns to a text file
48
           # scans are separated by empty lines for gnuplot
49
          fhandler=open(file_name, 'w')
50
           for xi,yi,zi in zip(X,Y,Z):
             zone=array([xi,yi,zi]).transpose()
               zonestr="\n".join(
52
53
                                         map(lambda line: " ".join(
54
                                         map(str, line)
55
                                         ), zone))
56
               fhandler.write(zonestr+'\n\n')
57
           fhandler.close()
58
59
       def export_directios_for_gnuplot(X,Y,M1,M2,C, file_name):
60
          # export the spin directions to a 5 column textfile
61
           # the 5th column denotes the layer where the spin is situated
           fhandler=open(file_name, 'w')
62
           for xi,yi,m1i,m2i,ci in zip(X,Y,M1,M2,C):
63
           ids=where((xi\%0.5==0.)*(yi\%0.5==0.))
```

```
65
                      zone=array([xi[ids],yi[ids],m1i[ids],m2i[ids],ci[ids]]).transpose()
  66
                       zonestr="\n".join(
                                                          map(lambda line: " ".join(
 67
  68
                                                           map(str, line)
  69
                                                           ), zone))
  70
                       fhandler.write(zonestr+'\n\n')
  71
                 fhandler.close()
  72
  73
           #++++++++ define constants and simulate the structure ++++++++
  74
  75
           \verb|bilayer_period=17.5+3.5|
                                                                                      # \la + \tb thickness
  76
           layer_thickness=17.5
                                                                                      # \tb thickness
  77
         phi_a1=2.
                                                                                      # Phase for periodicity in c-direction
  78 phi_a2=1.
                                                                                      \# Phase for periodicity in c-direction
  79
           phi_b=5/layer_thickness
                                                                                      # Phase in b-direction
                                                                                      # Amplitude for first periodicity
  80
         a1 = 0.5
 81
           a2 = 0.52
                                                                                      # Amplitude for second periodicity
  82
 83 # Define the grid and resolution function
  84 X,Y=get_XY(200, 4) # 200x200 unit cells with 4 steps/UC
  85
           Qx = X/50.+2.
                                                               # Corresponding reciprocal space vectors
  86 \quad Qy = Y/50.
  87 G=get_resolution(Qx-2.,Qy,0.03, 0.02) # Gaussian resolution
 88
 89 # Calculateions for the non spin-flip channel
                                                                    # Correlation length in c-direction
  90 correlation_a=1.
                                                                     # Correlation length in b-direction
  91
          correlation_b=1e4
  92
           Z=get_Z_reset(X,Y)
                                                                     # Coupled magnetic structure to layers
  93 Z=fill_layers(X,Y,Z) # Ferromagnetic spins in \la
  94
          Znsf=Z
 95
           I=get_I(Z)
                                                                      # Calculate intensity
  96
 97 # Interactive ploting and export of the data
 98
          plt.figure(1)
 99
          plt.subplot(211)
100 plt.pcolormesh(Y,X,Z)
101
           plt.subplot(212)
102 Insf=fftconvolve(I,G,mode='same')
103 export_for_gnuplot(Qy, Qx, Insf/Insf.max(), 'Insf.out')
104 plt.pcolormesh(Qy,Qx,Insf)
105
106 # Calculations for the spin-flip channel
107 \# a1 = 0.
108 \# a2 = 1.
109
        #phi_b = 0.
110 # correlation_a = 1 e 1 0
111
          #correlation_b=1e10
112 \#Z = get_Z(X,Y)
113
          \#Znew = zeros\_like(Z)
114
115 ## Averidge the intensities of sets with random integer numbers of SDWs in each
                     layer
116
          #for i in range(-1, int(200/bilayer_period)):
                 # periodicity = random . randint(1,7)
117
118
                 #Znew+=cos((Y%bilayer_period)*pi*periodicity/layer_thickness+pi/2.)*(Y<(
                             bilayer\_period*(i+1) - bilayer\_period*int(100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_pe
                             bilayer_period - bilayer_period * int (100/bilayer_period)))*Z
119 #Z=Znew
120 \#Z = make_layers(Y, Z)
121
         \#I = get_I(Z)
          #for i in range(5):
122
                 \#Z = get_Z(X, Y)
123
124
                 \#Znew = zeros_like(Z)
                 #for i in range(-1,int(400/bilayer_period)):
125
                      # periodicity = random . randint (1,7)
126
127
                       #Znew+=cos((Y%bilayer_period)*pi*periodicity/layer_thickness+pi/2.)*(Y<(
                                  bilayer\_period*(i+1)-bilayer\_period*int(100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period)))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_period))*(Y>=(i*100/bilayer\_pe
                                  bilayer\_period - bilayer\_period * int (100/bilayer\_period))) * Z
128
                 #Z=Znew
129
                 \#Z = make_layers(Y,Z)
130
                 #I += get_I(Z)
           \#I/=6
```

```
132
133 ## Interactive ploting and export of the data
134 #plt.figure(2)
135 #plt.subplot(211)
136 #plt.pcolormesh(Y,X,Z)
137 #plt.subplot(212)
138 #Isf=fftconvolve(I,G,mode='same')
139 #export_for_gnuplot(Qy, Qx, Isf/Isf.max(), 'Isf.out')
140 #export_directios_for_gnuplot(Y,X,Znsf,Z,fill_layers(X,Y,zeros_like(Z)), 'spins.out')
141 #plt.pcolormesh(Qy,Qx,Isf)
142
143 plt.show()
```

Appendix C

Bibliography

Books

- [1] J. Als-Nielsen and Des McMorrow, *Elements of modern X-ray physics*, Wiley, New York, (2011)
- [2] T. Brückel, G. Heger, D. Richter, and R. Zorn (eds.), *Neutron Scattering*, vol. 5, Forschungszentrum Jülich GmbH, Jülich, (2008)
- [3] S. Cotton, Lanthanide and Actinide Chemistry, Wiley, New York, (2006)
- [4] H. Fuess, T. Hahn, H. Wondratschek, U. Müller, U. Shmueli, A. Authier, V. Kopský, D. B. Litvin, M. G. Rossmann, E. Arnold, S. Hall, and B. McMahon, *International tables for crystallography*, T. Hahn (ed.), Wiley, New York, (1983)
- [5] J. B. Goodenough, *Magnetism and the Chemical Bond*, Interscience Publishers, New York, (1963)
- [6] S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter: Volume 2: Polarization Effects and Magnetic Scattering. The International Series of Monographs on Physics, Oxford University Press, New York, (1986)
- [7] S. W. Lovesey and S. P. Collins, *X-ray Scattering and Absorption by Magnetic Materials*, Oxford University Press, New York, (1996)
- [8] J.-M. Mariot and C. Brouder, *Spectroscopy and Magnetism: An Introduction*, in: E. Beaurepaire, F. Scheurer, G. Krill, and J.-P. Kappler (eds.), *Magnetism and Synchrotron Radiation*, Lecture Notes in Physics, pp. 24–59, Springer, Berlin, (2001)
- [9] W. Schweika, *X-ray and neutron diffraction*, in: S. Blügel, T. Brückel, R. Waser, and C. M. Schneider (eds.), *Electronic Oxides*, Forschungszentrum Jülich GmbH, Jülich, (2010)
- [10] G. L. Squires, *Introduction to the theory of thermal neutron scattering*, Dover Publications, Mineola, (1996)
- [11] J. Voigt, *Resonant x-ray scattering and absorption spectroscopy*, in: S. Blügel, T. Brückel, R. Waser, and C. M. Schneider (eds.), *Electronic Oxides*, Forschungszentrum Jülich GmbH, Jülich, (2010)

- [12] B. Voigtländer, *Experimente zum epitaktischen Wachstum*, in: R. Hölzle, K. Kehr, and H. Müller-Krumbhaar (eds.), *Dynamik und Strukturbildung in kondensierter Materie*, Forschungszentrum Jülich GmbH, Jülich, (1997)
- [13] R. Waser (ed.), *Nanoelectronics and information technology*, Wiley-VCH, Weinheim, (2003)
- [14] *Generating Matrices*, in: E. P. Wohlfarth (ed.), *Symmetry and Magnetism*, p. 65, North-Holland Publishing, Amsterdam, (1964)
- [15] E. P. Wohlfarth (ed.), *Symmetry and Magnetism*, North-Holland Publishing, Amsterdam, (1964)

Articles

- [16] A. J. Achkar, T. Z. Regier, H. Wadati, Y.-J. Kim, H. Zhang, and D. G. Hawthorn, Bulk sensitive x-ray absorption spectroscopy free of self-absorption effects, Phys. Rev. B 83 (2011), no. 8, 81106
- [17] P. W. Anderson, *Antiferromagnetism. Theory of Superexchange Interaction*, Physical Review **79** (1950), no. 2, 350
- [18] M. Angst, R. P. Hermann, A. D. Christianson, M. D. Lumsden, C. Lee, M.-H. Whangbo, J.-W. Kim, P. J. Ryan, S. E. Nagler, W. Tian, R. Jin, B. C. Sales, and D. Mandrus, *Charge Order in Lufe*₂*O*₄: *Antiferroelectric Ground State and Coupling to Magnetism*, Phys. Rev. Lett. **101** (2008), no. 22, 227601
- [19] S. I. Anisimov, D. Bäuerle, and B. S. Luk'yanchuk, *Gas dynamics and film profiles in pulsed-laser deposition of materials*, Phys. Rev. B **48** (1993), no. 16, 12076
- [20] T. Arima, T. Goto, Y. Yamasaki, S. Miyasaka, K. Ishii, M. Tsubota, T. Inami, Y. Murakami, and Y. Tokura, *Magnetic-field-induced transition in the lattice modulation of colossal magnetoelectric GdMnO*₃ and TbMnO₃ compounds, Phys. Rev. B **72** (2005), no. 10, 100102
- [21] E. Bauer, *Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I*, Zeitschrift für Kristallographie **110** (1958), no. 1-6, 372–394
- [22] H. Bea, M. Bibes, M. Sirena, G. Herranz, K. Bouzehouane, E. Jacquet, S. Fusil, P. Paruch, M. Dawber, J. P. Contour, and A. Barthelemy, *Combining half-metals and multiferroics into epitaxial heterostructures for spintronics*, Applied Physics Letters **88** (2006), no. 6
- [23] H. Bethe, *Thermal division in crystals*, Annalen der Physik **3** (1929), no. 2, 133–208
- [24] M. Bibes and A. Barthelemy, *Multiferroics: Towards a magnetoelectric memory*, Nature Materials 7 (2008), no. 6, 425–426
- [25] M. Bjorck and G. Andersson, *Genx: an extensible X-ray reflectivity refinement program utilizing differential evolution*, Journal of Applied Crystallography **40** (2007), no. 6, 1174–1178
- [26] M. Blume, *Polarization Effects in the Magnetic Elastic Scattering of Slow Neutrons*, Phys. Rev. **130** (1963), no. 5, 1670

- [27] M. Blume, *Magnetic scattering of x rays (invited)*, Journal of Applied Physics Doi 10.1063/1.335023 **57** (1985), no. 8, 3615–3618
- [28] M. Blume and D. Gibbs, *Polarization dependence of magnetic x-ray scattering*, Physical Review B **37** (1988), no. 4, 1779
- [29] P. Carra, B. T. Thole, M. Altarelli, and X. Wang, *X-ray circular dichroism and local magnetic fields*, Phys. Rev. Lett. **70** (1993), no. 5, 694
- [30] J. M. Chen, J. M. Lee, C. K. Chen, T. L. Chou, K. T. Lu, S. C. Haw, K. S. Liang, C. T. Chen, H. T. Jeng, S. W. Huang, T. J. Yang, C. C. Shen, R. S. Liu, J. Y. Lin, and Z. Hu, *Bonding anisotropy in multiferroic TbMnO*₃ *probed by polarization dependent x-ray absorption spectroscopy*, Applied Physics Letters **94** (2009), no. 4, 44105
- [31] S.-W. Cheong and M. Mostovoy, *Multiferroics: a magnetic twist for ferroelectricity*, Nature Materials **6** (2007), no. 1, 13–20
- [32] R. E. Cohen, *Origin of Ferroelectricity in Perovskite Oxides Rid B-3784-2010*, Nature **358** (1992), no. 6382, 136–138
- [33] Y. M. Cui, C. C. Wang, and B. S. Cao, *TbMnO*₃ epitaxial thin films by pulsed-laser deposition, Solid State Communication **133** (2005), no. 10, 641–645
- [34] C. J. M. Daumont, D. Mannix, S. Venkatesan, G. Catalan, D. Rubi, B. J. Kooi, J. T. M. D. Hosson, and B. Noheda1, *Epitaxial TbMnO*₃ thin films on SrTiO₃ substrates: a structural study, Journal of Physics: Condensed Matter **21** (2009), no. 18, 182001
- [35] D. K. G. de Boer, *X-ray reflection and transmission by rough surfaces*, Phys. Rev. B **51** (1995), no. 8, 5297
- [36] P. P. Deen, F. Yokaichiya, A. de Santis, F. Bobba, A. R. Wildes, and A. M. Cucolo, Ferromagnetic clusters and superconducting order in La_{0.7}Ca_{0.3}MnO₃/YBa₂Cu₃O₇-δ heterostructures, Physical Review B **74** (2006), no. 22
- [37] I. Dzyaloshinsky, *A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics*, Journal of Physics and Chemistry of Solids **4** (1958), no. 4, 241–255
- [38] W. Eerenstein, N. D. Mathur, and J. F. Scott, *Multiferroic and magnetoelectric materials*, Nature **442** (2006), no. 7104, 759–765
- [39] F. Fabrizi, H. C. Walker, L. Paolasini, F. de Bergevin, A. T. Boothroyd, D. Prabhakaran, and D. F. Mcmorrow, *Circularly Polarized X Rays as a Probe of Noncollinear Magnetic Order in Multiferroic TbMnO*₃, Phys. Rev. Lett. **102** (2009), no. 23, 237205
- [40] M. Fiebig, *Revival of the magnetoelectric effect*, Journal of Physics D-applied Physics **38** (2005), no. 8, R123–R152
- [41] M. Fiebig, T. Lottermoser, D. Frohlich, A. V. Goltsev, and R. V. Pisarev, *Observation of coupled magnetic and electric domains*, Nature **419** (2002), no. 6909, 818–820
- [42] D. Fuchs, E. Arac, C. Pinta, S. Schuppler, R. Schneider, and H. von Loehneysen, *Tuning the magnetic properties of LaCoO*₃ *thin films by epitaxial strain*, Physical Review B 77 (2008), no. 1, 14434

- [43] E. E. Fullerton, I. K. Schuller, H. Vanderstraeten, and Y. Bruynseraede, *Structural refinement of superlattices from x-ray diffraction*, Physical Review B **45** (1992), no. 16, 9292
- [44] S. Gepraegs, M. Opel, S. T. B. Goennenwein, and R. Gross, *Multiferroic materials based on artificial thin film heterostructures*, Philosophical Magazine Letters **87** (2007), no. 3-4, 141–154
- [45] L. Ghivelder, I. Abrego Castillo, M. A. Gusmão, J. A. Alonso, and L. F. Cohen, *Specific heat and magnetic order in LaMnO*_{3+δ}, Physical Review B **60** (1999), no. 17, 12184
- [46] D. Gibbs, G. Gr \tilde{A}_{4}^{1} bel, D. R. Harshman, E. D. Isaacs, D. B. Mcwhan, D. Mills, and C. Vettier, *Polarization and resonance studies of x-ray magnetic scattering in holmium*, Phys. Rev. B **43** (1991), no. 7, 5663
- [47] A. Glavic, J. Voigt, J. Persson, Y. X. Su, J. Schubert, J. de Groot, W. Zande, and T. Brückel, *High quality TbMnO*₃ *films deposited on YAlO*₃, Journal of Alloys and Compounds **509** (2011), no. 16, 5061–5063
- [48] J. B. Goedkoop, B. T. Thole, G. van der Laan, G. A. Sawatzky, F. M. F. de Groot, and J. C. Fuggle, *Calculations of magnetic x-ray dichroism in the 3d absorption spectra of rare-earth compounds*, Physical Review B **37** (1988), no. 4, 2086
- [49] I. Gonzalez, S. Okamoto, S. Yunoki, A. Moreo, and E. Dagotto, *Charge transfer in heterostructures of strongly correlated materials*, Journal of Physics **20** (2008), no. 26
- [50] J. B. Goodenough, *Theory of the Role of Covalence in the Perovskite-type Manganites* [La,M(II)]MnO₃, Physical Review **100** (1955), no. 2, 564–573
- [51] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, *Ferroelectricity and Giant Magnetocapacitance in Perovskite Rare-Earth Manganites*, Phys. Rev. Lett. **92** (2004), no. 25, 257201
- [52] O. Haas, R. Struis, and J. M. Mcbreen, *Synchrotron X-ray absorption of LaCoO*₃ *perovskite*, Journal of Solid State Chemistry **177** (2004), no. 3, 1000–1010
- [53] O. Halpern and M. H. Johnson, on the Magnetic Scattering of Neutrons, Phys. Rev. 55 (1939), no. 10, 898
- [54] J. P. Hannon, G. T. Trammell, M. Blume, and D. Gibbs, *X-Ray Resonance Exchange Scattering*, Phys. Rev. Lett. **61** (1988), no. 10, 1245
- [55] J. Hemberger, F. Schrettle, A. Pimenov, P. Lunkenheimer, V. Y. Ivanov, A. A. Mukhin, A. M. Balbashov, and A. Loidl, *Multiferroic phases of* $Eu_{1-x}Y_xMnO_3$, Phys. Rev. B **75** (2007), no. 3, 35118
- [56] D. E. Hooks, T. Fritz, and M. D. Ward, *Epitaxy and molecular organization on solid substrates*, Advanced Materials **13** (2001), no. 4, 227
- [57] R. Hull and J. C. Bean, *Misfit Dislocations in Lattice-mismatched Epitaxial-films*, Critical Reviews in Solid State and Materials Sciences **17** (1992), no. 6, 507–546
- [58] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong, *Electric polarization reversal and memory in a multiferroic material induced by magnetic fields*, Nature **429** (2004), no. 6990, 392–395

- [59] N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kito, Ferroelectricity from iron valence ordering in the charge-frustrated system Lufe₂O₄, Nature 436 (2005), no. 7054, 1136–1138
- [60] E. D. Isaacs, D. B. Mcwhan, C. Peters, G. E. Ice, D. P. Siddons, J. B. Hastings, C. Vettier, and O. Vogt, *X-ray resonance exchange scattering in UAs*, Phys. Rev. Lett. **62** (1989), no. 14, 1671
- [61] S. Ishihara, J. Inoue, and S. Maekawa, *Effective Hamiltonian in manganites: Study of the orbital and spin structures*, Physical Review B **55** (1997), no. 13, 8280
- [62] H. A. Jahn and E. Teller, *Stability of polyatomic molecules in degenerate electronic states*. *I. Orbital degeneracy*, Proceedings of the Royal Society of London Series A **161** (1937), no. A905, 220–235
- [63] S. C. Jain, A. H. Harker, and R. A. Cowley, Misfit strain and misfit dislocations in lattice mismatched epitaxial layers and other systems, Philosophical Magazine A-physics of Condensed Matter Structure Defects and Mechanical Properties 75 (1997), no. 6, 1461– 1515
- [64] H. Jang, J.-S. Lee, K.-T. Ko, W.-S. Noh, T. Y. Koo, J.-Y. Kim, K.-B. Lee, J.-H. Park, C. L. Zhang, S. B. Kim, and S.-W. Cheong, *Coupled Magnetic Cycloids in Multiferroic TbMnO*₃ *and Eu*_{3/4}*Y*_{1/4}*MnO*₃, Phys. Rev. Lett. **106** (2011), no. 4, 47203
- [65] S. Jin, T. H. Tiefel, M. Mccormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, *Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films*, Science **264** (1994), no. 5157, 413–415
- [66] M. D. Johnson, C. Orme, A. W. Hunt, D. Graff, J. Sudijono, L. M. Sander, and B. G. O. R. R., Stable and Unstable Growth in Molecular-beam Epitaxy, Physical Review Letters 72 (1994), no. 1, 116–119
- [67] J. Kanamori, Superexchange Interaction and Symmetry Properties of Electron Orbitals, Journal of Physics and Chemistry of Solids **10** (1959), no. 2-3, 87–98
- [68] H. Katsura, N. Nagaosa, and A. V. Balatsky, *Spin Current and Magnetoelectric Effect in Noncollinear Magnets*, Phys. Rev. Lett. **95** (2005), no. 5, 57205
- [69] M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S. W. Cheong, O. P. Vajk, and J. W. Lynn, *Magnetic inversion symmetry breaking and ferroelectricity in TbMnO*₃, Physical Review Letters **95** (2005), no. 8, 87206
- [70] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, *Magnetic control of ferroelectric polarization*, Nature **426** (2003), no. 6962, 55–58
- [71] T. Kimura, S. Ishihara, H. Shintani, T. Arima, K. T. Takahashi, K. Ishizaka, and Y. Tokura, *Distorted perovskite with e_g^1 configuration as a frustrated spin system*, Physical Review B **68** (2003), no. 6, 60403
- [72] T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, *Magnetoelectric phase diagrams of orthorhombic RMnO*₃ (*R*=*Gd*, *Tb*, *and Dy*), Physical Review B **71** (2005), no. 22, 224425

- [73] B. J. Kirby, D. Kan, A. Luykx, M. Murakami, D. Kundaliya, and I. Takeuchi, *Anomalous ferromagnetism in TbMnO*₃ thin films, Journal of Applied Physics **105** (2009), no. 7, 7D917
- [74] R. Kronig and H. A. Kramers, *Absorption and Dispersion in X-Ray Spectra*, Zeitschrift für Physik **48** (1928), 174
- [75] K. I. Kugel' and D. I. Khomskiĭ, *The Jahn-Teller effect and magnetism: transition metal compounds*, Soviet Physics Uspekhi **25** (1982), no. 4, 231
- [76] J. H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. F. Kourkoutis, J.-W. Kim, P. J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D. G. Schlom, A strong ferroelectric ferromagnet created by means of spin-lattice coupling, Nature 466 (2010), no. 7309, 954–958
- [77] H. F. Li, Y. Su, T. Chatterji, A. Nefedov, J. Persson, P. Meuffels, Y. Xiao, D. Vaknin, and T. Brückel, *Soft X-ray resonant scattering study of single-crystal LaSr*₂*Mn*₂*O*₇, European Physical Journal B **74** (2010), no. 4, 457–461
- [78] H. F. Li, Y. Su, Y. G. Xiao, J. Persson, P. Meuffels, and T. Brückel, *Crystal and magnetic structure of single-crystal* $La_{1-x}Sr_xMnO_3$ (*x approximate to 1/8*), European Physical Journal B **67** (2009), no. 2, 149–157
- [79] S. Maleev, V. Bar'yakhtar, and R. Suris, *The Scattering of Slow Neutrons BY Complex Magnetic Structures*, Soviet Phys.-Solid State (English Transl.) **4** (1963), 2533–2539
- [80] X. Marti, V. Skumryev, C. Ferrater, M. V. Garcia-Cuenca, M. Varela, F. Sanchez, and J. Fontcuberta, *Emergence of ferromagnetism in antiferromagnetic TbMnO*₃ by epitaxial strain, Applied Physics Letters **96** (2010), no. 22, 222505
- [81] M. Medarde, C. Dallera, M. Grioni, J. Voigt, A. Podlesnyak, E. Pomjakushina, K. Conder, T. Neisius, O. Tjernberg, and S. N. Barilo, *Low-temperature spin-state transition in LaCoO*₃ *investigated using resonant x-ray absorption at the Co K-edge*, Physical Review B **73** (2006), no. 5
- [82] M. Merz, P. Nagel, C. Pinta, A. Samartsev, H. v. Löhneysen, M. Wissinger, S. Uebe, A. Assmann, D. Fuchs, and S. Schuppler, *X-ray absorption and magnetic circular dichroism of LaCoO*₃, *La*_{0.7}*Ce*_{0.3}*CoO*₃ and *La*_{0.7}*Sr*_{0.3}*CoO*₃ films: Evidence for cobalt-valence-dependent magnetism, Phys. Rev. B **82** (2010), no. 17, 174416
- [83] A. J. Millis, *Orbital ordering and superexchange in manganite oxides*, Physical Review B **55** (1997), no. 10, 6405
- [84] T. Moriya, *Anisotropic Superexchange Interaction and Weak Ferromagnetism*, Phys. Rev. **120** (1960), no. 1, 91
- [85] M. Mostovoy, Ferroelectricity in Spiral Magnets, Physical Review Letters **96** (2006), no. 6, 67601
- [86] A. M. Mulders, S. M. Lawrence, A. J. Princep, U. Staub, Y. Bodenthin, M. García-Fernández, M. Garganourakis, J. Hester, R. Macquart, and C. D. Ling, *Circularly polarized soft x-ray diffraction study of helical magnetism in hexaferrite*, Phys. Rev. B **81** (2010), no. 9, 92405

- [87] P. Müller and A. Saul, *Elastic effects on surface physics*, Surface Science Reports **54** (2004), no. 5-8, 157–258
- [88] N. Nagaosa, *Theory of multiferroic behavior in cycloidal helimagnets*, Journal of Physics: Condensed Matter **20** (2008), no. 43, 434207
- [89] C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, *Multiferroic magnetoelectric composites: Historical perspective, status, and future directions*, Journal of Applied Physics **103** (2008), no. 3
- [90] A. Ohtomo and H. Y. Hwang, *A high-mobility electron gas at the LaAlO*₃/*SrTiO*₃ *heterointerface*, Nature **427** (2004), no. 6973, 423–426
- [91] S. Okamoto and A. J. Millis, *Electronic reconstruction at an interface between a Mott insulator and a band insulator*, Nature **428** (2004), no. 6983, 630–633
- [92] L. G. Parratt, Surface Studies of Solids by Total Reflection of X-Rays, Physical Review **95** (1954), no. 2, 359
- [93] J. H. Paterson and O. L. Krivanek, *ELNES of 3d Transition-metal Oxides II. Variations With Oxidation-state and Crystal-structure*, Ultramicroscopy **32** (1990), no. 4, 319–325
- [94] E. Pavarini and E. Koch, *Origin of Jahn-Teller Distortion and Orbital Order in LaMnO*₃, Physical Review Letters **104** (2010), no. 8, 86402
- [95] J. C. Phillips, on the Calculation of Crystal Field Parameters, Journal of Physics and Chemistry of Solids 11 (1959), no. 3-4, 226–230
- [96] U. Poppe, J. Schubert, R. Arons, W. Evers, C. Freiburg, W. Reichert, K. Schmidt, W. Sybertz, and K. Urban, *Direct production of crystalline superconducting thin films of Yba*₂*Cu*₃*O*₇ *by high-pressure oxygen sputtering*, Solid State Communications **66** (1988), no. 6, 661 665
- [97] O. Prokhnenko, R. Feyerherm, M. Mostovoy, N. Aliouane, E. Dudzik, A. U. B. Wolter, A. Maljuk, and D. N. Argyriou, *Coupling of frustrated ising spins to the magnetic cycloid in multiferroic TbMnO*₃, Physical Review Letters **99** (2007), no. 17, 177206
- [98] R. Ramesh and N. A. Spaldin, *Multiferroics: progress and prospects in thin films*, Nature Materials **6** (2007), no. 1, 21–29
- [99] R. Ramesh, F. Zavaliche, Y. H. Chu, L. W. Martin, S. Y. Yang, M. P. Cruz, M. Barry, K. Lee, P. Yang, and Q. Zhan, *Magnetoelectric complex-oxide heterostructures*, Philosophical Magazine Letters **87** (2007), no. 3-4, 155–164
- [100] P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, and O. Eriksson, *Theoretical investigation of magnetoelectric behavior in BiFeO*₃, Physical Review B **74** (2006), no. 22, 224412
- [101] N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, *Superconducting interfaces between insulating oxides*, Science **317** (2007), no. 5842, 1196–1199

- [102] D. Rubi, C. de Graaf, C. J. M. Daumont, D. Mannix, R. Broer, and B. Noheda, Ferromagnetism and increased ionicity in epitaxially grown TbMnO₃ films, Physical Review B **79** (2009), no. 1, 14416
- [103] U. Rücker, E. Kentzinger, B. Toperverg, F. Ott, and T. Brückel, *Layer-by-layer magne-tometry of polarizing supermirrors*, Applied Physics A-materials Science & Processing **74** (2002), S607–S609
- [104] K. Z. Rushchanskii, S. Kamba, V. Goian, P. Vaněk, M. Savinov, J. Prokleška, D. Nuzhnyy, K. Knížek, F. Laufek, S. Eckel, S. K. Lamoreaux, A. O. Sushkov, M. Ležaić, and N. A. Spaldin, *A multiferroic material to search for the permanent electric dipole moment of the electron*, Nature Materials **9** (2010), no. 8, 649–654
- [105] D. Sa, R. Valentí, and C. Gros, *A generalized Ginzburg-Landau approach to second har-monic generation*, The European Physical Journal B Condensed Matter and Complex Systems **14** (2000-03-19), no. 2, 301–305
- [106] T. Satoh, K. Miyano, Y. Ogimoto, H. Tamaru, and S. Ishihara, *Interfacial charge transfer excitation with large optical nonlinearity in manganite heterostructure*, Physical Review B **72** (2005), no. 22
- [107] E. Schierle, V. Soltwisch, D. Schmitz, R. Feyerherm, A. Maljuk, F. Yokaichiya, D. N. Argyriou, and E. Weschke, *Cycloidal Order of 4f Moments as a Probe of Chiral Domains in DyMnO*₃, Phys. Rev. Lett. **105** (2010), no. 16, 167207
- [108] W. Schweika, XYZ-polarisation analysis of diffuse magnetic neutron scattering from single crystals, Journal of Physics: Conference Series **211** (2010), no. 1, 12026
- [109] M. A. Senarisrodriguez and J. B. Goodenough, *LaCoO*₃ *Revisited*, Journal of Solid State Chemistry **116** (1995), no. 2, 224–231
- [110] I. A. Sergienko and E. Dagotto, *Role of the Dzyaloshinskii-Moriya interaction in multi-ferroic perovskites*, Phys. Rev. B **73** (2006), no. 9, 94434
- [111] I. A. Sergienko, C. Sen, and E. Dagotto, Ferroelectricity in the magnetic e-phase of orthorhombic perovskites, Physical Review Letters 97 (2006), no. 22, 227204
- [112] V. V. Shvartsman, P. Borisov, W. Kleemann, S. Kamba, and T. Katsufuji, *Large off-diagonal magnetoelectric coupling in the quantum paraelectric antiferromagnet EuTiO*₃, Physical Review B **81** (2010), no. 6, 64426
- [113] N. Spaldin and M. Fiebig, *The renaissance of magnetoelectric multiferroics*, Science **309** (2005), no. 5733, 391 392
- [114] J. Strempfer, B. Bohnenbuck, I. Zegkinoglou, N. Aliouane, S. Landsgesell, M. v. Zimmermann, and D. N. Argyriou, *Magnetic-field-induced transitions in multiferroic TbMnO*₃ *probed by resonant and nonresonant x-ray diffraction*, Phys. Rev. B **78** (2008), no. 2, 24429
- [115] J. Strempfer, D. Hupfeld, J. Voigt, G. Bihlmayer, A. I. Goldman, and T. Brückel, *Resonant magnetic x-ray scattering from terbium*, Journal of Physics-Condensed Matter **20** (2008), no. 44, 445208

- [116] A. O. Sushkov, S. Eckel, and S. K. Lamoreaux, *Prospects for an electron electric-dipole-moment search with ferroelectric (Eu,Ba)Tio*₃ *ceramics*, Phys. Rev. A **81** (2010), no. 2, 22104
- [117] M. Tachibana, T. Yoshida, H. Kawaji, T. Atake, and E. Takayama-Muromachi, *Evolution of electronic states in RCoO*₃ (*R=rare earth*): Heat capacity measurements, Physical Review B **77** (2008), no. 9
- [118] J. R. Teague, R. Gerson, and W. J. James, *Dielectric Hysteresis in Single Crystal BiFeO*₃, Solid State Communications **8** (1970), no. 13, 1073–&
- [119] D. H. Templeton and L. K. Templeton, *X-ray Dichroism and Polarized Anomalous Scattering of the Uranyl-ion*, Acta Crystallographica Section A **38** (1982), no. Jan, 62–67
- [120] B. T. Thole, P. Carra, F. Sette, and G. van der Laan, *X-ray circular dichroism as a probe of orbital magnetization*, Physical Review Letters **68** (1992), no. 12, 1943
- [121] B. T. Thole and G. van der Laan, *Linear relation between x-ray absorption branching ratio and valence-band spin-orbit expectation value*, Phys. Rev. A **38** (1988), no. 4, 1943
- [122] Y. Tokura, *Optical and magnetic properties of transition metal oxides*, Current Opinion in Solid State and Materials Science **3** (1998), no. 2, 175–180
- [123] Y. Tokura, *Materials science Multiferroics as quantum electromagnets*, Science **312** (2006), no. 5779, 1481–1482
- [124] Y. Tokura, *Multiferroics toward strong coupling between magnetization and polarization in a solid*, Journal of Magnetism and Magnetic Materials **310** (2007), no. 2, Part 2, 1145–1150
- [125] T. M. Tritt and M. A. Subramanian, *Thermoelectric materials, phenomena, and applications: A bird's eye view*, Mrs Bulletin **31** (2006), no. 3, 188–194
- [126] B. B. Van Aken, T. T. Palstra, A. Filippetti, and N. A. Spaldin, *The origin of ferroelectricity in magnetoelectric Ymno*₃, Nat Mater **3** (2004), no. 3, 164–170
- [127] M. van Veenendaal and R. Benoist, *X-ray absorption and resonant inelastic x-ray scattering in the rare earths*, Phys. Rev. B **58** (1998), no. 7, 3741
- [128] J. A. Venables, *Atomic Processes in Crystal-growth*, Surface Science **299** (1994), no. 1-3, 798–817
- [129] S. Venkatesan, C. Daumont, B. J. Kooi, B. Noheda, and J. T. M. De Hosson, *Nanoscale domain evolution in thin films of multiferroic TbMnO*₃, Phys. Rev. B **80** (2009), no. 21, 214111
- [130] J. Voigt, J. Persson, J. W. Kim, G. Bihlmayer, and T. Brückel, Strong coupling between the spin polarization of Mn and Tb in multiferroic TbMnO₃ determined by x-ray resonance exchange scattering, Physical Review B **76** (2007), no. 10, 104431
- [131] H. C. Walker, F. Fabrizi, L. Paolasini, F. de Bergevin, J. Herrero-Martin, A. T. Boothroyd, D. Prabhakaran, and D. F. Mcmorrow, *Femtoscale Magnetically Induced Lattice Distortions in Multiferroic TbMnO*₃, Science **333** (2011), no. 6047, 1273–1276

- [132] S. B. Wilkins, P. D. Hatton, M. D. Roper, D. Prabhakaran, and A. T. Boothroyd, *Soft X-Ray Resonant Magnetic Diffraction*, Phys. Rev. Lett. **90** (2003), no. 18, 187201
- [133] E. O. Wollan and W. C. Koehler, Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds $La_{1-x}Ca_xMnO_3$, Physical Review **100** (1955), no. 2, 545
- [134] H. J. Xiang and M.-H. Whangbo, *Charge Order and the Origin of Giant Magnetocapacitance in Lufe*₂O₄, Phys. Rev. Lett. **98** (2007), no. 24, 246403
- [135] Z. Zhang and M. G. Lagally, *Atomistic processes in the early stages of thin-film growth.*, Science **276** (1997), no. 5311, 377

Other Publications

- [136] L. Beckers, Herstellung und Characterisierung epitaktischer ferroelectrischer Schichten für optische Anwendungen, Ph.D. thesis, Institut für Schicht- und Ionentechnik Forschungszentrum Jülich GmbH/ Universität Bonn, (1998)
- [137] A. Glavic, *Documentation: Plot.py data plotting and evaluation software Version* 0.7.9, (2011), http://iffwww.iff.kfa-juelich.de/~glavic/plotwiki/

Appendix D

List of Figures

2.1	crystal structure of orthorhombic ABO ₃ transition metal oxides with the transition metal ions B (red) inside oxygen (blue) octahedra and the A site ions	
	(green) in the spaces between the octahedra	10
2.2	Crystal field splitting of the 3 <i>d</i> -orbitals in an octahedral coordination. The crys-	
	tal field effect is larger than the Hund's coupling, so the $t_{2g\downarrow}$ states are filled	
	before the $e_{g\uparrow}$ states. The opposite case is also indicated (gray)	11
2.3	Superexchange in RMnO ₃	12
2.4	Magnetic structure of LaMnO ₃ (A-type), TbMnO ₃ (cycloidal) and HoMnO ₃	
	(E-type) in the low temperature ordered phase. In the case of the larger La ions,	
	the Mn-O-Mn bond angle is $\alpha = 155^{\circ}$, which leads to a magnetic structure	
	governed by the nearest neighbor interaction, which is ferromagnetic in the ab-	
	plane. In HoMnO ₃ the bond angle is about 144° and the ferromagnetic nearest	
	neighbor interaction is weakened, giving rise to antiferromagnetic order in \vec{b} -	
	direction through the next nearest neighbor coupling (J_2 in figure 2.3b). In the	
	intermediate case of TbMnO ₃ , with a fitting ratio of NN and NNN coupling,	
	the order is cycloidal with magnetic moments in the bc-plane and a periodicity	
	close to $7/2 \cdot b$	15
2.5	Schematic of important terms for layer growth and the growth mode models.	
	Ideas from [12, 13, 135]	18
2.6	Strain relaxation processes. Ideas from [12, 13]	19
2.7	Scattering geometry	20
2.8	Separation of the crystal structure into convolutions of components, which cor-	
	respond to products in the reciprocal space. The parts shown are the reciprocal	21
2.9	lattice (top), structure factor (middle) and atomic form factor (bottom) Scattering from a single layer	21
2.9	Sketch of the layer model used to describe multilayer diffraction. The important	22
2.10	parameters include the bilayer repetitions M , out-of-plane crystal unit cell pa-	
	rameters $a_{A/B}$, number of unit cells $N_{A/B}$ and the thickness of the region without	
	defined crystal structure c	23
2.11	Sketch of the layer model used to describe the reflectivity. The right side illus-	
	trates the scattering power	24
2.12	Interaction processes between photons and atoms in first and second order per-	
	turbation theory. The intermediate states j are only virtual excitations	28
2.13	Atomic energy levels and possible dipole transitions. The important transitions	
	for magnetic x-ray experiments are drawn bold	30

3.1	Sample mounting in the SQUID magnetometer	33
3.2	Setup used for Second Harmonic Generation	34
3.3	Angles and geometry of a 4-circle diffractometer	36
3.4	Sketch of the Bruker D8 x-ray reflectometer. The sample stage angle is fixed	
	horizontally and the tube and detector can be moved	37
3.5	Visualization of the model used for the thickness inhomogeneity in the reflec-	
	tivity model. As the real deposition height distribution function is not known a	
	combination of a step function and a heave side Lorentzian was used to weight	
	the simulated thicknesses of the layers	40
4.1	Schematics of the sputter deposition technique	42
5.1	RBS measurements and fit including channeling. Channeling (green) aligned to	
	a high symmetry axis of the crystal yields a drop to 5% with respect to random	
	orientation of the crystal axis (data (points) and simulation (line))	46
5.2	X-ray reflectivity data from Huber D8 together with simulation (enlarged in	
	section A.2)	47
5.3	AFM images of $5x5 \mu m^2$ section of the TbMnO ₃ film surface	48
5.4	Height distribution extracted from figure 5.3a with best Gaussian fit	48
5.5	Height distribution extracted from figure 5.3b with best Gaussian fit	48
5.6	Out-of-plane XRD measurements performed with the D8 instrument on \mathbb{T}_{16}^{SD} and	
	$\mathbb{T}^{ ext{PLD}}_{18}$	50
5.7	Reciprocal space meshes measured on \mathbb{T}_{11}^{SD} with the 4-circle diffractometer. The	
	in-plane lattice parameters are obviously fit to the substrate, within the instru-	
	mental resolution	50
5.8	Reciprocal space meshes measured on \mathbb{D}_{100} with the 4-circle diffractometer. The	
	in-plane lattice parameters are obviously fit to the substrate, within the instru-	
	mental resolution	50
5.9	Magnetization measurements on $\mathbb{T}_{20}^{\text{SD}}$ in \vec{c} -direction	51
5.10	Thermal remanent magnetization measured in \vec{c} -direction after field cooling in	
	10 mT	52
5.11	Second harmonic generation on $\mathbb{T}^{\text{SD}}_{100}$, the electric polarization lies in the \vec{c} -	
	direction. Polarizer/analyzer 0° corresponds to an electric field in the \vec{a} -direction,	
	90° to the \vec{c} -direction	52
5.12	Polarized neutron diffraction on \mathbb{T}^{PLD*}_{200} with polarization in TbMnO ₃ \vec{a} -direction	
	measured with DNS. In this geometry magnetic moments lying in \vec{a} -direction	
	lead to non spin-flip, moments in the bc-plane to spin-flip scattering. The strong,	
	sharp peaks originate from the substrate crystal structure and are visible due to	
	the finite flipping ratio of the instrument.	54
5.13	Polarized neutron diffraction on \mathbb{T}^{PLD*}_{200}	54
5.14	Reciprocal lattice scan in out-of-plane (Q_z) direction on \mathbb{D}_{20} performed with \vec{Q}	
	in the direction of the surface normal (Specular) and with a slight offset (Off-	
	Specular). The (010) reflection and it's Laue oscillations were simulated with	
	the same model used for the laboratory XRD experiments (see section 3.5.7	
	and 2.4.2) including surface roughness and x-ray absorption. (d=18.4(5) nm,	
	σ =0.3(9) nm, b=5.82(1) Å)	56
5.15	Scan geometry	56
5.16	X-ray absorption near edge structure (XANES) from TbMnO ₃	57

5.17	Resonant magnetic scattering at the ${}^{Mn}L_{II}$ -edge with σ -polarization	58
5.18	Temperature dependence of the $(\delta \tau_{Mn} 0)$ reflection of several films, measured at the $^{\text{Mn}}L_{\text{III}}$ resonance with σ -polarization. The fitted peak positions from each measured temperature are indicated with the black dots. For the PLD samples (except $\mathbb{T}^{\text{PLD}*}_{200}$ with wrong stoichiometry) there is no noticeable shift in the peak positions in contrast to the sputter samples on the right side	58
5.19	Magnetic order parameter per film thickness extracted from $(\delta \tau_{Mn} 0)$ on $^{Mn}L_{III}$ and $(\delta \tau_{Tb} 0)$ on $^{Tb}M_V$ peak intensities versus temperature. The PLD samples do not show the transition to a cycloidal magnetic structure T_{N_C} in contrast to the films deposited with sputtering	58
5.20	Resonant magnetic scattering showing the ordering of the Tb-subsystem at $(0 \tau_{Tb} 0)$, coupling from the Tb- to the Mn-order and second harmonic reflec-	
	tions at $(0 2\tau_{Mn} 0)$ and $(0 1 - 2\tau_{Tb} 0) \dots \dots \dots \dots$	59
	X-ray circular dichroism of \mathbb{T}^{SD}_{100} at $(\delta \tau_{Mn} 0)$ at $^{Mn}L_{II}$	61
5.23	cular dichroism taken from [107]	61
	section 3.5.3)	62
6.2	X-ray diffraction on (041)-peak of $\mathbb{TL}^{18/3}_{\times 20}$ taken with P09 at PETRA-III using $^{\text{Tb}}\text{L}_{\text{III}}$ at 100 K in the $\pi\pi'$ -channel. The shown simulation of the multilayer crystal structure was done with the following parameters: $b_{LaCoO_3} = 5.70 \text{Å}$, $N_{LaCoO_3} = 3.3$, $\delta N_{LaCoO_3} = 1.2$, $b_{TbMnO_3} = 5.75 \text{Å}$, $N_{TbMnO_3} = 17.6$ and $\delta N_{tb} = 0.8$	66
6.1	Compared unit cells of distorted Perovskite structures	66
6.3	X-ray diffraction reciprocal lattice maps on $\mathbb{TL}^{18/3}_{\times 20}$ measured with the 4-circle diffractometer. The measurements in both in-plane directions show that the multilayer crystal structure is strained to the substrate	67
6.4	XRD and SQUID measurements performed on \mathbb{L}_{35}	67
6.5	SQUID magnetometry on $\mathbb{TL}^{18/3}_{\times 20}$, all temperature dependent measurements were measured/cooled in 10 mT external field – Combining the temperature dependence of all crystal directions four transitions can be identified: The ferromagnetic order of LaCoO ₃ at T_C , the spin-density wave transition of Mn at $T_{N_{SDW}}$,	69
6.6	the cycloidal order transition at T_{N_C} and the Tb ordering temperature at $T_{N_{Tb}}$. Setup used for XMCD	70
6.7	XMCD background at 10 K at ^{Tb} M-edge due to saturation effects in the flu-	70
0.7	orescence detector and $^{\text{Co}}\text{L}$ XMCD of \mathbb{L}_{35} at 10 K in 0.1 T and 5 T with the associated TFY absorption	71
6.8	Field dependent XMCD measurements on $\mathbb{TL}^{18/3}_{\times 20}$ with corresponding absorption measured at 10 K. The 0.1 T and 5 T data was averaged from positive and	/ 1
	negative field measurements	71
6.9	MnL-edge XMCD extracted from O_2 -fluorescence data at 6 K, ± 5 T and Field dependent magnetization of $\mathbb{TL}^{18/3}_{\times 20}$ at 10 K approximated from data of figure 6.8	71
6.10	Setup of PND	72

6.11	Polarized neutron diffraction data (left) of $\mathbb{TL}^{18/3}_{\times 20}$ measured with DNS at 4 K with simulation from proposed magnetic structure (right). Although the background from an empty sample holder measurement is subtracted, there is still some background visible due to the very low scattering intensity (originating from e.g. limited statistics of the background signal, paramagnetic scattering from the substrate and from the Tb-moments as found for the single layers in section 5.4.1)	73
6.12	Magnetic structure model used for the simulation in figure 6.11 . From left to right: Crystal directions and layer structure of the sample, spin orientations in LaCoO ₃ (red) and TbMnO ₃ (blue), a-component and b-component of the magnetization in the TbMnO ₃ layer.	74
	Resonant magnetic x-ray scattering from $\mathbb{TL}^{18/3}_{\times 20}$ at $^{\text{Tb}}L_{\text{III}}$ -edge	75 76
7.1	X-ray and neutron reflectivity from $\mathbb{EB}^{4/10}_{\times 20}$ refined with the same model: Bilayer periodicity D= 5.56(5) \pm 0.37 nm, d _{BaTiO3} /D= 0.68, $\sigma_{BaTiO_3} = 0.13(10)$ nm	90
7.2	and $\sigma_{EuTiO_3} = 0.30(2)$ nm	80
7.3	0.3, $\delta N_B = 0.3$	80
7.4	$\sigma_{EuTiO_3} = 0.35(2) \text{ nm}$	81
A.1	X-ray reflectivity on TbMnO ₃ single layers created by sputter deposition	93
A.2	X-ray reflectivity on TbMnO ₃ single layers created by sputter deposition	94
A.3	X-ray reflectivity on TbMnO ₃ single layers created by PLD	95
A.4	X-ray reflectivity on TbMnO ₃ single layers created by PLD	96
A.5	X-ray reflectivity on DyMnO ₃ single layers created by PLD	97
A.6	X-ray reflectivity on DyMnO ₃ single layers created by PLD	98
A.7	Comparison of the xy-meshes measured on $\mathbb{T}^{\text{SD}}_{100}$ with the 4-circle diffractometer. Measurement on the TbMnO ₃ (220) reflection with right crystal orientation (left), the (202) peak corresponding to the wrong orientation (center) and the resonant magnetic scattering signal measured on ($\delta \tau_{Mn}$ 0). Besides the lower resolution of the 4-circle measurements, the regions with lower magnetic signal	
A.8	coincide with an increased intensity of the wrong oriented crystallites X-ray diffraction measurements investigating imperfections of wrong oriented crystallites in the substrate. The miss aligned crystal direction of the substrate	99
	directly lead to miss aligned film crystallites	99

Appendix E

List of Tables

2.1	Theoretical possible growth orientations of TbMnO ₃ on YAlO ₃ substrates with the relative strain for both in-plane direction of the TbMnO ₃ in-plane lattice	17
5.1	TbMnO ₃ and DyMnO ₃ single layers used for the experiments with some important parameters. Parameters obtained by reflectometry, diffraction, SQUID,	
	SHG and resonant scattering are colored accordingly. "*" denotes off-stoi-chiometric samples, empty fields are not measured, "-" represents a property	
	not present in this sample.	45
7.1	Parameters overview of $[EuTiO_3-BaTiO_3]$ -multilayer samples created for the study. A complete list of all extracted parameters can be found in table A.3	79
A.1	Sample parameters measured with different methods on TbMnO ₃ single film samples	90
A.2	Sample parameters measured with different methods on DyMnO ₃ single film samples	91
A.3	•	92

Appendix F

Index

Absorption, 28, 55, 68 AFM, 47 Atomic force microscopy, *see* AFM

BaTiO₃, 44, 79 Born Approximation, 20, 39, 74

Continuum Description, 24 Convolution Theorem, 21 Crystal Field Splitting, 10 Cycloidal Magnetic Order, 14

Diffraction, 21, 22, 36, 39, 49, 79 DyMnO₃, 42, 45 Dzyaloshinsky-Moriya, 16, 56

Epitaxy, 16 EuTiO₃, 19, 44, 79 Exchange Interaction, 10 Exchange Splitting, 10

Form Factor, 21

Growth Modes, 17

Jahn-Teller Effect, 10

Kinematic Model, 39

LaCoO₃, 19, 43, 65 LaMnO₃, 11

Magnetic Groundstate, 10 Magnetic Moment, 9 Magnetic Scattering, 26 MPMS, 33 Multiferroics, 12 Neutron Scattering, 25

Peak Shape, 22 Perovskite, 9, 65 PND, see Polarized Neutron Diffraction PNR, see Polarized Neutron Reflectometry Polarized Neutron Diffraction, 38, 53, 72 Polarized Neutron Reflectometry, 38, 81 Pulsed Laser Deposition, 41

RBS, 34, 46 Reciprocal Lattice, 21 Reciprocal Space, 21 Reflectivity Model, 39 Reflectometry, 24, 36, 39, 47, 65, 81

Resonant exchange scattering, *see* Resonant scattering

Resonant Scattering, 27, 28, 31, 32, 35, 37, 55, 74 RMnO₃, 19

Scattering, 20

Second harmonic generation, see SHG

SHG, 53

Sputter Deposition, 41 SQUID, 33, 49, 66 Strain, 18, 66

Structure Factor, 21, 73 Sum Rules, 29, 70 Superexchange, 10, 11 Symmetry, 13, 53

TbMnO₃, 42, 43, 45, 65 Thin Films, 16, 22 Thomson-Scattering, 26, 28 Appendix F Index

Transition Metal Oxides, 9, 13

Virtual Hopping, 11

Wave Equation, 20, 24

X-ray mag. circular dichroism, *see* XMCD X-ray Scattering, 26 XMCD, 29, 38, 68

Appendix G

List of Symbols and Abbreviations

Mathematic Symbols

G.1 Symbols

\vec{v}	Vector
\hat{v}	Unit vector parallel to \vec{v}
<u>M</u>	Matrix
\underline{M}^T	Transposed matrix
$\frac{\underline{M}}{\underline{M}}^{T} \left(\vec{i}, \vec{j} \right)$	A matrix, where the columns are the vectors i and j
$a \circledast b$	Convolution of a and b
$\mathfrak{F}(f)$	Fourier transform of function f
$\mathfrak{F}^{-1}(F)$	Fourier back transform
$\mathscr{P} \int$	Cauchy principal value of an integral (removing singularities by
	e.g. replacing with a limes)
$\Re(x)$	Real part of complex number x
$\Im(x)$	Imaginary part of complex number x
$(n+1)_{mod3}$	The modulo operation on the number (n+1) to the quotient 3
[53]	The derivation is explained in the according publication
$\langle A \rangle$	Average value/expectation value of quantity A
()	
,	Physical Nomenclature
	Physical Nomenclature
$\langle t_{2g}^2 \rangle t_{2g\uparrow}^2 e_{g\uparrow}$	Physical Nomenclature An electronic state with two paired electrons in a t_{2g} , two addi-
$\langle t_{2g}^2 \rangle t_{2g\uparrow}^2 e_{g\uparrow}$	Physical Nomenclature An electronic state with two paired electrons in a t_{2g} , two additional unpaired spin-up electrons in a t_{2g} and one unpaired spin-up
$\langle t_{2g}^2 \rangle t_{2g\uparrow}^2 e_{g\uparrow}$	Physical Nomenclature An electronic state with two paired electrons in a t_{2g} , two additional unpaired spin-up electrons in a t_{2g} and one unpaired spin-up electron in a e_g orbital.
	Physical Nomenclature An electronic state with two paired electrons in a t_{2g} , two additional unpaired spin-up electrons in a t_{2g} and one unpaired spin-up
$\langle t_{2g}^2 angle t_{2g\uparrow}^2 e_{g\uparrow}$	Physical Nomenclature An electronic state with two paired electrons in a t_{2g} , two additional unpaired spin-up electrons in a t_{2g} and one unpaired spin-up electron in a t_{2g} orbital. Manganese resonance at the t_{III} absorption edge One unit cell
$\langle t_{2g}^2 \rangle t_{2g\uparrow}^2 e_{g\uparrow}$ $^{\mathrm{Mn}} \mathrm{L_{III}}$ $^{\mathrm{UC}}$ μ_B	Physical Nomenclature An electronic state with two paired electrons in a t_{2g} , two additional unpaired spin-up electrons in a t_{2g} and one unpaired spin-up electron in a e_g orbital. Manganese resonance at the L_{III} absorption edge One unit cell Bohr magnetron $(9.27 \cdot 10^{-24} \text{A} \cdot \text{m}^2)$
$\langle t_{2g}^2 angle t_{2g\uparrow}^2 e_{g\uparrow}$ $^{\mathrm{Mn}} \mathrm{L_{III}}$ $^{\mathrm{UC}}$ μ_B $^{\mathrm{r}_e}$ $\vec{\sigma}$	Physical Nomenclature An electronic state with two paired electrons in a t_{2g} , two additional unpaired spin-up electrons in a t_{2g} and one unpaired spin-up electron in a t_{2g} are one unpaired spin-up electron in a t_{2g} are one unpaired spin-up electron in a t_{2g} orbital. Manganese resonance at the L _{III} absorption edge One unit cell Bohr magnetron $(9.27 \cdot 10^{-24} \text{A} \cdot \text{m}^2)$ Classical electron radius $(2.81 \cdot 10^{-15} \text{m})$
$\langle t_{2g}^2 angle t_{2g\uparrow}^2 e_{g\uparrow}$ $^{\mathrm{Mn}} \mathrm{L_{III}}$ $^{\mathrm{UC}}$ μ_B $^{\mathrm{r}_e}$ $\vec{\sigma}$	Physical Nomenclature An electronic state with two paired electrons in a t_{2g} , two additional unpaired spin-up electrons in a t_{2g} and one unpaired spin-up electron in a e_g orbital. Manganese resonance at the L _{III} absorption edge One unit cell Bohr magnetron $(9.27 \cdot 10^{-24} \text{A} \cdot \text{m}^2)$ Classical electron radius $(2.81 \cdot 10^{-15} \text{m})$ Vector of the three Pauli matrices σ_x , σ_y and σ_z
$\langle t_{2g}^2 \rangle t_{2g\uparrow}^2 e_{g\uparrow}$ $\stackrel{\text{Mn}}{\text{Liii}}$ UC μ_B $\stackrel{\textbf{r}_e}{\vec{\sigma}}$ \vec{P}_n	Physical Nomenclature An electronic state with two paired electrons in a t_{2g} , two additional unpaired spin-up electrons in a e_g orbital. Manganese resonance at the L _{III} absorption edge One unit cell Bohr magnetron $(9.27 \cdot 10^{-24} \text{A} \cdot \text{m}^2)$ Classical electron radius $(2.81 \cdot 10^{-15} \text{m})$ Vector of the three Pauli matrices σ_x , σ_y and σ_z Neutron polarization
$\langle t_{2g}^2 \rangle t_{2g\uparrow}^2 e_{g\uparrow}$ $\begin{array}{c} ^{\mathrm{Mn}} \mathrm{L_{III}} \\ \mathrm{UC} \\ \mu_B \\ \mathrm{r}_e \\ \vec{\sigma} \\ \vec{P}_n \\ \mathrm{T_{N_{SDW}}} \end{array}$	Physical Nomenclature An electronic state with two paired electrons in a t_{2g} , two additional unpaired spin-up electrons in a t_{2g} and one unpaired spin-up electron in a e_g orbital. Manganese resonance at the L _{III} absorption edge One unit cell Bohr magnetron $(9.27 \cdot 10^{-24} \text{A} \cdot \text{m}^2)$ Classical electron radius $(2.81 \cdot 10^{-15} \text{m})$ Vector of the three Pauli matrices σ_x , σ_y and σ_z Neutron polarization Transition temperature to spin density wave magnetic order
$\langle t_{2g}^2 \rangle t_{2g\uparrow}^2 e_{g\uparrow}$ $\stackrel{\text{Mn}}{\text{L}_{\text{III}}}$ UC μ_B r_e $\vec{\sigma}$ \vec{P}_n $T_{\text{N}_{\text{SDW}}}$ $T_{\text{N}_{\text{C}}}$	Physical Nomenclature An electronic state with two paired electrons in a t_{2g} , two additional unpaired spin-up electrons in a e_g orbital. Manganese resonance at the L _{III} absorption edge One unit cell Bohr magnetron $(9.27 \cdot 10^{-24} \text{ A} \cdot \text{m}^2)$ Classical electron radius $(2.81 \cdot 10^{-15} \text{ m})$ Vector of the three Pauli matrices σ_x , σ_y and σ_z Neutron polarization Transition temperature to spin density wave magnetic order Transition temperature to cycloidal magnetic order
$\langle t_{2g}^2 \rangle t_{2g\uparrow}^2 e_{g\uparrow}$ $\begin{array}{c} ^{\mathrm{Mn}} \mathrm{L_{III}} \\ \mathrm{UC} \\ \mu_B \\ \mathrm{r}_e \\ \vec{\sigma} \\ \vec{P}_n \\ \mathrm{T_{N_{SDW}}} \end{array}$	Physical Nomenclature An electronic state with two paired electrons in a t_{2g} , two additional unpaired spin-up electrons in a t_{2g} and one unpaired spin-up electron in a e_g orbital. Manganese resonance at the L _{III} absorption edge One unit cell Bohr magnetron $(9.27 \cdot 10^{-24} \text{A} \cdot \text{m}^2)$ Classical electron radius $(2.81 \cdot 10^{-15} \text{m})$ Vector of the three Pauli matrices σ_x , σ_y and σ_z Neutron polarization Transition temperature to spin density wave magnetic order

	Physical Nomenclature (continued)
$a_{\mathrm{TbMnO_3}}^*$	Length of the reciprocal lattice vector a* of TbMnO ₃
$f = 10 \text{MinO}_3$	Quantum mechanical initial (i) and final (f) states
$\langle f , i angle \ \lambda \ ec{k}_{i/f} \ ec{\mathcal{Q}} = ec{k}_f - ec{k}_i \ ec{\hat{e}}_{i/f} \ ec{r}$	Wavelength
<i>7</i>	
$K_{i/f}$	Incident and outgoing wave vector with $k = \frac{2\pi}{\lambda}$
$Q = k_f - k_i$	Scattering vector
$\hat{e}_{i/f}$	Photon polarization vector of incident and outgoing beams
\vec{r}	Real space vector
I_{σ}	Intensity measured with σ -polarized incident beam, measurements
	with other polarization (x-ray/neutron) are denoted accordingly
$f(\vec{O})$	Atomic form factor
$V(\vec{r})$	Scattering potential
$f(\vec{Q}) \ V(\vec{r}) \ S_z/L_z/T_z$	Spin/orbit momentum / magnetic dipole operator
+ H	Hamilton operator
n	Refractive index
ρ	Density
σ	Depending on context: Scattering cross-section – Photon polariza-
	tion perpendicular to scattering plane – Root mean square rough-
	ness
b	Neutron nuclear scattering length
χ	Susceptibility
Φ	Wave function
$ec{m}_i/ec{M}$	Single magnetic moment/magnetization distribution
1101/111	Single magnetic moment magnetization distribution
	Sample Parameters in Models
δ	Scattering power density (scattering length density for neutrons) of
	a layer
d_i	Thickness of layer i
D	Bilayer thickness in a multilayer
N_X	
	Number of unit cells in layer X
	Number of unit cells in layer X Multilayer repetitions
M	Multilayer repetitions
<i>Μ</i> σ	Multilayer repetitions Root mean square roughness standard deviation
M σ f_i	Multilayer repetitions Root mean square roughness standard deviation Atomic form factor of atom i
<i>Μ</i> σ	Multilayer repetitions Root mean square roughness standard deviation
M σ f_i	Multilayer repetitions Root mean square roughness standard deviation Atomic form factor of atom i Probability of occurrence for parameter x_i
M σ f_i $P(x_i)$	Multilayer repetitions Root mean square roughness standard deviation Atomic form factor of atom i Probability of occurrence for parameter x_i Sample Emblems
M σ f_i $P(x_i)$	Multilayer repetitions Root mean square roughness standard deviation Atomic form factor of atom i Probability of occurrence for parameter x_i Sample Emblems $x \text{ nm TbMnO}_3$ thin film created with pulsed laser deposition
M σ f_i $P(x_i)$ \mathbb{T}^{PLD}_x \mathbb{T}^{SD}_x	Multilayer repetitions Root mean square roughness standard deviation Atomic form factor of atom i Probability of occurrence for parameter x_i Sample Emblems x nm TbMnO ₃ thin film created with pulsed laser deposition x nm TbMnO ₃ thin film created with sputter deposition
M σ f_i $P(x_i)$ \mathbb{T}^{PLD}_x \mathbb{T}^{SD}_x \mathbb{D}_x	Multilayer repetitions Root mean square roughness standard deviation Atomic form factor of atom i Probability of occurrence for parameter x_i Sample Emblems x nm TbMnO ₃ thin film created with pulsed laser deposition x nm TbMnO ₃ thin film created with sputter deposition x nm DyMnO ₃ thin film created with pulsed laser deposition
M σ f_i $P(x_i)$ $\mathbb{T}^{\text{PLD}}_{x}$ $\mathbb{T}^{\text{SD}}_{x}$ \mathbb{D}_{x} \mathbb{L}_{x}	Multilayer repetitions Root mean square roughness standard deviation Atomic form factor of atom i Probability of occurrence for parameter x_i Sample Emblems x nm TbMnO ₃ thin film created with pulsed laser deposition x nm TbMnO ₃ thin film created with sputter deposition x nm DyMnO ₃ thin film created with pulsed laser deposition x nm LaCoO ₃ thin film created with pulsed laser deposition
M σ f_i $P(x_i)$ \mathbb{T}^{PLD}_x \mathbb{T}^{SD}_x \mathbb{D}_x	Multilayer repetitions Root mean square roughness standard deviation Atomic form factor of atom i Probability of occurrence for parameter x_i Sample Emblems x nm TbMnO ₃ thin film created with pulsed laser deposition x nm TbMnO ₃ thin film created with sputter deposition x nm DyMnO ₃ thin film created with pulsed laser deposition x nm LaCoO ₃ thin film created with pulsed laser deposition x nm LaCoO ₃ thin film created with pulsed laser deposition x repetitions of y UC TbMnO ₃ and z UC LaCoO ₃ created with
M σ f_i $P(x_i)$ $\mathbb{T}^{\text{PLD}}_{x}$ $\mathbb{T}^{\text{SD}}_{x}$ \mathbb{D}_{x} \mathbb{L}_{x}	Multilayer repetitions Root mean square roughness standard deviation Atomic form factor of atom i Probability of occurrence for parameter x_i Sample Emblems x nm TbMnO ₃ thin film created with pulsed laser deposition x nm TbMnO ₃ thin film created with sputter deposition x nm DyMnO ₃ thin film created with pulsed laser deposition x nm LaCoO ₃ thin film created with pulsed laser deposition

laser deposition

G.2 Abbreviations

Instruments

DNS Diffuse neutron scattering experiment for neutron polarization

analysis in Garching

D17 Polarized neutron reflectometer at ILL, Grenoble

D7 Neutron polarization analysis instrument at ILL, Grenoble

D8 Bruker laboratory x-ray reflectometer

P09 Resonant scattering and diffraction beamline at PETRA-III, Ham-

burg

TREFF Temporary reflectometer in Garching for polarized neutron reflec-

tometry

UE46-PGM-1 Soft x-ray resonant magnetic scattering beamline at BESSY-II,

Berlin

4-ID Soft x-ray XMCD experiment at APS, Argonne

4-circle Huber laboratory 4-circle diffractometer

Methods

AFM Atomic force microscope

PNR Polarized neutron reflectometry PND Polarized neutron diffraction

PLD Pulsed laser deposition

RBS Rutherford backscattering spectrometry

SD Sputter deposition

SHG Second harmonic generation

SQUID Superconducting quantum interferometric device magnetometer

XMCD X-ray magnetic circular dichroism

XRD X-ray diffraction

XRMS X-ray resonant magnetic scattering, also called x-ray resonant ex-

change scattering

XRR X-ray reflectometry