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The shape changes and clustering of red blood cells (RBCs) under flow in cylindrical microcapillaries

are studied using a triangulated surface model for the membrane and a particle-based mesoscopic

simulation technique for the embedding fluid. As the flow velocity increases, the RBCs make

a transition from a discocyte shape at low velocities to a parachute shape at high velocities; close to the

critical flow velocity, the RBC can also be found in a transient slipper shape. The transition and critical

flow velocity are examined for various capillary diameters and RBC volume fractions (hematocritHT).

At high flow velocities and low hematocrits, the parachute-shaped RBCs can be found in clusters which

are hydrodynamically stabilized. Here, the formation of a fluid vortex between neighboring cells, called

bolus, develops which keeps the cells at a preferred distance. Decreasing the flow velocity towards the

critical velocity, we observe an increasing frequency of drastic RBC shape fluctuations to slipper-

shaped RBCs that can result in cluster breakup. These clusters resemble those seen in experiments using

optical microscopy.
1 Introduction

The flow of blood through arteries, arterioles and capillaries, the

heart and the lungs, is of paramount importance for humans and

other vertebrate animals. Therefore, the understanding of the

complex physical and biochemical processes in blood flow and

oxygen transport, and their disruption due to injuries or illnesses,

has many medical implications, and poses many scientific

challenges.

We want to focus here on a particular aspect of blood flow: the

pressure-driven flow through narrow capillaries, where the

capillary diameter is comparable to the diameter of the red blood

cells. In general, soft objects such as liquid droplets, lipid vesicles,

and red blood cells (RBCs) show complex behavior in flow

because they have long structural relaxation times and exhibit

large deformation due to shear forces. Examples are the break-up

of droplets1 and the wrinkling of elastic capsules2,3 or lipid

vesicles4,5 in shear flows, and the deformation of lipid vesicles6

and RBCs7–10 into parachute shapes in capillary flows.

In the absence of flow, human RBCs have a biconcave-disc

shape, whose maximum diameter and thickness are about 7.6 mm

and 2 mm with constant area S and volume V.11 The RBC

membrane consists of a lipid bilayer supported by an attached

spectrin network that acts as a cytoskeleton. The bilayer
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resistance to bending is controlled by curvature elasticity with

a bending rigidity, k; the spectrin’s resistance to a shear strain is

characterized by a shear modulus, m. Measurements by micro-

pipette aspiration12 and stretching by optical tweezers13 imply

k/kBT x 50 and mR2
0/kBT x 104 under physiological condi-

tions,11,14 whereR0 ¼ 3.3 mm is the average RBC radius. An RBC

has a large surface area-to-volume ratio and a small bending

rigidity, so that it is easily deformable. This deformability has the

important physiological implication that an RBC is able to

change its shape to move through extremely narrow blood vessels

and capillaries with diameters as small as 2 mm,15,16 much less

than the maximum diameter of the RBC.

Because the deformability of RBCs is reduced in diseases such

as diabetes mellitus10 and sickle cell anemia,17 and in infections

such as malaria,15 it is important to understand the effect of

membrane elasticity on the flow behavior. Recently, it has been

found that RBC deformation also induces ATP release from

RBCs, which induces nitric oxide synthesis and results in an

increase of the vascular caliber.18,19 Thus, the shape deformation

of RBCs in microvessels is very important to regulate oxygen

delivery.

Two interesting, related effects have been observed with blood

flow through blood vessels or glass tubes when these capillary

diameters are decreased from about 0.3 mm to about 10 mm. The

apparent (or effective) viscosity of the blood decreases; in addi-

tion, the hematocrit ratio HT/HD decreases, where HT and HD

are the volume fraction of RBCs in capillary (tube) and in the

suspension collected at the end of the tube (discharge), respec-

tively. These two effects are known as the F�ahraeus–Lindqvist

and F�ahraeus effects, respectively.20,21 Both effects are now

understood to be a result of lift forces that drive the RBCs away
Soft Matter, 2011, 7, 10967–10977 | 10967
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from the capillary wall towards the capillary center, producing

a plasma skimming layer free of RBCs by the wall.22 As the

diameter of the capillary decreases, the relative ratio of the cross-

sectional area of this cell-free layer increases. The hematocrit

HT x 0.1–0.2 observed in human microvessels is much lower

than the average hematocrit H x 0.45 for whole blood, as

a consequence of the F�ahraeus effect and the unequal parti-

tioning of RBCs and plasma at vessel bifurcations.11 The RBC

density in microvessels is strongly fluctuating.

Theoretical studies have focused on the effects of cell spacing

in narrow capillaries where the capillary radius is comparable to

the radius of RBCs. If the vessel diameter is decreased below

10 mm, the apparent/effective viscosity begins to increase. This

phenomenon is called the inverse F�ahraeus–Lindqvist effect. The

earliest theoretical model of RBCs in a narrow capillary flow, the

axial-train or stacked-coin model,23 which employed the lubri-

cation approximation for a regular array of cylindrically shaped

cells and piecewise-parabolic flow profiles, reproduced this

experimentally observed effect qualitatively. Later studies

involved the solution of the Stokes equation for the fluid flow

about a periodic (equally spaced) array of model cells.24–27 The

cells were modeled as rigid, non-deformable spheres, spheroids,

cylinders, and discocytes. The results were qualitatively inde-

pendent of cell shape. The relative apparent viscosity (relative to

a fluid free of cells) was found to increase with increasing

hematocrit and with decreasing capillary diameter, as can be

expected intuitively. The additional pressure drop per cell

becomes independent of the cell-to-cell distance once this

distance becomes larger than the capillary diameter; in other

words, once the cells are spaced at a distance of one capillary

diameter or more, they become ‘hydrodynamically independent’

(or ‘hydrodynamically isolated’). Thus, confinement screens

long-range hydrodynamic interactions between immersed cells or

colloids, effectively reducing the range of these interactions to the

diameter of the confining vessel.28,29 When the cells are close to

each other, the flow approaches the truncated Poiseuille flow of

the stacked-coins model.30

Asmentioned above, humanRBCs are not fixed in shape, but are

highly deformable. Recent theoretical efforts have been devoted to

understanding the shape changes of RBCs in narrow capillaries,

both by applying the lubrication approximation30–32 and by

employing several numerical simulation techniques.33–39To treat the

no-slip boundary conditions and the impenetrability of the moving

cell surface, boundary integral methods,33–35 immersed-boundary

methods,36,37 or particle-based methods38–40 have been developed.

We employ here a particle-based hydrodynamics technique,

called Multi-Particle Collision dynamics (MPC),41–43 to describe

the embedding fluid. This method shares many properties with

other particle-based methods.44 The most widely used version of

MPC is also called Stochastic Rotation Dynamics (SRD).45 The

MPC method has been employed previously to study the

dynamics of a single fluid vesicle in shear flow,46–48 and a fluid

vesicle39,49 as well as an RBC39 in capillary flow. Recently, we

extended this study to multiple RBCs; the simulations showed

that hydrodynamic interactions between RBCs can induce

ordered RBC arrangements in dense suspensions, and clustering

in dilute suspensions.50

In this paper, we pursue two objectives. First, we determine

the dependence of the shape transition—from discocyte to
10968 | Soft Matter, 2011, 7, 10967–10977
parachute—of a model RBC in a cylindrical capillary on the

capillary radius and the fluid hematocrit (Sec. 3). Then, we

examine the formation of clusters of RBCs in a dilute suspension

of RBCs (Sec. 4). We consider only the hydrodynamic interac-

tion and excluded-volume repulsion between RBCs, but exclude

attractive interactions and depletion effects; this corresponds to

RBC suspensions without fibrinogen and other plasma proteins

which induce RBC aggregation.51
2 Model and methods

We combine a particle-based hydrodynamics simulation tech-

nique, multi-particle collision dynamics (MPC),41–43 of the

embedding fluid with dynamically-triangulated surface model of

the membrane.52,53 We provide here a brief summary of the

model and the simulation method; a detailed account has been

given elsewhere.39,47
2.1 Membrane model

Each membrane is modeled as a collection of Nmb ¼ 500 vertices

of mass mmb, interconnected by two triangular networks of

bonds:54,55 a network of fixed connectivity whose bonds are

harmonic springs, and a dynamically-triangulated network

whose bonds undergo ‘flips’. The elastic network of fixed

connectivity models the spectrin cytoskeleton of a real RBC,

while the dynamic network models the fluid lipid bilayer. We

refer to these model RBCs as ‘elastic vesicles’ below. The spring

constant, kel of the harmonic bonds generates a shear modulus

m ¼ ffiffiffi
3

p
kel. In the fluid network, the fluctuations and shape

changes of the membrane are controlled by the curvature elas-

ticity with the Hamiltonian56

Ucv ¼ ðk=2Þ
ð
ðC1 þ C2Þ2dS; (1)

where k is the bending rigidity, and C1 and C2 are the principal

curvatures at each point of the membrane. The curvature energy

is discretized using dual lattices.47,57 We employ k¼ 20kBT which

is the rigidity of typical phospholipid membranes, where kBT is

the thermal energy. Different patches of the RBC membrane

experience a short-range repulsion, which is modeled by an

excluded-volume interaction of membrane vertices, whether

bonded or not, such that the minimum distance between any two

vertices on a given membrane is lmin ¼ 0.67l, where l is the

maximum bond length. In addition, global volume and local

area constraint potentials are added that keep the volume V

and global area S of the membrane fixed within less than 1%

deviation.47 The reduced volume of a given RBC is

V * ¼ V/(4pR3
0/3) ¼ 0.59, where R0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
S=4p

p
is the radius of

a sphere with the same surface area S; for this volume, the stable

shape of the fluid vesicle at thermal equilibrium (no fluid flows or

other external fields) is a biconcave discocyte. For an RBC, this

effective radius is R0 ¼ 3.3 mm.58,59 In order to establish the

connectivity of the spectrin mesh, we initially perform simula-

tions of a fluid vesicle with the same reduced volume; after

equilibration, the elastic bonds are added between neighbors

defined by the fluid bonds of this particular conformation. Note

that the elastic bonds have zero rest length, which implies that the

spectrin network is under tension; however, this tension is
This journal is ª The Royal Society of Chemistry 2011
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balanced to a large extent by the incompressibility of the fluid

membrane network. The shear modulus of the elastic vesicle is set

to mR2
0/kBT ¼ 110.

The membrane vertices of different RBCs have a repulsive

interaction given by an excluded-volume potential47 where the

minimum distance between vertices is lmin ¼ 0.77l. This

minimum distance is somewhat larger than that between two

vertices on the same membrane (lmin ¼ 0.67l) to prevent inter-

penetration of two neighboring cells.
2.2 Multi-particle-collision dynamics (MPC)

The MPC fluid41–43 is modeled by Ns point particles of mass ms.

The dynamics of MPC consists of series of two alternating steps:

a free-streaming step with time step DtCD, where the fluid

particles move ballistically, followed by a collision step, where

the fluid particles locally exchange their momenta. During the

latter step, the particles are first sorted into cubic boxes with

lattice constant a; then for particles in a given collision box, the

particle velocities, relative to the center-of-mass (cm) velocity of

the box, are rotated through an angle of p/2 about an axis chosen

randomly for each box. During a collision, the total momentum

and kinetic energy of each box are conserved; consequently,

MPC describes hydrodynamic flows of a Newtonian fluid. A

velocity-rescaling thermostat for relative velocities in each colli-

sion box is added to the dynamics to extract the heat generated

by the shear gradients under flow. We investigate blood flow in

capillaries with radiiRcap in the range Rcap/R0 ¼ 1.23 to 1.75. For

the capillaries with the two largest diameters, a velocity rescaling

is performed for rectangular bins of size a � a � Lz, where Lz is

the length of the capillary (which is taken to be oriented in the z-

direction). For the smaller capillary diameters, a global velocity

rescaling is employed. The position of the collision-box lattice is

shifted randomly before each collision step to ensure Galilean

invariance.45

The particles of the MPC fluid interact with the capillary walls

via a ‘bounce-back’ rule that produces no-slip or stick bound-

aries.60 The fluid particles interact with the membranes during

the streaming step also via a bounce-back rule that scatters fluid

particles off the membrane triangles (fluid network) thereby

preventing the fluid from the exterior of the membrane to

penetrate into the interior and vice versa.47 In addition, the

membrane vertices interact with the interior and exterior fluids

through MPC collisions.
2.3 Parameters

To obtain low Reynolds numbers and large Schmidt numbers,61

we employ a small collision time step DtCD ¼ 0:025a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=kBT

p
.

With a fluid mass density of r¼ 10ms/a
3, the shear viscosity of the

fluid is h0 ¼ 20:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mskBT

p
=a2. This guarantees that the capillary

Reynolds number is Re # 10�2 for all our flow simulations.

For the membrane, we use the vertex massmmb¼ 10ms and the

bond length l ¼ a. This implies V ¼ 450a3, S ¼ 407a2, and R0 ¼
5.7a. To integrate the membrane dynamics using a molecular

dynamics algorithm, we employ a shorter time step

DtMD ¼ DtCD=20 ¼ 0:00125a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=kBT

p
.

We performed simulations of single (nves ¼ 1) and several

(nves ¼ 3 and nves ¼ 6) elastic vesicles in a cylindrical capillary of
This journal is ª The Royal Society of Chemistry 2011
radius Rcap with various cylinder lengths Lz, where periodic

boundary conditions are used along the flow direction, and nves is

the number of cells in the capillary. In reporting our results, we

have scaled lengths by the RBC radius R0, energy by k, and time

by s ¼ h0R
3
0/k. Reduced variables are denoted by an asterisk

superscript, such that, e.g., L*
z ¼ Lz/R0. Flow is driven by

a uniform external force g on each particle in the z direction,

which is equivalent to a pressure gradient VzP ¼ �rmg.

Employing this external force has the advantage of minimizing

density gradients in the MPC fluid. In our reduced units, the

force strength is

g* ¼ rmgR
4
0/k. (2)

In the absence of RBCs, this external field generates an average

fluid velocity vm ¼ rgR2
cap/8h0, i.e. the flow velocity increases

linearly with g*. The error bars are calculated from several

independent simulation runs that started from different initial

conditions and employ different realizations of the thermal noise.

3 Shape transitions of a regular array of RBCs

3.1 Shape transitions of an isolated RBC

We first describe the shape changes and dynamics of a single

elastic vesicle (nves ¼ 1) in a dilute cell suspension within a long

capillary cylinder, Lz/R0 ¼ 14, at various capillary radii, from

Rcap/R0 ¼ 1.23 toRcap/R0¼ 1.75, which corresponds to the range

of capillary radii Rcap ¼ 4.0 mm to Rcap ¼ 5.8 mm, and hemato-

crits HT ¼ Vves/(pR
2
capLz) from HT ¼ 0.037 to HT ¼ 0.018,

respectively. The considered tube segment is sufficiently long that

the cell is effectively isolated hydrodynamically from its periodic

images. In the absence of flow, the RBC appears as a biconcave

discocyte. At low flow velocities, or equivalently low g*, the RBC

retains its discocyte and moves ‘edge-on’ through the capillary,

i.e. it orients in the direction of flow so that the eigenvector

associated with the smallest eigenvalue of the cell’s gyration

tensor becomes roughly perpendicular to the direction of flow.39

This orientation offers the least blockage or resistance to the

capillary flow since it minimizes the area of the elastic vesicle

projected onto the capillary cross-section. If the flow velocity or

g* is sufficiently high, then the RBC undergoes a sudden transi-

tion39 into a parachute shape at a critical value, g*c, as shown in

Fig. 1. This parachute shape is in good agreement with the RBC

shape observed by optical microscopy.7–10,62

The flow profile of the fluid far from a cell approaches the

Poiseuille flow, v(r) ¼ rg(R2
cap � r2)/4h0, where r is the radial

distance in cylindrical coordinates from the capillary axis. The

shape transition of the RBC is driven by the gradients in the fluid

flow, dv/dr ¼ �rgr/2h0, which is independent of Rcap. Therefore,

for sufficiently large capillary radii, when the backflow from the

wall and thus hydrodynamic interactions with the wall become

negligible, the critical pressure gradient g*c should become inde-

pendent of Rcap. This is seen in Fig. 1, where g*c reaches a plateau

value g*c x 9.45 for Rcap/R0 T 1.55. Although g*c reaches

a plateau with increasing Rcap, the mean flow velocity does not,

because the mean velocity of Poiseuille flow increases as vm ¼
rgR2

cap/8h0. It is interesting to note that for Rcap < 1.55R0,

a smaller pressure gradient is sufficient to induce the trans-

formation to parachute shapes than for wide capillaries.
Soft Matter, 2011, 7, 10967–10977 | 10969
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Fig. 1 Dependence of the shape-transition (a) mean flow velocity, vcm,

and (b) uniform pressure gradient, g*c, on the capillary radius,Rcap/R0, for

a dilute suspension with nves ¼ 1 and L*
z ¼ Lz/R0 ¼ 14. Simulation

snapshots of a discocyte and parachute are included.

Fig. 2 (a) Hematocrit ratio, HT/HD ¼ vves/vm, and (b) pressure drop,

DP*
drp ¼ DPdrpR

2
cap/(h0vmR0), as a function of the pressure gradient, g*,

for capillaries of different radii, Rcap/R0, with nves ¼ 1 and Lz/R0 ¼ 14.
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The pressure drop DPdrp is the additional pressure difference

required to maintain the flow with RBCs at the same mean flow

velocity vm as in a fluid without RBCs. Across a section of

capillary or pipe of length Lz, the pressure drop is given by

DPdrpR
2
cap

h0vmR0

¼ 8ðv0 � vmÞLz

nvesvmR0

; (3)

where v0 is the mean flow velocity in a capillary without RBCs

that is generated by the same uniform pressure gradient.

Fig. 2 shows that the hematocrit ratioHT/HD¼ vm/vves and the

pressure drop DPdrp decrease rapidly with increasing g* around

g*c for the narrowest capillary with Rcap/R0 ¼ 1.23, but much

more gradually for Rcap/R0 $ 1.40. Since the RBC stays more

compact around the center of the capillary after the trans-

formation into a parachute shape, it flows faster than the mean

blood velocity vm, thereby lowering HT, and significantly

reducing the resistance to fluid flow.

The stretching energy of the elastic bond network and the

bending energy of the fluid membrane both increase with

increasing g*; the bending energy of the fluid membrane increases

sharply at the discocyte-to-parachute transition. To determine

g*c, we also inspected movies of the RBC under flow with many

different initial conformations; these runs typically covered 102s
in time. Around the transition velocity, the RBC can also assume

a transient non-axisymmetric ‘slipper’ shape.39 No stable slipper

shapes were observed, in contrast to results for two-dimensional

vesicles in planar unbounded Poiseuille flow (in the absence of

thermal fluctuations).63

Previously, the transition velocity vcm to a parachute was found

to depend linearly on the elastic bending and stretching forces,39

with

vcms/R0 ¼ 0.05mR2
0/k + 2 (4)
10970 | Soft Matter, 2011, 7, 10967–10977
at Rcap/R0 ¼ 1.40 in a dilute suspension. The extrapolation

suggests that the transition occurs at 0.2 mm s�1 for the bending

and shear modulus of RBCs, under physiological conditions in

capillaries with Rcap ¼ 4.6 mm. We expect a similar linear

dependence on m and k; however, the transition velocity also

depends on Rcap as shown in Fig. 1, so that the coefficients must

be (slowly) varying functions of Rcap.

3.2 Shape transitions of RBCs at higher hematocrits

We can also study the effect of hydrodynamic interactions

between neighboring cells in a regular array on the RBC shape

and orientation at higher hematocrit by simulating a single RBC

(nves ¼ 1) in a tube with periodic boundary conditions—as long

as the shapes, orientations, and neighbor distances of the cells are

all the same. We investigate the dependence on the hematocrit in

the range 0.1 # HT # 0.4 by varying the capillary length Lz (per

cell) at fixed radius Rcap/R0 ¼ 1.40. At low HT ( 0.19 (or

Lz/R0 T 2), the transition from a discocyte to a parachute occurs

abruptly with increasing g*. However, at high HT T 0.19 (or

Lz/R0 ( 2), the shape transition is gradual; starting at low g* as

a discocyte whose symmetry axis is tilted away from the capillary

axis, the RBC shape changes gradually with increasing g*,

proceeding through a shape similar to a slipper whose degree of

deformation away from the discocyte shape increases becoming

a bowl at high g*. The deviation from a spherical shape can be

characterized by the average asphericity, hai, with47,64

a ¼ ðl1 � l2Þ2 þ ðl2 � l3Þ2 þ ðl3 � l1Þ2
2R4

g

; (5)

where l1 # l2 # l3 are the eigenvalues of the gyration tensor and

R2
g ¼ l1 + l2 + l3 is the squared radius of gyration. Results are

shown in Fig. 3. The critical value ofHT (between 0.16 and 0.22),
This journal is ª The Royal Society of Chemistry 2011
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Fig. 3 (a) Average asphericity, hai, at various RBC concentrations, Lz/

R0 ¼ 3.2 to 1.4 (hematocrits HT ¼ 0.12 to 0.28), as a function of the

pressure gradient, g*, for nves ¼ 1 and Rcap/R0 ¼ 1.40. (b) Maximum

membrane radial extension, rmax/R0, away from the capillary axis as

a function of simulation (capillary) length (Lz/R0).

Fig. 5 Magnitude of the fluid velocity, vs ¼ |vs|, in the co-moving frame

for a concentrated RBC suspension with nves ¼ 1, Rcap/R0 ¼ 1.40, and

various lengths, Lz/R0. (a) vs as a function of radial distance, r/Rcap, away

from the capillary axis at the mid-plane, between an RBC and its mirror

image, which is perpendicular to the z axis. (b) vs as a function of distance

(z � zmid)/R0 parallel to the z axis from this mid-plane.
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where hai goes from changing gradually to abruptly, corresponds

to a cylinder length per cell in the range 1.8 < Lz/R0 < 2.5, which

is slightly less than the capillary diameter of 2Rcap/R0 ¼ 2.8. At

separations between an RBC and its neighboring (image) cells

greater than this ‘critical length’, the hydrodynamically mediated
Fig. 4 Streamlines (dotted lines) and velocity field (arrows) in a refer-

ence frame co-moving with the RBC for nves ¼ 1, Rcap/R0 ¼ 1.40, Lz/R0 ¼
2.8, and g* ¼ 20.4. A sliced snapshot (solid contour) of the RBC is shown;

a flow vortex (‘bolus’) is seen between RBCs. Within an RBC, the fluid

flow velocity in this frame is zero; arrows are omitted from this interior

space to emphasize the absence of a flow field.

This journal is ª The Royal Society of Chemistry 2011
interaction between RBCs is too weak to influence the shape of

the cells—they are ‘hydrodynamically isolated’. We also observe

that rmax levels off once the separation between nearest-neighbor

cells exceeds L*
z ¼ 2.0 to 2.5. These results are consistent with the

theoretical predictions obtained by solving the Stokes equation

for the fluid flow about a periodic array of rigid model cells.24–27

The fluid streamlines—denoted ‘bolus’ lines—in the cell co-

moving frame, shown in Fig. 4, also appear qualitatively

consistent with these predictions. Fluid velocities between RBCs

are shown in Fig. 5. We find that the bolus vortices cease to exist

for cell–cell separations in the range 1.4 < Lz/R0 < 2.1 (where the

lower boundary equals Rcap/R0); for these smaller separations,

the fluid between the two RBCs becomes trapped andmoves with

the same velocity as the cells (see Fig. 5).
4 Clustering of RBCs at low hematocrit

The study of clustering and correlations in the motion of RBCs,

mediated by just hydrodynamic flows, requires simulations

employing several elastic vesicles in the tube. We explore six

(nves ¼ 6) or three (nves ¼ 3) cells in Sec. 4.1 and 4.2, respectively.

For nves ¼ 6, two capillary radii (Rcap/R0 ¼ 1.40 and 1.58) are

studied with length Lz/R0¼ 28 (corresponding toHT¼ 0.084 and

0.066, respectively). For nves ¼ 3, the capillary radius Rcap/R0 ¼
1.40 is investigated with length Lz/R0 ¼ 14 (corresponding to

HT ¼ 0.084).
Soft Matter, 2011, 7, 10967–10977 | 10971
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4.1 Six RBCs in a capillary

Fig. 6 shows subsequent snapshots of arrangements of RBCs in

a capillary of radius Rcap/R0 ¼ 1.58 at g* > g*c, where the cells are

parachute shaped (see also Movie S2 in ESI†); Fig. 7 shows the

corresponding trajectories (in a reference frame moving with the

average flow velocity). Note that there are no direct contacts

between any two adjacent cells. A comparison of these results

with the corresponding data50 for Rcap/R0 ¼ 1.40 shows that this

clustering occurs very similarly for both capillary radii Rcap/R0 ¼
1.40 and 1.58. In fast flow g* ¼ 20.4, RBCs form 6-cell clusters

(the largest size of clusters possible in this system) for most of the

simulation period (see Movie S1 in ESI†). In slower flow g* ¼
15.9, clusters often break up and then reform into other clusters,

as demonstrated in Fig. 6 and 7, and Movie S2 in ESI†.

Spatial pair correlations between the cells are characterized by

the axial pair distribution function of the center-of-mass

distances along the z direction,

GðzÞ ¼ 1

nvesrB

*Xnves
i¼1

Xnves
jsi

dðz� zijÞ
+
; (6)

where zij ¼ zcm,i � zcm,j, rB ¼ (nves � 1)/Lz, and d(z) is a smeared-

out d-function with d(z) ¼ 1/Dz for z ˛ [�Dz/2,Dz/2] and

0 otherwise. Unless otherwise specified, Dz* ¼ 0.03. The
Fig. 6 Sequential snapshots taken during a simulation run with six cells

(nves¼ 6) at g* ¼ 15.9 with Lz/R0¼ 28 andRcap/R0¼ 1.58: (a) t/s¼ 50; (b)

t/s ¼ 100; (c) t/s ¼ 150; and (d) t/s ¼ 200.

Fig. 7 Time development (during the same simulation run as Fig. 6) of

the center-of-mass (cm) coordinates, zcm,i, of six cells in the z direction in

a dilute suspension with nves ¼ 6, L*
z ¼ Lz/R0 ¼ 28, and Rcap/R0 ¼ 1.58.

Trajectories are shown in a co-moving frame, i.e. relative to the center-of-

mass zcm ¼ ð1=nvesÞ
P

i zcm;i of all cells. Solid and dashed lines represent

the cm of RBCs and their periodic images, respectively.

10972 | Soft Matter, 2011, 7, 10967–10977
correlation function is proportional to the conditional proba-

bility of finding the center-of-mass of one cell an axial distance z

away from that of another cell. Alternatively, rBG(z) gives the

effective RBC number density at a distance z away from a given

cell.

Fig. 8 displays G(z) for two flow velocities in the parachute

phase at Rcap/R0 ¼ 1.40. Several pronounced peaks clearly show

the existence of strong clustering; in contrast, just a single peak

would indicate the formation of only RBC dimers. For

comparison, we have also included in Fig. 8 the pair distribution

function of a one-dimensional hard-sphere fluid65,66 at thermal

equilibrium, with the same line density nhsR0/Lz ¼ nvesR0/Lz ¼
0.214 and a hard-sphere diameter 1.1R0, chosen so that the

position of the first minimum in the hard-sphere pair distribu-

tion coincides with that of the first minimum in the RBC axial

pair distribution at g* ¼ 20.4. Clearly, this hard-sphere fluid

shows far less structure than our system of soft objects under

flow.

Fig. 8(b) shows the probability of finding a cluster containing

ncl RBCs for the 6-cell system,
Fig. 8 (a) Axial pair distribution functions, G(z), and (b) cluster-size

probabilities, P(ncl), for nves ¼ 6, Lz/R0 ¼ 28. (a) The double-dot double-

dot curve is the distribution functionGnn(z) of center-of-mass distances of

nearest-neighbor cells for Rcap/R0 ¼ 1.40. The G(z) of a one-dimensional

hard-sphere fluid at equilibrium (dashed line), a ‘Tonk’s gas’, is included

where these spheres have a diameter of 1.1R0. (b) g
* ¼ 15.93 (B,O) and

20.37 (,, V) with 31 ¼ 3.5R0 (see text). Solid and dashed lines represent

data at Rcap/R0 ¼ 1.40 and 1.58, respectively.

This journal is ª The Royal Society of Chemistry 2011

http://dx.doi.org/10.1039/c1sm05794d


D
ow

nl
oa

de
d 

by
 F

or
sc

hu
ng

sz
en

tr
um

 J
ul

ic
h 

G
m

bh
 o

n 
13

/0
5/

20
13

 0
7:

48
:2

4.
 

Pu
bl

is
he

d 
on

 2
3 

Se
pt

em
be

r 
20

11
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
1S

M
05

79
4D

View Article Online
pðnclÞ ¼ ncl f ðnclÞP
n
0
cl
n
0
cl f ðn0

clÞ
; (7)

where f(n0cl) is the total number of clusters of size n0cl that appear
during a simulation run. An RBC is defined to be part of a cluster

if the axial center-of-mass distance to its nearest neighbor is less

than a chosen distance 31 ¼ 3.5R0. This choice of 31 was made by

considering the location where the contribution of nearest-

neighbor pairs to G(z) essentially disappears with increasing

z* (see Fig. 8(a)). The comparison of flows with g* ¼ 15.9 and g*¼
20.4 in Fig. 8 shows that the probability of finding smaller

clusters is strongly reduced for faster flows in favor of larger

clusters. Furthermore, Fig. 8 indicates that at the same pressure

gradient (same g*), the clustering behavior for the two capillary

radii Rcap/R0 ¼ 1.40 and 1.58 is very similar, although small

clusters of two or three cells appear a little more frequently for

the smaller capillary radius.
4.2 Three RBCs in a capillary

To investigate the hydrodynamic interactions between RBCs in

more detail, we have also simulated nves ¼ 3 elastic vesicles in

a capillary. Simulation snapshots, shown in Fig. 9, demonstrate

the existence of a 3-cell cluster (see also Movie S3 in ESI†); as in

the 6-cell case in Sec. 4.1, no direct contacts are observed between

any two adjacent cells. Several simulations were performed at

each g* starting from different initial conditions with a total

combined simulation time of about 2 to 3 � 103s. The 3-cell

clusters appear to be stable, particularly at the highest g*, but

infrequent ‘orbiting’ events occur where a 3-cell cluster breaks up

into a 2-cell cluster and a ‘free’ cell which then orbits through the

periodic boundary of the model capillary in a frame co-moving

with the 2-cell cluster. In such orbiting events (a simulation

snapshot is also shown in Fig. 9), the front cell of the 3-cell cluster
Fig. 9 Snapshots taken from simulations of a dilute suspension at nves ¼
3, Lz/R0 ¼ 14, and Rcap/R0 ¼ 1.40 (HT ¼ 0.084). (a) A loose (LL) 3-cell

cluster at g* ¼ 20.4; see also Movie S3 in ESI†. Panels (b) and (c) show

sequential snapshots taken from a simulation at g*¼ 13.2; the front cell of

a compact (CC) 3-cell cluster disjoints from the cluster, then orbits

through the periodic boundary and becomes the back cell of a new 3-cell

cluster; see also Movie S4 in ESI†. The rightmost and leftmost 3-cell

intra-cluster center-of-mass (cm) distances are d3,r and d3,l, respectively.

This journal is ª The Royal Society of Chemistry 2011
separates from the cluster, ultimately becoming the back cell of

a new 3-cell cluster (see Fig. 10), just as discussed for the cluster

breakup and reformation in Sec. 4.1. The free RBC often appears

during these events as a slipper, and moves fastest relative to the

other RBCs when it has this shape. As g* decreases, approaching

g*c where an isolated RBC undergoes a parachute-to-discocyte

transition (see Sec. 3.1), the frequency of such ‘orbiting’ events

increases (see the inset of Fig. 11a).

The axial pair distribution functions, G(z), of the distance

between the centers of mass of pairs of cells is shown in Fig. 11.

The high peaks demonstrate cluster formation. At g* ¼ 20.4, G(z)

of the distances between all pairs of RBCs (the full pair distri-

bution function) has two peaks, while Gnn(z), restricted to

nearest-neighbor cells, has only a single peak. Thus, center-of-

mass distances originating from nearest-neighbor pairs

contribute to the first peak in G(z) centered at z/R0 x 2.6, while

only next-to-nearest neighbor distances contribute to the second

peak centered at z/R0 x 5.2. On the other hand, at g* ¼ 15.9 and

g* ¼ 13.2, G(z) has three peaks, and Gnn(z) for nearest neighbors

has two peaks. This indicates that the 3-cell cluster has two

possible internal states: a compact (CC) state and a loose (LL)

state, with different nearest-neighbor distances in the z direction.

Snapshots of these states are shown in Fig. 9; see also Movies S3

and S4 in ESI†.

There are two independent intra-cluster center-of-mass

distances in a 3-cell cluster: the leftmost (l) d3,l and the rightmost

(r) d3,r (see Fig. 9). In the CC state, hd3,li x hd3,ri x Rcap (with

Rcap/R0 ¼ 1.4). These distances are relatively small, and are

therefore designated by ‘C’ (for ‘compact’); the magnitude in the

variation of these distances is given by the width of the first peak
Fig. 10 Time development (during one simulation run) of the distances

between the centers of mass (cm), z*, of three RBCs in the z direction in

a dilute suspension with nves ¼ 3, L*
z ¼ Lz/R0 ¼ 14, and Rcap/R0 ¼ 1.40

(HT ¼ 0.084); here d*z(ij) ¼ z*ij � L*
znint(z

*
ij/L

*
z) where z*ij ¼ z*i � z*j . Two

orbiting events are indicated by the curves going beyond the boundaries

of this plot; the second such event results in a compact (CC) 3-cell cluster

becoming a loose (LL) 3-cell cluster. The cells in the first 3-cell cluster are

ordered as (123) ¼ (lmr) where r is the front cell, m the middle, and l the

back; the first orbiting event gives a new 3-cell cluster ordered as (312);

then, the final event gives a loose 3-cell cluster ordered as (231).

Soft Matter, 2011, 7, 10967–10977 | 10973
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Fig. 11 (a) Axial pair distribution functions of the cells’ center-of-mass

separations at nves ¼ 3, Lz/R0 ¼ 14, and Rcap/R0 ¼ 1.40 (HT ¼ 0.084). The

inset gives the total number of orbiting events,Norb, that occur during an

intrinsic time s; this number increases as g* decreases. These orbiting

events represent complete breaks of a 3-cell cluster into a 2-cell cluster

and one ‘free’ cell. (b) Solid curve gives the axial pair distribution func-

tion at g* ¼ 5.37, where the RBCs existed only as discocytes; here no

significant clustering was observed. The G(z) of a one-dimensional hard-

sphere fluid (dashed line) is included where these spheres have a diameter

of 2.63R0.

Fig. 12 Distributions of the leftmost intra-cluster distance, d3,l/R0, for

different values of the rightmost intra-cluster distance, d3,r/R0. Parame-

ters are g* ¼ 20.4, nves ¼ 3, Lz/R0 ¼ 14, and Rcap/R0 ¼ 1.40. The bin sizes

for d3,r and d3,l are given by Dz/R0 ¼ 0.35 and 0.088, respectively; these

bin sizes are chosen to produce adequate statistics and a sufficiently

smooth curve, respectively. These choices are not unique; for example,

shifts in p(d3,l) are also observed using a twice as large bin size Dz/R0¼ 0.7

for d3,r.
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of G(z) at g* ¼ 15.9 and g* ¼ 13.2. In the LL state, hd3,li x hd3,ri
x 2Rcap. These distances are relatively large, and are therefore

designated by ‘L’ (for ‘loose’). At g* ¼ 20.4, the 3-cell cluster only

exists in the LL state; furthermore, at g* ¼ 15.9 and g* ¼ 13.2, the

3-cell cluster spends more time in the LL state than in the CC

state. ‘Collisions’ between RBCs after a complete orbit appear

necessary in order to generate the compact state: transitions

between the CC and LL states without a complete orbit never

occurred.

The results for the cluster structure of small clusters differ from

those for larger clusters described in Sec. 4.1. The most likely

nearest-neighbor distance, z/R0 10 : 5, for nves ¼ 6 is close to that

for the compact state of nves ¼ 3. In addition, at g* ¼ 20 : 4, the

width of the first peak in G(z) for nves ¼ 6 is much broader than

this width for nves ¼ 3. Thus, it seems that the C and L states can

no longer be distinguished in clusters of many cells, and merge

into a single state with larger distance fluctuations; this merging

might be caused by the disturbance generated by the other cells in

the cluster. For g* < g*c, the RBCs are discocytes and show only

a weak tendency to cluster: the first peak of G(z) at g* ¼ 5.4,

centered at z x 3.9R0 (L*
z/nves ¼ 4.67) is broad, and a second
10974 | Soft Matter, 2011, 7, 10967–10977
peak is not discernible (see Fig. 11). The pair distribution func-

tion of the one-dimensional hard-sphere fluid at equilibrium,

with a line density nhsR0/Lz ¼ nvesR0/Lz ¼ 0.214 and hard-sphere

diameter of 2.63R0 again shows far less structure than our system

of soft objects under flow. Here, the choice of the hard-sphere

diameter is again made such that the positions of the first minima

of G(z) for the hard-sphere fluid and the RBC suspension at g* ¼
5.4 coincide.

To characterize the internal structure of the 3-cell clusters in

more detail, we study correlations between the two nearest-

neighbor distances in a cluster. Using a minimum-image

convention with periodic boundary conditions along the z

direction, we calculate three possible center-of-mass distances at

any time during a simulation run. If any two of these distances

are less than a distance 31, then we define that the cells form

a 3-cell cluster. If any one of these distances is less than 31 and the

minimum of the remaining two distances is greater than 32, then

a 2-cell cluster is defined with one ‘isolated’ cell separated from

this cluster. Noting the position where the first peak in G(znb) at

g* ¼ 20.37 essentially ends with increasing znb, we set 31 ¼ 3.2R0

(somewhat smaller but nearly the same as in Sec. 4.1) and 32 ¼
4.4R0, so that there is a clear distinction between a 2- and a 3-cell

cluster.

The probability distributions of the single intra-cluster

distance of a 2-cell cluster (not shown) indicate that the 2-cell

cluster exists more often in a compact internal ‘C’ state. For most

of the 2-cell clusters, the free RBC rejoins the 2-cell cluster to

form a new 3-cell cluster through an orbiting event; however, for

a small fraction, the free RBC leaves (farther than 32) but then

returns to become again the front cell a 3-cell cluster.

Fig. 12 shows the distribution of the leftmost intra-cluster (LL)

distances, p(d3,l), for fixed d3,r. As d3,r increases, the peak of

p(d3,l), shifts to larger d3,l; thus, the two intra-cluster distances are

strongly correlated.
This journal is ª The Royal Society of Chemistry 2011
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To extract information about the probabilities of the CC and

LL internal states to occur in a 3-cell cluster, we use ranges

guided by the widths and positions of the first and second peaks

of G(z) for g* ¼ 15.9 and g* ¼ 13.2 in Fig. 11(a). If d3,l/R0 < 1.9

and d3,r/R0 < 1.9, then the CC state exists; if d3,l/R0 > 1.9 and d3,r/

R0 > 1.9, then the LL state exists. The sum of the fractions of time

spent in the CC and LL states is less than unity because there

exists a remaining internal state characterized by a small and

a large intra-cluster distance; however, this hybrid CL state

appears not to exist as metastable state for any appreciable

length of time. The 3-cell cluster spends 40% to 60% of its time in

the LL state and only 10% to 20% of its time in the CC state for

g* ¼ 15.9 and g* ¼ 13.2 (the error here is only a crude estimate

obtained by dividing the total simulation time into three equally

sized blocks). All transitions between compact and loose states

proceeded through intervening ‘orbiting’ events; in addition,

more orbiting events were seen from an CC state than from the

LL state; as a result, the 2-cell cluster inherits its compact state

from the compact (CC) 3-cell cluster from which the 2-cell cluster

is ‘born’.

Fig. 13 displays the probability distributions for the average

RBC velocity, vves, at g
* ¼ 15.9 for a 2- and a 3-cell clusters, as

well as for a single, ‘orbiting’ cell separated from a 2-cell cluster;

vves is an instantaneous average taken over each of the cells of

a particular cluster species. The free cell moves on average with

the largest velocity, followed by the 3-cell cluster and then the

2-cell cluster. Thus, the free cell can catch up with the 2-cell
Fig. 13 (a) Velocity, vves, and (b) maximum membrane radial extension,

rmax, probability distributions for a single cell (a¼ 1), a 2-cell cluster (a¼
2), and a 3-cell cluster (a ¼ 3) at g* ¼ 15.9 with nves ¼ 3, Lz/R0 ¼ 14, and

Rcap/R0 ¼ 1.40. Panel (a) also gives the velocity distributions for a 3-cell

cluster in the loose (LL) and compact (CC) internal states. The separation

distances, 31/R0 ¼ 3.2 and 32/R0 ¼ 4.4, are used to define the clusters. The

relative, qualitative appearance of all these distributions at g*¼ 13.2 is the

same.

This journal is ª The Royal Society of Chemistry 2011
cluster. Fig. 13 also shows the distribution p(r*max) of maximum

radial extension of the cell membrane from the capillary axis for

the 3-cell cluster It has two peaks, one at lower and another at

higher r*max, which correspond to the internal LL and CC states,

respectively. The different peak heights reflect the fact that the 3-

cell cluster spends more time in the LL than in the CC state.

4.3 Discussion

Based on our results for the nves ¼ 3 system, we can now discuss

the mechanism of deformation-induced clustering of RBCs. The

RBCs form parachutes in a cluster for g* > g*c, but the RBC shape

depends on the distance between neighboring cells. As the cells

come closer to each other within the 3-cell cluster, the neigh-

boring cells are more shielded from the shear forces of the fluid,

and hrmaxi increases; then, the 3-cell cluster flows more slowly

and its pressure drop increases, because the cluster acts more like

a plug to fluid flow (see Fig. 13). A similar shape change occurs in

the dense suspension with nves ¼ 1 (see Sec. 3); there, the neigh-

boring distance is exactly Lz due to the periodic boundary

conditions. The RBC asphericity a shows a jump at Lz/R0 x 2

and g* $ 13.2 (see Fig. 3). This distance coincides with the

position 2R0 where the first peak in G(z) at g* ¼ 13.2 and g* ¼
15.9 ends and the second peak begins; this position marks the

border between what we have defined as a compact (C) or a loose
Fig. 14 Distributions of the RBC center-of-mass radial position, rcm/R0,

for a 3-cell cluster in the loose (LL) internal state [1.9 < d3,a/R0 < 3.2] at

g* ¼ 20.4, nves ¼ 3, Lz/R0 ¼ 14, and Rcap/R0 ¼ 1.40. Distributions were

obtained by dividing raw histograms by 2prcm. (a) Average distribution

of rcm averaged over the three individual cell distributions. (b) Distri-

bution functions for the radial positions rcm,i, with i ˛ {l,m,r}, for indi-

vidual RBCs (where ‘l’, ‘m’, and ‘r’ represent the left, middle, and right

cell within the cluster). The relative displacement/shift between the l, m,

and r distributions were also observed at g* ¼ 15.9 and 13.1.

Soft Matter, 2011, 7, 10967–10977 | 10975
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(L) nearest-neighbor intra-cluster distance. Thus, the compact

state is related to this shape transition from a parachute with

a deep dimple to one with a shallow dimple.

In capillary flow, hydrodynamic lift forces cause cell migration

away from the wall to the capillary axis.67–72 As g* decreases, the

magnitude of the lift force decreases. Our simulation results for

g* > g*c indicate that fluctuations in RBC shapes and positions at

low g* are indeed more pronounced than at high g*. This is

demonstrated in Fig. 14(a), where the distribution of radial

distances rcm of the cell’s center of mass becomes more centered

near the capillary axis with increasing flow velocity. When an

RBC with a parachute shape shifts away from the capillary axis,

there is an increased chance that it will be deformed into a slipper

shape; this is the shape most often adopted by the front cell of the

3-cell cluster when it breaks free and executes an orbit of the

simulation cylinder. However, not all fluctuations in the RBC

center of mass off-axis result in such drastic shape trans-

formations into a slipper shape. Fig. 14(b) shows distributions

for the radial center-of-mass position rcm,i, with i ˛ {l,m,r}, for

the three individual cells within a LL 3-cell cluster. The back (l)

cell in the 3-cell cluster has larger fluctuations in the position of

its center of mass off-axis than the middle (m) cell and the front

(r) cell of this cluster. Interestingly, within the LL state at all g*

considered, hrmax(l)i T hrmax(m)i T hrmax(r)i, hlmax(l)i (

hlmax(m)i ( hlmax(r)i, and hd3,li ( hd3,ri. The origin of this

behavior is the asymmetric parachute shape, which is more

pointed in front and more broad in the back; this shape implies

that also the fluid velocity profile is more parabolic before and

more plug-like behind each cell, so that the leading cell of the

cluster is pulled more to the center, whereas the trailing cell can

move more easily sideways and have larger fluctuations away

from the capillary axis.
Fig. 15 Vesicle velocities for a loose (LL) 3-cell cluster, as well as a loose

(L) 2-cell cluster and a single ‘steady-state’ cell (1-ves). The three curves

were obtained from simulations with three, two, and one cell per simu-

lation cylinder all at HT ¼ 0.084 with Rcap/R0 ¼ 1.40. Inset compares the

RBC velocity of a LL 3-cell cluster to the velocities of a compact (C) 2-cell

cluster (solid circles) (obtained from during an orbiting event at nves ¼ 3

and HT ¼ 0.084) and a compact (CC) 3-cell cluster (solid triangles).

10976 | Soft Matter, 2011, 7, 10967–10977
We have found that two mechanisms are at play in stabilizing

RBC clusters, the effective hydrodynamic attraction induced by

the bolus flow (see Sec. 3.2), and the different flow velocities of

single cells and cell clusters. The simulated cell suspension is

dilute (HT ¼ 0.084). Since a free RBC during an orbiting event,

where it often appears as a slipper, flows faster than a compact

2-cell cluster, a free cell can catch up to the cluster before it had

time to relax to its average parachute shape. In the limit of even

higher dilution, small clusters with nves ¼ 3, which are initially

isolated, should have sufficient time to be able to relax to their

steady LL state; then, cluster formation might be governed by the

differences in the mean velocity of the isolated clusters. There-

fore, we show in Fig. 15 the mean cluster velocity, vves versus

mean fluid flow velocity, vm, for several different cluster species

obtained from simulations with three, two, and one elastic vesi-

cles per simulation cylinder at the same hematocrit, HT ¼ 0.084,

and with Rcap/R0 ¼ 1.40. Compared to the velocities of the

compact 2- or 3-cell clusters (see the inset of Fig. 15), the

differences in the velocities of a single (steady state) cell, loose 2-,

and loose 3-cell clusters are very small. Therefore, we suspect that

in a very dilute suspension, cell clustering could occur, but very

slowly (compared to the formation of clusters that occurs during

an orbiting event), because of the small velocity differences

between the different loose cluster species and the large distances

between any two nearest-neighbor clusters.
5 Summary and conclusions

We have studied the transition from a discocyte to a parachute

shape of elastic vesicles and their clustering behavior in micro-

capillary flows. The discocyte-to-parachute transition reduces

the flow resistance. Hydrodynamic interactions coupled with

RBC deformations induce clustering in the regime of higher flow

velocities, where parachute shapes prevail.

For small cluster sizes, the cell clusters can show two internal

states, compactly and loosely packed RBCs with parachute

shapes of shallow and deep dimples, respectively. Two critical

distances, Dz1 and Dz2 (with Dz1 < Dz2), mark the boundaries

between different levels of hydrodynamic interaction. For

distances larger than Dz2, cells are hydrodynamically isolated

and do not interact. Dz1 is the boundary where the shapes of two

neighboring cells cease to be independent; in addition, for

distances less than Dz1, the bolus-flow structure between neigh-

boring RBCs disappears. Therefore, changes in flow structure

are strongly correlated with changes in RBC shape. These critical

distances are the locations where the first peak in the axial pair

distribution function for the compact and loose clusters essen-

tially disappear with increasing nearest-neighbor distance. For

larger cluster sizes, two distinct internal states do not appear

possible because of complex interactions (hydrodynamic flows

coupled to thermal fluctuations) with the other cells.

The clustering of RBCs seen in experiments of blood flow

through a glass capillary8 and the narrow arterioles of a rabbit73

have been explained based on the polydispersity of a blood

sample, where RBCs show a variation in size and flexibility. The

membranes of more flexible cells can more easily deform,

becoming closer to the capillary axis; as a result, these flexible

cells can move faster and crowd behind the more slow moving,

inflexible cells. We have shown that clustering can occur even in
This journal is ª The Royal Society of Chemistry 2011
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a monodisperse suspension of RBCs that are identical in their

size and flexibility. Similar clustering is expected for other soft

objects such as liquid droplets and lipid vesicles.

In slow blood flow, fibrinogen induces RBCs aggregation

called ‘rouleaux’, where the RBCs adhere like a stack of

coins.11,74 Subjected to sufficiently large shear gradients, the RBC

rouleaux break-up and disperse in flow.75 Therefore, it will be

interesting in the future to study the clustering of elastic vesicles

as model RBCs in the presence of attractive membrane interac-

tions in capillary flows.
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