000017029 001__ 17029 000017029 005__ 20190625111146.0 000017029 0247_ $$2pmid$$apmid:22335539 000017029 0247_ $$2DOI$$a10.1111/j.1469-8137.2012.04075.x 000017029 0247_ $$2WOS$$aWOS:000302618300026 000017029 0247_ $$2altmetric$$aaltmetric:611330 000017029 037__ $$aPreJuSER-17029 000017029 041__ $$aeng 000017029 082__ $$a580 000017029 084__ $$2WoS$$aPlant Sciences 000017029 1001_ $$0P:(DE-HGF)0$$aHuber, H.$$b0 000017029 245__ $$aPlasticity as a plastic response: how submergence-induced leaf elongation in Rumex palustris depends on light and nutrient availability in its early life stage 000017029 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2012 000017029 300__ $$a572 - 582 000017029 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000017029 3367_ $$2DataCite$$aOutput Types/Journal article 000017029 3367_ $$00$$2EndNote$$aJournal Article 000017029 3367_ $$2BibTeX$$aARTICLE 000017029 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000017029 3367_ $$2DRIVER$$aarticle 000017029 440_0 $$04600$$aNew Phytologist$$v194$$x0028-646X$$y2 000017029 500__ $$aRecord converted from VDB: 12.11.2012 000017029 520__ $$aPlants may experience different environmental cues throughout their development which interact in determining their phenotype. This paper tests the hypothesis that environmental conditions experienced early during ontogeny affect the phenotypic response to subsequent environmental cues. This hypothesis was tested by exposing different accessions of Rumex palustris to different light and nutrient conditions, followed by subsequent complete submergence. Final leaf length and submergence-induced plasticity were affected by the environmental conditions experienced at early developmental stages. In developmentally older leaves, submergence-induced elongation was lower in plants previously subjected to high-light conditions. Submergence-induced elongation of developmentally younger leaves, however, was larger when pregrown in high light. High-light and low-nutrient conditions led to an increase of nonstructural carbohydrates in the plants. There was a positive correlation between submergence-induced leaf elongation and carbohydrate concentration and content in roots and shoots, but not with root and shoot biomass before submergence. These results show that conditions experienced by young plants modulate the responses to subsequent environmental conditions, in both magnitude and direction. Internal resource status interacts with cues perceived at different developmental stages in determining plastic responses to the environment. 000017029 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0 000017029 588__ $$aDataset connected to Web of Science, Pubmed 000017029 650_2 $$2MeSH$$aBiomass 000017029 650_2 $$2MeSH$$aCarbohydrate Metabolism: radiation effects 000017029 650_2 $$2MeSH$$aFood 000017029 650_2 $$2MeSH$$aLight 000017029 650_2 $$2MeSH$$aPlant Leaves: anatomy & histology 000017029 650_2 $$2MeSH$$aPlant Leaves: growth & development 000017029 650_2 $$2MeSH$$aPlant Leaves: radiation effects 000017029 650_2 $$2MeSH$$aRumex: growth & development 000017029 650_2 $$2MeSH$$aRumex: radiation effects 000017029 650_2 $$2MeSH$$aSolubility: radiation effects 000017029 650_7 $$2WoSType$$aJ 000017029 65320 $$2Author$$acosts of plasticity 000017029 65320 $$2Author$$adevelopmental constraints 000017029 65320 $$2Author$$aflooding 000017029 65320 $$2Author$$aleaf elongation 000017029 65320 $$2Author$$anonstructural carbohydrates 000017029 65320 $$2Author$$anutrients 000017029 65320 $$2Author$$aRumex palustris 000017029 65320 $$2Author$$ashading 000017029 7001_ $$0P:(DE-HGF)0$$aChen, X.$$b1 000017029 7001_ $$0P:(DE-HGF)0$$aHendriks, M.$$b2 000017029 7001_ $$0P:(DE-HGF)0$$aKeijsers, D.$$b3 000017029 7001_ $$0P:(DE-HGF)0$$aVoesenek, L.A.C.J.$$b4 000017029 7001_ $$0P:(DE-HGF)0$$aPierik, R.$$b5 000017029 7001_ $$0P:(DE-Juel1)129384$$aPoorter, H.$$b6$$uFZJ 000017029 7001_ $$0P:(DE-HGF)0$$ade Kroon, H.$$b7 000017029 7001_ $$0P:(DE-HGF)0$$aVisser, E.J.W.$$b8 000017029 773__ $$0PERI:(DE-600)1472194-6$$a10.1111/j.1469-8137.2012.04075.x$$gVol. 194, p. 572 - 582$$p572 - 582$$q194<572 - 582$$tThe @new phytologist$$v194$$x0028-646X$$y2012 000017029 8567_ $$uhttp://dx.doi.org/10.1111/j.1469-8137.2012.04075.x 000017029 909CO $$ooai:juser.fz-juelich.de:17029$$pVDB 000017029 9131_ $$0G:(DE-Juel1)FUEK407$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0 000017029 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0 000017029 9141_ $$y2012 000017029 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000017029 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000017029 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000017029 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000017029 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000017029 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000017029 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000017029 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000017029 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000017029 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000017029 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000017029 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000017029 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$gIBG$$kIBG-2$$lPflanzenwissenschaften$$x0 000017029 970__ $$aVDB:(DE-Juel1)131408 000017029 980__ $$aVDB 000017029 980__ $$aConvertedRecord 000017029 980__ $$ajournal 000017029 980__ $$aI:(DE-Juel1)IBG-2-20101118 000017029 980__ $$aUNRESTRICTED