000016983 001__ 16983
000016983 005__ 20240610120557.0
000016983 0247_ $$2DOI$$a10.1039/C1SM05794D
000016983 0247_ $$2WOS$$aWOS:000296388300060
000016983 0247_ $$2Handle$$a2128/7336
000016983 037__ $$aPreJuSER-16983
000016983 041__ $$aeng
000016983 082__ $$a530
000016983 084__ $$2WoS$$aChemistry, Physical
000016983 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000016983 084__ $$2WoS$$aPhysics, Multidisciplinary
000016983 084__ $$2WoS$$aPolymer Science
000016983 1001_ $$0P:(DE-Juel1)VDB96421$$aMcWhirter, J.L.$$b0$$uFZJ
000016983 245__ $$aDeformation and clustering of red blood cells in microcapillary flows
000016983 260__ $$aCambridge$$bRoyal Society of Chemistry (RSC)$$c2011
000016983 300__ $$a10967 - 10977
000016983 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000016983 3367_ $$2DataCite$$aOutput Types/Journal article
000016983 3367_ $$00$$2EndNote$$aJournal Article
000016983 3367_ $$2BibTeX$$aARTICLE
000016983 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000016983 3367_ $$2DRIVER$$aarticle
000016983 440_0 $$016881$$aSoft Matter$$v7$$x1744-683X$$y22
000016983 500__ $$aWe thank I. O. Gotze, T. Auth, M. Ripoll, G. Vliegenthart, and R. G. Winkler for helpful discussions. Support of this work by the DFG through the priority program SPP1164, 'Nano- and Microfluidics', is gratefully acknowledged.
000016983 520__ $$aThe shape changes and clustering of red blood cells (RBCs) under flow in cylindrical microcapillaries are studied using a triangulated surface model for the membrane and a particle-based mesoscopic simulation technique for the embedding fluid. As the flow velocity increases, the RBCs make a transition from a discocyte shape at low velocities to a parachute shape at high velocities; close to the critical flow velocity, the RBC can also be found in a transient slipper shape. The transition and critical flow velocity are examined for various capillary diameters and RBC volume fractions (hematocrit H-T). At high flow velocities and low hematocrits, the parachute-shaped RBCs can be found in clusters which are hydrodynamically stabilized. Here, the formation of a fluid vortex between neighboring cells, called bolus, develops which keeps the cells at a preferred distance. Decreasing the flow velocity towards the critical velocity, we observe an increasing frequency of drastic RBC shape fluctuations to slipper-shaped RBCs that can result in cluster breakup. These clusters resemble those seen in experiments using optical microscopy.
000016983 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000016983 588__ $$aDataset connected to Web of Science
000016983 650_7 $$2WoSType$$aJ
000016983 7001_ $$0P:(DE-Juel1)VDB37578$$aNoguchi, H.$$b1$$uFZJ
000016983 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b2$$uFZJ
000016983 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/c1sm05794d$$gVol. 7, p. 10967 - 10977$$p10967 - 10977$$q7<10967 - 10977$$tSoft matter$$v7$$x1744-683X$$y2011
000016983 8567_ $$uhttp://dx.doi.org/10.1039/C1SM05794D
000016983 8564_ $$uhttps://juser.fz-juelich.de/record/16983/files/FZJ-16983.pdf$$yPublished under German "Allianz" Licensing conditions on 2011-09-23. Available in OpenAccess from 2012-09-23$$zPublished final document.
000016983 8564_ $$uhttps://juser.fz-juelich.de/record/16983/files/FZJ-16983.jpg?subformat=icon-1440$$xicon-1440
000016983 8564_ $$uhttps://juser.fz-juelich.de/record/16983/files/FZJ-16983.jpg?subformat=icon-180$$xicon-180
000016983 8564_ $$uhttps://juser.fz-juelich.de/record/16983/files/FZJ-16983.jpg?subformat=icon-640$$xicon-640
000016983 909CO $$ooai:juser.fz-juelich.de:16983$$pdriver$$pdnbdelivery$$popen_access$$popenaire$$pVDB
000016983 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000016983 915__ $$0StatID:(DE-HGF)0520$$2StatID$$aAllianz-OA
000016983 9141_ $$y2011
000016983 9131_ $$0G:(DE-Juel1)FUEK505$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000016983 9132_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000016983 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$gICS$$kICS-2$$lTheorie der weichen Materie und Biophysik$$x0
000016983 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$gIAS$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1$$zIFF-2
000016983 970__ $$aVDB:(DE-Juel1)131352
000016983 9801_ $$aFullTexts
000016983 980__ $$aVDB
000016983 980__ $$aConvertedRecord
000016983 980__ $$ajournal
000016983 980__ $$aI:(DE-Juel1)ICS-2-20110106
000016983 980__ $$aI:(DE-Juel1)IAS-2-20090406
000016983 980__ $$aUNRESTRICTED
000016983 980__ $$aJUWEL
000016983 980__ $$aFullTexts
000016983 981__ $$aI:(DE-Juel1)IBI-5-20200312
000016983 981__ $$aI:(DE-Juel1)IAS-2-20090406
000016983 981__ $$aI:(DE-Juel1)IAS-2-20090406