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[1] Random walk particle tracking (RWPT) is a well established and efficient alternative to
grid-based Eulerian approaches when simulating the advection-dispersion transport problem
in highly heterogeneous porous media. However, RWPT methods suffer from a lack of
accuracy when the dispersion tensor or the water content is spatially discontinuous. We
present improvements to the concept of a partially reflecting barrier used to account for
these discontinuities: (1) the nonlinear time splitting with
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that
corrects for the systematic overestimation of the second dispersion displacement across an
element interface when linear time splitting is used; (2) the one-sided reflection coefficient
that correctly represents the effect of discontinuous dispersion coefficients and water
content but eliminates redundant reflections of the two-sided reflection coefficient and
limits the error for discrete �t ; and (3) the transformation of the dispersive displacement
across the element interface for complex multidimensional transport problems. The
proposed improvements are verified numerically by comparison with an analytical solution
and a reference RWPT method. The results indicate an increased efficiency and accuracy of
the new RWPT algorithm. Because the new algorithm efficiently simulates both advection-
and dispersion-dominated transport conditions, it enhances the applicability of RWPT to
scenarios in which both conditions occur, as, for example, in the highly transient
unsaturated zone. The algorithm is easily implemented and it is shown that the
computational benefit increases with increasing variability of the hydraulic parameter field.
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1. Introduction
[2] The increasing knowledge about subsurface hetero-

geneity and its crucial effects on water flow and solute
transport led to highly resolved numerical models at differ-
ent scales [Coquet et al., 2005; Javaux et al., 2006; Kasteel
et al., 2007]. This development increased the computational
costs of numerical simulations. At the same time, inverse
modeling studies of multidimensional flow and transport
problems, like geostatistical inversions, become more fre-
quent [e.g., Kowalsky et al., 2004; Nowak et al., 2010].
These studies require multiple forward runs of computa-
tionally expensive simulations. Both developments result in
an ongoing demand for efficient modeling codes, despite
the availability of more powerful computers.

[3] There is a long discussion about the most efficient and
robust concepts for modeling solute transport in highly heter-

ogeneous porous media [Delay et al., 2005]. Two different
concepts are mostly used to numerically solve the advection-
dispersion equation (ADE): (1) grid-based Eulerian and (2)
Lagrangian approaches. Among the Lagrangian approaches,
the most common one is the random walk particle tracking
(RWPT). This method is based on the analogy between sto-
chastic processes and diffusion theory [Kinzelbach and
Uffink, 1991]. Applied to solute transport problems, the sol-
ute mass is represented by a large number of particles. Fun-
damental works in stochastic physics demonstrated the
similarity between ADE and the Fokker-Planck equation,
which describes the temporal evolution of the probability
density function of the particle velocity [Delay et al., 2005].
Based on this similarity, in RWPT, particles perform dis-
placements that are composed of an advective (deterministic)
and a dispersive (stochastic) component, whereby the advec-
tive movement is the sum of the fluid flow velocity and the
velocity that originates from the spatial continuous variation
of the dispersion tensor and water content [LaBolle et al.,
1996]. In the limit of an infinite number of particles, the
resulting frequency distribution equals a solution of the
Fokker-Planck equation, and thus also a solution of the ADE.

[4] In subsurface hydrology, RWPT methods were first
applied to groundwater flow problems [Ahlstrom et al.,
1977; Prickett et al., 1981]. For advection-dominated
transport problems, in which grid-based Eulerian methods
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suffer from numerical diffusion, they became a well estab-
lished alternative for modeling subsurface transport [e.g.,
Fernandez-Garcia et al., 2005; LaBolle et al., 1996; Max-
well et al., 2007; Park et al., 2008; Tompson and Gelhar,
1990]. For these conditions, RWPT is considered to be more
efficient in providing accurate results because the grid-based
Eulerian approaches require a computational expensive grid
refinement and time step reduction to overcome numerical
diffusion [Lichtner et al., 2002; Salamon et al., 2006].

[5] Recently, Delay et al. [2005] pointed out that RWPT
has rarely been used in vadose zone hydrology, although
high variations in water content and flow velocity are very
common for the vadose zone, and RWPT is supposed to
efficiently model transport under these conditions. RWPT
can also be an attractive alternative for handling high con-
centration gradients due to solute accumulation either at
the soil surface caused by evaporation or at the roots caused
by root water uptake, scenarios which are posing very high
demands on the numerical solution scheme. Recently, it
has been shown that RWPT can be used to efficiently simu-
late large-scale contaminant transport problems in coupled
unsaturated/saturated domains [Maxwell et al., 2009].

[6] RWPT methods are by definition globally mass con-
servative, which is an important advantage of the method
compared to most finite-element and finite-difference
schemes. However, a difficulty of the RWPT method is that
locally, the particle displacements are erroneous when the
dispersion tensor or the water content is spatially discontinu-
ous. Such discontinuities result from abrupt changes of the
physical properties of the porous material (e.g., at abrupt fa-
cies changes or local compaction zones) or from characteris-
tics of the computed velocity field obtained from a numerical
model such as cell-centered finite volume-based flow models
[Delay et al., 2005; Salamon et al., 2006]. When neglecting
these discontinuities, RWPT simulations may provide trans-
port results with considerable errors [LaBolle et al., 1996].

[7] Methods that reduce the errors related to the disconti-
nuities are frequently debated in RWPT literature and are the
topic of this study. There were three conceptually different
methods proposed: the interpolation method [LaBolle et al.,
1996], the generalized stochastic differential equations
(GSDE) method [LaBolle et al., 2000], and the concept of a
partially reflecting barrier [Hoteit et al., 2002; Lim, 2006]. In
these methods, algorithmic modifications were introduced to
the performance of the advective and dispersive displace-
ments. The modified algorithms lead to different particle fre-
quency distributions in the presence of discontinuities and to
a better approximation of the true solution of the ADE.

[8] While the interpolation method and the GSDE method
were successfully applied to complex three-dimensional
transport problems [e.g., Fernandez-Garcia et al., 2005;
Salamon et al., 2007; Seeboonruang and Ginn, 2006;
Weissmann et al., 2002], the general applicability of the
reflection barrier method and its convergence to the true so-
lution is controversially discussed [Salamon et al., 2006].
Based on a comparison study, Salamon et al. [2006] pro-
posed that the interpolation method presented the most effi-
cient alternative for most of the complex three-dimensional
flow problems, especially with respect to scenarios charac-
terized by low fluid velocities and abrupt contrasts.

[9] However, it is well known that the interpolation method
needs a very high spatial resolution of the interpolation grid

close to the interface and small time steps [LaBolle et al.,
1996], which is computationally expensive. The reflection
barrier method does not require grid refinement to represent
discontinuous dispersion tensors or abrupt changes in the
water content. This advantage can reduce computational
costs considerably. It is therefore promising to improve the
accuracy of the reflection barrier method and to prove its
general applicability.

[10] This manuscript is organized as follows. In section 2,
we will briefly review the interpolation and reflection barrier
method as they are currently implemented in transport codes.
For the reflection barrier method, we identify some problems
and inconsistencies with respect to its implementation,
which may explain why the reflection barrier method was
outperformed by other methods in the comparison study of
Salamon et al. [2006]. Based on the identified inconsisten-
cies, we will propose improvements to the reflection barrier
method. In section 3, we discuss details about the numerical
implementation of the reflection barrier method and describe
and motivate the test scenarios used for the numerical verifi-
cation of the proposed RWPT algorithm. In section 4, we
use the numerical results to evaluate the benefit of the
improved algorithm. The improved reflection barrier method
is compared with the interpolation method [LaBolle et al.,
1996]. In section 5, convergence and efficiency issues are
discussed and we will provide practical application aspects
of the new algorithm. Conclusions are provided in section 6.

2. Theory
2.1. Reflection Barrier and Interpolation Method

[11] In porous media, the mass balance equation of a
conservative solute is described by the advection-disper-
sion equation (ADE),

�
@C
@t
¼ ��u�rC þr� �D�rCð Þ; ð1Þ

where � is the volumetric water content (L3 L�3), C is the
concentration (M L�3), t is time (T), u is the velocity vector
(L T�1), and D is the local-scale dispersion tensor (L2

T�1), here given for a three-dimensional isotropic porous
medium [Bear, 1972],

D ¼ �T uk k þ Dmð ÞIþ �L � �Tð ÞuuT

uk k; ð2Þ

where �T and �L are the transversal and longitudinal dis-
persivities (L), Dm is the effective molecular diffusion
coefficient (L2 T�1), and I is the identity matrix. The sto-
chastic differential equation equivalent to the ADE can be
written as [Tompson and Gelhar, 1990],
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where X is the coordinate vector (L), n is a vector of three
random numbers normally distributed with zero mean and
unit variance, and B is the dispersion displacement matrix
[Lichtner et al., 2002],
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where ux, uy, and uz are the velocities in x-, y-, and z-direc-
tion, and uk k is the Euclidean norm of the velocity. For dif-
fusion-only problems or when ux ¼ uy ¼ 0, B is obtained
by taking the limit of B for the respective velocity compo-
nents going to zero, which is well defined. Using the central
limit theorem, the normal random vector n of equation (3)
can be replaced by

ffiffiffi
3
p

Z where Z is a random vector uni-
formly distributed between �1 and 1, which has been
shown to be computationally more efficient [Uffink, 1985].

The term u XðtÞ½ � þ r � D XðtÞ½ � þ D XðtÞ½ �
� XðtÞ½ � � r� XðtÞ½ �

h i
of

equation (3) is responsible for the advective (deterministic)
movement of a particle, which is the sum of the fluid veloc-
ity and a velocity that originates from the spatial variation
of D and � [LaBolle et al., 1996]. The term B XðtÞ½ �n

ffiffiffiffiffiffi
�t
p

represents the dispersive (stochastic) movement.
[12] When equation (3) is applied to a large number of

particles, the resulting particle distributions mimic the Fok-
ker-Planck equation and thus provide a solution to the ADE
[Delay et al., 2005]. However, RWPT algorithms need an
additional adaptation when the terms of equation (3)
accounting for continuous spatial variations of the disper-
sion tensor and water content are not defined, i.e., the disper-
sion tensor or the water content are discontinuous [LaBolle
et al., 1996, 1998]. Linear parabolic partial differential
equations like the ADE should obey a maximum principle
when a mass-conservative flow field is used. This means
that the maxima (and minima) of concentration are either at
the inflow boundaries or in the initial condition. Over time
no new extremes are created, as the linear transport con-
serves the shape of a concentration pulse and diffusion tends
to diminish extreme values. This property should be retained
by any reasonable numerical scheme. Of course for RWPT
methods this can only be true in a statistical sense, i.e., no
new extremes larger than the pure statistical fluctuations due
to the discretization error should be introduced. If disconti-
nuities of the dispersion tensor and/or the water content are
neglected, this is no longer guaranteed, resulting in poten-
tially very large solute concentrations in low dispersion
regions. This effect has been previously reported as ‘‘local
mass conservation error’’ [LaBolle et al., 1996; Semra et al.,
1993]. However, as particle tracking methods are by defini-
tion mass conservative, we prefer to call it ‘‘monotonicity
preservation error’’ in this paper, in reference to the potential
violation of the maximum principle.

[13] Before introducing the interpolation and reflection
barrier method, which were both developed to avoid
‘‘monotonicity preservation errors’’ because of discontinu-
ities in D or �, it is necessary to define the use of grids in
RWPT. Primarily, RWPT is a grid-free method. For purely
advective transport, convergence to the true solution is

achieved by accurately integrating the velocity along the
trajectory of each particle and by decreasing the mass of
the individual particles representing the total solute mass,
while increasing the total number of particles. For advective-
dispersive transport, convergence also requires a sufficiently
small time step. However, numerical grids are required
when the spatially varying variables governing the particle
displacements (in this study: velocity, dispersion tensor, and
water content) cannot be described analytically at each loca-
tion, but must be obtained from a grid-based numerical solu-
tion of the flow problem. Numerical grids are used in RWPT
algorithms to obtain the variables at the particle location by
adequate interpolation functions [LaBolle et al., 1996]. Grids
are also often used to derive solute concentrations from the
particle distributions. However, in the following, we refer to
the first type of grids when we discuss the effect of grid
refinement on the numerical solution of RWPT.

[14] In the interpolation method, the discontinuity in the
dispersion tensor or the water content is replaced by a
smooth transition interpolating the discontinuous values.
This introduces an error which gets smaller with decreasing
size of the interpolation region. The interpolation method is
commonly used as a ‘‘hybrid’’ scheme [LaBolle et al.,
1996]. In this scheme, the term u�t is calculated from the
flow solution in the same way as in a standard particle-
tracking scheme. Bilinear interpolation is used for the calcu-

lation of the terms r� D xðtÞ½ � þ D xðtÞ½ �
� xðtÞ½ � � r� xðtÞ½ �

h i
�t and

B XðtÞ½ �n
ffiffiffiffiffiffi
�t
p

of equation (3). This scheme maintains the
local fluid mass balance from the flow solution, while the
smoothed field allows the approximation of the divergence
of the dispersion tensor and of the gradient of the water
content in the vicinity of the discontinuity. Any smoothing
error by the bilinear interpolation of the velocities and
water contents affects the terms with D, B, and �. Conver-
gence is achieved by refinement of the interpolation grid to
reduce the smoothing zone at the discontinuity. This also
requires a simultaneous time step reduction to allow par-
ticles to explore the smoothing zone.

[15] Another approach to account for discontinuous dis-
persion tensors and water contents is the concept of a par-
tially reflecting barrier, first introduced by Uffink [1985].
The advective displacement is calculated from the flow so-
lution and performed in the same way as in a standard
RWPT scheme that accounts for continuous changes of D
and �. Subsequently, the dispersive displacement accounts
for the discontinuous changes of D and �. The fundamental
principle of the reflection barrier concept is to partially
reflect particles that cross the discontinuity during the dis-
persive displacement. The difficulty is to design this reflec-
tion barrier in such a way that the correct solution of the
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ADE is obtained. This concept is basically implemented by
generating an additional random number when a particle
reaches an element interface during a specific displacement.
If the random number is greater than the reflection coefficient,
the particle crosses the interface; otherwise, it is reflected. An
important advantage of the reflection barrier method is that it
does not require a finer spatial discretization close to the inter-
face and thus can operate with larger time steps.

[16] After the reflection barrier method was introduced by
Uffink [1985] several concepts were proposed [e.g., Cordes
et al., 1991; LaBolle et al., 1998; Semra et al., 1993] which
differ in the definition of (1) the reflection coefficient and
(2) the length of the displacement for a particle which
crosses the interface [Ackerer and Mose, 2000]. The reflec-
tion scheme that is now generally considered as the only one
that preserves monotonicity was first presented by Semra
et al. [1993]. It was validated by Hoteit et al. [2002] and
is now mostly known as the reflection scheme of Hoteit
et al. [2002]. Recently, Ramirez et al. [2008] referred to
this scheme as the Hoteit-Mose-Younes-Lehmann-Ackerer
reflection (HMYLA reflection).

[17] In the scheme of Hoteit et al. [2002], which was
developed for a medium with a homogeneous water con-
tent, the probability that a particle that reached, during a
dispersive displacement, the interface between two ele-
ments E1 and E2 with dispersion coefficients D1 and D2

goes into E1 is P1 ¼
ffiffiffiffi
D1
pffiffiffiffi

D1
p
þ
ffiffiffiffi
D2
p and the probability that a par-

ticle goes into E2 is P2 ¼ 1� P1 ¼
ffiffiffiffi
D2
pffiffiffiffi

D1
p
þ
ffiffiffiffi
D2
p . P1 can also be

interpreted as the probability that a particle that reaches the
interface during a dispersive displacement from E2 will

enter E1 and vice versa for P2. The reflection coefficient
has to be applied for particles coming to the interface from
both directions (see also Figure 1). Recently, Ramirez et al.
[2008] provided a physical foundation for the reflection
coefficients of Hoteit et al. [2002] on the basis of the �-skew
Brownian motion theory. Lim [2006] determined from the
analytical solution for diffusion in a composite porous me-
dium an extended reflection coefficient for heterogeneous
effective porosities or water contents �, where:

P1 ¼
�1

ffiffiffiffiffiffi
D1
p

�1
ffiffiffiffiffiffi
D1
p

þ �2
ffiffiffiffiffiffi
D2
p and P2 ¼ 1� P1 ¼

�2
ffiffiffiffiffiffi
D2
p

�1
ffiffiffiffiffiffi
D1
p

þ �2
ffiffiffiffiffiffi
D2
p : ð5Þ

[18] In the case of reactive transport, where E1 and E2

are characterized by retardation factors R1 and R2 (R > 1),
D1 and D2 can be replaced by D1/R1 and D2/R2, respec-
tively [Lim, 2006]. When the particle crosses an interface
by a dispersive displacement during a time step having the
size �t, the particle displacement needs to be split up in
two steps. As proposed by Hoteit et al. [2002] and pre-
sented in subsequent studies [e.g., Delay et al., 2005; Lim,
2006; Salamon et al., 2006], �t is split linearly with
�t ¼�t1 þ�t2, where �t1 is the time needed for the parti-
cle to reach the interface. At the element interface, the
reflection coefficient is calculated and if the random num-
ber allows the particle to pass, the displacement in the next
element is calculated based on the dispersion and velocity
of E2 using �t2. This splitting of the displacement is con-
sidered as an important precondition for preserving monot-
onicity [Ackerer and Mose, 2000]. However, we will show
that a linear time splitting, which is correct for an advective

Figure 1. Summary of the reflection coefficients, R1: [Lim, 2006] and R2 (one-sided reflection
scheme, this study), used in the numerical simulations. The fraction of the particles that is passed or
reflected is indicated at the tip of each arrow. P1 and Pnew,1 are interpreted as the probability that a parti-
cle that reaches the interface from E2 will enter E1 and vice versa for P2.
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displacement, causes a systematic overestimation of the
second dispersive displacement. In section 2.2, we derive
the correct equation for determining �t2.

[19] A second problem of the reflection barrier method
as proposed by Hoteit et al. [2002] and Lim [2006] is that
even in homogeneous media, i.e., D1 ¼ D2 and �1 ¼ �2,
particles are reflected at element interfaces. We will show
that these reflections slow down the dispersive spreading of
a solute pulse and that the reflection barrier method only
leads to correct results when the ratio of particle displace-
ments with reflection to the particle displacements without
reflection goes to 0. This is the case when the distance
between partially reflecting element interfaces �L!1 or
the time step �t ! 0. We will present an alternative reflec-
tion scheme that reduces the number of particle reflections
and therefore leads to more accurate results for larger val-
ues of �t or smaller values of �L.

[20] Finally, we propose a third improvement to the reflec-
tion barrier method: the transformation of the dispersive
displacement when a particle crosses the interface during a
dispersive displacement. We show that the transformation
improves the application of the reflection barrier method in
complex multidimensional transport problems with spatially
varying anisotropic dispersion tensors.

2.2. Improvements to the Reflection Barrier Method
[21] All displacement and reflection probabilities consid-

ered in the following refer only to purely dispersive, i.e.,
stochastic, displacements. This implies that the advective
and dispersive displacement must be performed in two sub-
sequent displacement steps, i.e., the dispersive displace-
ment is calculated at the new particle location at the end of
the advective movement.
2.2.1. Correct Time Splitting for Dispersion

[22] If a particle is allowed to cross the interface of two
elements with different dispersion tensor or water content,
the dispersive displacement in the new element has to be
recalculated consistent with the reflection coefficient to
obtain a correct solution of the ADE [Ackerer and Mose,
2000; Hoteit et al., 2002]. To be consistent with the reflec-
tion coefficient, the ratio of the mean lengths of the disper-
sive displacements toward and away from the interface
must be equal to the ratio of the square root of the disper-
sion coefficients according to the reflection barrier theory
of Hoteit et al. [2002]. If this is not the case, particles end
up at an erroneous distance to the interface and the proba-
bility of a back jump in the next step would be too high or
too low, with the consequence that the dispersive displace-
ments across the element interface are not balanced accu-
rately. In case of a particle reflection, there is no need for
recalculating the dispersive displacement. The remaining
displacement is performed in the opposite direction.

[23] There are two reasons that indicate that the same
random number must be used for the second displacement.
Both reasons are related to the fact that the subset of ran-
dom numbers that cause a displacement to the interface
describes a frequency distribution that differs from the
original one. First, the numbers of this subset are either all
positive or all negative. If a new random number would be
drawn at the element interface, 50% of the random num-
bers would cause an immediate back jump, which is incon-
sistent with the reflection barrier. In contrast, using the

same number ensures a displacement in the same direction
like the first displacement and thus away from the interface
into the new element. Second, there is higher probability
that particles with higher random numbers are displaced to
the interface. At the interface, however, only part of the
individual random number already took effect. By drawing
a new random number, the remaining fraction would be
ignored. This would lead to an average of n

ffiffiffiffiffiffi
�t
p

that is
unequal to 0, because the �t of high random numbers
would be inevitably smaller in the respective direction.
This would introduce an undesired bias, because, in this
case, n would contain a part that could be added to the
deterministic movement.

[24] However, keeping the random number has impor-
tant consequences for the splitting of the time step at the
interface. The total dispersive displacement �X across an
element interface can be split in two displacements: �X1
and �X2, where �X1 is the displacement to and �X2 is the
displacement from the element interface with:

�X1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D1�t1

p
and �X2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2�t2

p
: ð6Þ

[25] For the homogeneous case with D ¼ D1 ¼ D2, a
reflection barrier is in fact not necessary, but can be used to
evaluate the effect of a time splitting. Obviously, �X is
overestimated when we recalculate the dispersion step at
the interface by splitting up the time step linearly with
�t ¼ �t1 þ�t2, as it is done up to now in the reflection
barrier method, as

�X ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D �t1 þ�t2ð Þ

p
< �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D�t1

p
þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D�t2

p
: ð7Þ

[26] To be consistent with the definition of the reflection
coefficient in the homogenous case, the total dispersive dis-
placement calculated at the starting location, however, must
be equal to the sum of the split dispersive displacements:

�
ffiffiffiffiffiffiffiffiffiffiffiffi
2D�t
p

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D�t1

p
þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D�t2

p
: ð8Þ

[27] This simplifies to the nonlinear time-splitting equa-
tion, ffiffiffiffiffiffi

�t
p

¼
ffiffiffiffiffiffiffiffi
�t1

p
þ

ffiffiffiffiffiffiffiffi
�t2

p
: ð9Þ

[28] As �t1 is an unknown but �X1 a known variable,
we insert

ffiffiffiffiffiffiffiffi
�t1
p

¼ �X1

�
ffiffiffiffiffiffi
2D1
p in equation (9) and solve for �t2,

�t2 ¼ 1� �X1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D1�t
p

� �2

�t: ð10Þ

[29] This new time splitting scheme is straightforward to
implement in a particle-tracking code. Equation (9) is
equally applicable for the heterogeneous case.
2.2.2. One-sided Reflection Coefficient

[30] Let us assume that the pore water concentrations of
two elements E1 and E2 are equal, but the volumetric water
contents are different (e.g., 10 particles in E1 with a water
content of 0.25, and 20 particles in E2 with a water content
of 0.5). To preserve monotonicity, the number of particles
that cross the element interface from E1 into E2 by dispersive
displacements should, on average, be equal to the number of
particles that cross from E2 into E1, independent of the dis-
persion coefficients and water contents in the two elements.
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If the dispersion coefficients and volumetric water contents
in E1 and E2 are different, the probability �1 that a particle
from E1 reaches the interface is different from the probabil-
ity �2 that a particle from E2 reaches the interface, which is
the case also for identical pore water concentrations in E1
and E2. The reflection coefficients P1 and P2 (see above)
correct for the difference in probability �1 and �2 so that
for the same pore water concentrations in E1 and E2, the
same amount of particles cross from E2 into E1 as from E1
to E2,

P2�1 ¼
�2

ffiffiffiffiffiffi
D2
p

�1
ffiffiffiffiffiffi
D1
p

þ �2
ffiffiffiffiffiffi
D2
p �1 ¼

�1
ffiffiffiffiffiffi
D1
p

�1
ffiffiffiffiffiffi
D1
p

þ �2
ffiffiffiffiffiffi
D2
p �2 ¼ P1�2:

ð11Þ

[31] In this two-sided reflection scheme, particles com-
ing from both E1 and E2 are reflected at the interface with
different reflection probabilities P1 and P2. Note that even
in a homogeneous medium (D1 ¼ D2 and �1 ¼ �2) 50% of
the particles are reflected at any interface between two ele-
ments, though no reflections would be needed at all to pre-
serve monotonicity.

[32] Instead of always reflecting a fraction of the par-
ticles at both sides of the interface, it is possible to obtain
the same result by reflecting an adjusted portion of particles
at one side only. The reflection coefficients can be rede-
fined by rewriting equation (11) as

�2 ¼
�2

ffiffiffiffiffiffi
D2
p

�1
ffiffiffiffiffiffi
D1
p �1 or �1 ¼

�1
ffiffiffiffiffiffi
D1
p

�2
ffiffiffiffiffiffi
D2
p �2: ð12Þ

[33] The reflection coefficients are then given as

Pnew;1 ¼ 1 and Pnew;2 ¼
�2

ffiffiffiffiffiffi
D2
p

�1
ffiffiffiffiffiffi
D1
p for

�2
ffiffiffiffiffiffi
D2
p

�1
ffiffiffiffiffiffi
D1
p < 1 ð13Þ

or

Pnew;2 ¼ 1 and Pnew;1 ¼
�1

ffiffiffiffiffiffi
D1
p

�2
ffiffiffiffiffiffi
D2
p for

�1
ffiffiffiffiffiffi
D1
p

�2
ffiffiffiffiffiffi
D2
p � 1; ð14Þ

where Pnew,1 is the probability that a particle that reaches
the interface coming from E2 crosses into E1, and Pnew,2
the probability that a particle that reaches the interface
coming from E1 crosses into E2 (see also Figure 1).

[34] The elimination of the reflection coefficient at one
of the sides is balanced by a reduction of the reflected par-
ticles at the other side. Thus, the number of particles
affected by the reflection is always smaller when applying
the one-sided reflection scheme compared to the two-sided
reflection coefficients of Hoteit et al. [2002] and Lim
[2006]. The elimination of redundant reflections is benefi-
cial as each reflection causes a numerical error. The reason
for the error can be easily understood considering the case
of a medium with a homogeneous dispersion but with an
interface between two elements. When initially all particles
are at one side of the interface, the two-sided reflection
scheme will reduce the portion of particles that moves into
the other side of the interface (because 50% are reflected)
and will therefore reduce the effective dispersion, resulting
in a slow convergence with a decreasing time step size.

The one-sided reflection scheme does not introduce reflec-
tions at the interface between two elements in a homogene-
ous medium and therefore does not lead to errors in the
prediction of the spreading of particles in such a medium.
Therefore, it is more efficient to use the one-sided reflec-
tion scheme. We will show that the one-sided reflection
scheme can reduce modeling errors tremendously, espe-
cially for large time steps.
2.2.3. Transformation of the Dispersive Displacement

[35] If the dispersion coefficient is not a scalar but a ten-
sor, a more elaborate transformation of the dispersive dis-
placement in the second element, �X2, than �X2 ¼ nB2ffiffiffiffiffiffiffiffi

�t2
p

, which would be expected for a scalar dispersion
coefficient according to equation (6), is necessary. This can
be illustrated by a simple two-layer example. This scenario
can be considered as a soil above an aquifer. In the upper
layer (soil), the velocity, uz, is directed vertically down-
ward equal to �1 m d�1 and in the lower layer (aquifer),
the velocity, ux, is parallel to the x-axis with a value equal
to 1 m d�1. Both layers have a longitudinal dispersivity
�L ¼ 10 m and a transverse dispersivity �T ¼ 1 m. The
corresponding dispersive displacement matrices B1 (soil)
and B2 (aquifer) are given for the three-dimensional case
according to equation (4), as

B1 ¼
0 1 �1

0 1 1

�
ffiffiffiffiffi
20
p

0 0

0
@

1
A and B2 ¼

ffiffiffiffiffi
20
p

0

0 0
ffiffiffi
2
p

0
ffiffiffi
2
p

0

0
B@

1
CA:

[36] In this example, we only consider the interface
between the two layers, thus, dimensions and boundary
conditions are not relevant. Dispersive displacements in the
direction perpendicular to the interface of particles in the
upper layer depend only on the first entry of the random
vector n, �1 (equation (3)). Because the probability that a
particle reaches the interface by a dispersive displacement
during a single time step �t is increased with positive, high
random numbers, the subset of random vectors nsub leading
to a displacement to the interface will be characterized by
��sub;1 > ��sub;2 ¼ ��sub;3 ¼ 0, where the overbar refers to the
mean value of the subset of random numbers. Dispersive dis-
placements perpendicular to the interface of particles in the
lower layer depend only on the second entry of n, �2. Since
the dispersive displacement in the z-direction in the upper
layer does not depend on �2, ��sub;2 is 0. Using the same set of
random numbers for the second part of the displacement in
the lower layer halve of the particles that are allowed to
pass, i.e., the ones with �sub;2 > 0, will be displaced back
into the upper layer resulting in a bias of the particle distri-
bution. Additionally, ��sub;1 > 0 will lead to a positive mean
of dispersive displacements in the horizontal direction in the
lower layer, which is implausible because the mean of these
dispersive displacements is supposed to be 0.

[37] This simple example illustrates that the set of ran-
dom numbers that led to a displacement to the interface in
the first layer needs to be modified in order to calculate the
dispersive displacement in the second layer in a correct
manner. A better solution is obtained if the total displace-
ments resulting from the random numbers in the first ele-
ment are used as a basis to calculate the displacements in
the second element. We first treat the displacements in the
direction perpendicular, i ¼ j, to the interface and afterward
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the displacements parallel to the interface, i = j (with i ¼
x,y,z and j ¼ x,y,z ; the direction j is perpendicular to the
interface).

[38] With �X�1 we denote the remaining dispersive dis-
placement vector after the particle already performed the
displacement �X1 to reach the element interface (Figure
2). It can be calculated from,

�X �1;i ¼ �X �total;i ��X1;i; ð15Þ

where �X �total;i is the total dispersive displacement calculated
using the full time step �t at the starting location of the par-
ticle with the random number vector n. �X �1;i and �X1;i are
related to the correct, nonlinearly split times �t1 and �t2, as

�X �1;i ¼ �X1;i

ffiffiffiffiffiffiffiffi
�t2
pffiffiffiffiffiffiffiffi

�t1
p : ð16Þ

[39] For the direction i ¼ j, the displacement in the sec-
ond element, �X2;j, is calculated using a simple scaling
according to equation (6),

�X2;j ¼
ffiffiffiffiffiffiffiffiffiffiffi
D2ðj;jÞ

p
ffiffiffiffiffiffiffiffiffiffiffi
D1ðj;jÞ

p �X �1;j; ð17Þ

where D1 and D2 are the dispersion tensors in the first and
second element according to equation (2). Note that equa-
tion (17) describes a particle displacement away from the
element interface into the second element which is consist-
ent with the definition of the reflection coefficient.

[40] As stated above, the probability that a particle
reaches the interface during �t increases with higher val-
ues for the displacement in the direction j. As a conse-
quence, the expected value of all displacements in direction

j of all particles that reach the interface within time step �t
is larger than zero in the first, E(�X1;j) > 0, and second,
E(�X2;j) > 0, element. Because of off-diagonal terms in
the dispersion tensor D (equation (2)) that are different
from zero, the displacements in the direction parallel to the
interface are correlated to the displacements in the direction
perpendicular to the interface; thus, E(�X1;i) = 0 and
E(�X2;i) = 0. Because the direction of the flow vector and
the dispersivities change across the interface, the off-diago-
nal terms in D and hence the correlation between the dis-
placement in the direction perpendicular and parallel to the
interface changes across the interface.

[41] To avoid a bias in the particle movements in the
second element the correlation between the dispersive dis-
placements parallel and perpendicular to the interface in
the two elements must be accounted for appropriately. For
any displacement, the expected value of the displacement
in direction i, �X1;corr;i, that is conditioned on the displace-
ment in direction j, �X1;j, is obtained as

�X1;corr;i ¼
D1ði;jÞ
D1ðj;jÞ

�X1;j: ð18Þ

[42] Thus, the remaining correlated displacement
�X �1;corr;i is

�X �1;corr;i ¼
D1ði;jÞ
D1ðj;jÞ

�X �1;j: ð19Þ

[43] Similarly, �X2;corr;i is the expected displacement in
direction i in the second element that is conditioned on the
displacement in direction j, and can be obtained as

�X2;corr;i ¼
D2ði;jÞ
D2ðj;jÞ

�X2;j: ð20Þ

Figure 2. Transformation of dispersive displacement, schematically shown in two-dimensional for
�L > �T > 0. (left) A particle performs the random dispersive displacement �X1 and reaches the inter-
face after 0:5�t. Note that the expected direction of dispersive displacements reaching the interface dur-
ing a single �t, E(�X1), is not parallel to the direction of the velocity u1. (middle) The remaining
displacement based on the properties of the first element, �X�1, has a component perpendicular and com-
ponents parallel to the interface. The latter can be split into a correlated and uncorrelated part. (right)
The individual components of �X�1 are transferred to a dispersive displacement in the second element,
�X2, applying equations (15)–(24). For further details see section 2.2.3.
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[44] Using equation (17), we obtain:

�X2;corr;i ¼
D2ði;jÞffiffiffiffiffiffiffiffiffiffiffi

D2ðj;jÞ
p ffiffiffiffiffiffiffiffiffiffiffi

D1ðj;jÞ
p �X �1;j: ð21Þ

[45] Note that for i ¼ j, equation (21) simplifies to equa-
tion (17).

[46] After passing the correlated components, the uncor-
related components of the displacements in the different
directions are transferred to the second element. The
expected value of the uncorrelated displacement for i = j
is zero. The uncorrelated component, �X �1;uncorr;i, is the dif-
ference between the total remaining displacement in direc-
tion i and the displacement that is correlated to the
displacement in direction j:

�X �1;uncorr;i ¼ �X �1;i ��X �1;corr;i: ð22Þ

[47] As the uncorrelated displacement �X2;uncorr;i is only
a part of the total displacement in direction i, the scaling
from equation (17) has to be corrected for the already-
treated correlated displacement. According to conditional
statistics, �X �1;uncorr;i is scaled by the ratio of the standard
deviations of the uncorrelated displacements:

�X2;uncorr;i ¼ �X �1;uncorr;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ði;iÞ �

D2ði;jÞffiffiffiffiffiffiffiffi
D2ðj;jÞ
p
� �2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ði;iÞ �

D1ði;jÞffiffiffiffiffiffiffiffi
D1ðj;jÞ
p
� �2

s : ð23Þ

[48] For the direction j, it follows that �X2;uncorr;j ¼ 0.
The displacement in direction i = j in the second element
is the sum of the correlated and uncorrelated displacement
components,

�X2;i ¼ �X2;corr;i þ�X2;uncorr;i: ð24Þ

[49] If the transport problem is one-dimensional or if B2
is linearly related to B1, the proposed transformation
scheme coincides with a solution using the same set of ran-
dom numbers for displacements in the first and second ele-
ment and our new nonlinear time splitting with �X2 ¼ nB2ffiffiffiffiffiffiffiffi

�t2
p

(see equations (9) and (16)).
[50] When a particle is reflected at an interface or do-

main boundary, a point reflection at the interception point
of displacement vector and interface must be performed
(the whole remaining displacement vector is inverted).
When reflecting solely the displacement component per-
pendicular to the interface (surface reflection), anisotropic
dispersion tensors would be systematically distorted which
leads to significant errors.

3. Materials and Methods
3.1. Numerical Implementation of the Improved
Reflection Barrier Method

[51] For the calculation of the reflection coefficients
the dispersion coefficients and water contents on both sides
of the interface are necessary. In the case of anisotropic
dispersion tensors, the component corresponding to the

direction orthogonal to the interface has to be used, as it
determines the probability that a particle reaches the inter-
face. As our implementation was restricted to rectilinear
grids we used the corresponding diagonal component of D.
However, other choices are possible (e.g., a vector norm
for the corresponding row vector of the dispersion tensor).
For simulated flow field solutions, in which the velocity
vector is continuously changing in space, it is important to
calculate the reflection coefficient by taking the limits of
the properties (velocity, dispersivity, diffusion coefficient,
and water content) from both sides directly at the interface
to guarantee that there is no reflection when the dispersion
tensor and the water content is steady over the interface.
Continuous changes of the dispersion tensor are considered
already in the advective term of equation (3) and should
not affect the value of the reflection coefficient.

[52] In previous studies, it has been reported that particles
crossing different interfaces by dispersive displacements
during the same time step �t is a major problem for the
application of the reflection barrier method to complex mul-
tidimensional transport problems [e.g., LaBolle et al., 1996;
Salamon et al., 2006]. We used the simplest approach to
treat particles that cross multiple interfaces during one time
step. At each interface a particle reaches by dispersive
movement, the reflection coefficient is calculated and a new
random number is generated to decide whether the particle
is reflected or allowed to pass. The subsequent dispersive
displacement is then calculated on the basis of the proposed
transformation of the dispersive displacement. Following
this procedure the dispersive displacements are performed
until the particle does not reach another interface within the
remaining time. In this simple approach we do not superim-
pose multiple reflections to calculate the transition probabil-
ity at a single interface, which has been considered to be the
main reason for the problems with the application of the
reflection barrier method to complex multidimensional sce-
narios. As will be demonstrated later, this works well as the
proposed new transformation of the dispersive displacement
allows a transfer of the remaining dispersive displacement
from the first element to the second element at each inter-
face without introducing a significant bias to the displace-
ment in the second element.

[53] For the reflection barrier method in general, a split-
ting approach has to be used for the advective and dispersive
displacements across discontinuities. First, the advective dis-
placement is calculated with a linear time splitting �t ¼
�t1 þ�t2, then the dispersive displacement is applied with
the nonlinear time splitting

ffiffiffiffiffiffi
�t
p

¼
ffiffiffiffiffiffiffiffi
�t1
p

þ
ffiffiffiffiffiffiffiffi
�t2
p

for scalar
dispersion coefficients or the transformation of the disper-
sive displacement for dispersion tensors. The reflection prin-
ciple must only be applied when a particle reaches an
interface in the dispersion step.

[54] The different types of reflection coefficients and
time splitting schemes, the transformation procedure of the
dispersive displacement, and the interpolation method were
implemented in the RWPT code PARTRACE [Neuendorf,
1997]. PARTRACE simulates three-dimensional transport
of conservative and reactive solutes in saturated and unsat-
urated porous media for given velocity fields by applying
the stochastic differential equation given in equation (3) to
a high number of particles. The dispersive displacement
matrix B of equation (3) is calculated as given in equation
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(4). PARTRACE is a modular cþþ code, capable of han-
dling regular and irregular grids, and parallelized for use on
massive parallel supercomputers.

3.2. Numerical Verification of the Improved
Reflection Barrier Method

[55] To verify the three improvements of the proposed
RWPT algorithm, we performed numerical simulations of
conservative solute transport in specific test scenarios. Two
different test scenarios are considered. The first scenario,
S1, is a simplified transport problem for which an analytical
solution exists (for a schematic view of the test scenario see
Figure 3). For this test scenario a basic version of the pro-
posed algorithm can be used that only uses the first two
improvements (nonlinear time splitting and one-sided reflec-
tion scheme). Although this test case seems very simple, it
is absolutely essential, as it is not possible to clearly differ-
entiate between the effects of the individual improvements
in complex three-dimensional test cases.

[56] In the second scenario, S2, we applied the improved
reflection barrier method to a complex three-dimensional,
unsaturated transport problem based on a computed veloc-
ity field and compared the results with the ones obtained
from the interpolation method, abbreviated by I (Figure 4
and Table 1). We used a material distribution created by a
sequential indicator algorithm, which is the most demand-
ing type of parameter heterogeneity for RWPT algorithms

according to Salamon et al. [2006]. The finite volume or fi-
nite difference solution of the water flow problem com-
puted for such a scenario is characterized by many abrupt
changes of the dispersion tensor and of the water contents
that occur at element interfaces.

[57] All scenarios were simulated using the two different
reflection coefficients, R1 and R2 (see Figure 1), and using
the linear, TS1 as well as the corrected time splitting, TS2.
Scenario S2, where a transformation of the dispersive dis-
placement is required, was additionally simulated without
(DT0), i.e., �X2 ¼ nB2

ffiffiffiffiffiffiffiffi
�t2
p

, and with (DT1) performing
the proposed dispersive displacement transformation (for
an overview of options see Table 1).

[58] The amount of particles used are indicated for each
scenario and were chosen to minimize the fluctuations of
the solution to an acceptably low value while obtaining a
computational speed high enough for a spatial and temporal
convergence analysis on the available computation cluster.
For scenario S2 an analysis of the convergence as function
of the particle number was performed as well.

4. Test Scenarios
4.1. Test Scenario S1
4.1.1. Problem Description

[59] This two-dimensional scenario of transport in a two-
layer stratified aquifer was adopted from Salamon et al.

Figure 3. Schematic overview of scenario S1 which was adopted from Salamon et al. [2006]. Details
and parameters are presented in the scenario description.

Figure 4. (left) Trimodal correlated indicator field used as hydraulic parameter field for scenario S2.
(right) Solute distribution of scenario S2–1 at time t ¼ 17 d after a Dirac pulse tracer injection at the soil
surface under infiltration conditions.
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[2006]. Using this scenario, they compared the interpola-
tion, GSDE, and reflection barrier methods. The results
indicated significant discrepancies between the methods
and the analytical solutions for this test scenario, which are
given by Marle et al. [1967]. We kept the settings as pre-
sented by Salamon et al. [2006] to maintain comparability
with their results (see also Figure 3 for a schematic over-
view). The domain size was 10,000 m in the x-direction
(horizontal) and 0.3 m in the y-direction (vertical) with a
regular discretization of 100 � 30 elements and reflection
boundary conditions at the top and bottom domain bound-
ary. The extreme x/y ratio was chosen by Salamon et al. to
highlight the differences between the methods. Both layers
had a thickness of 0.15 m and a porosity of � ¼ 0:2. Steady
state water flow was horizontal from left to right. The ve-
locity in the lower layer was ux2 ¼ 43.2 m d�1, and the ve-
locity in the upper layer, ux1, ranged in different scenarios
from 43.2 m d�1 to 0.043 m d �1 covering ratios ux2/ux1
between 1 and 1000. The dispersion in the layers was
assumed to be isotropic and the dispersion coefficient was
calculated from the pore water velocity using D ¼ � u, with
� being the dispersivity (0.01 m). A Dirac pulse was uni-
formly injected in the y-direction at time t ¼ 0 d (6 � 103

particles), sufficiently far away from the left domain
boundary to assure that no particles would be affected by
the left boundary condition. We analyzed the transport
results by applying the method of moments [Aris, 1956] as
done by Salamon et al. [2006]. The first three spatial
moments were calculated for the x-direction directly from
the particle locations by the equations:

M0 tð Þ ¼ nm; ð25Þ

Mx tð Þ ¼ m
M0 tð Þ

Xn

i¼1

xi tð Þ; ð26Þ

Mxx tð Þ ¼ m
M0 tð Þ

Xn

i¼1

x2
i tð Þ �M2

x tð Þ; ð27Þ

where n is the number of particles, m is the particle mass,
and xi(t) is the position of the particle i in the x-direction at
time t. M0 represents the total solute mass (kg), Mx repre-
sents the position of the center of mass in the x-direction
(L), and Mxx represents the spreading of the plume in the
x-direction (L2). The location of the center of mass and the

plume spreading in the y-direction are obtained by replac-
ing the x- by the y-coordinate in the equations above.

[60] The apparent average velocity U(t) and the apparent
longitudinal macrodispersion DL(t) can be derived from the
moments:

UxðtÞ ¼
Mx tð Þ �Mx 0ð Þ

t
; ð28Þ

DLðtÞ ¼
1
2

Mxx tð Þ �Mxx 0ð Þ
t

: ð29Þ

[61] Numerical results of the location of the center of
mass in the y-direction and longitudinal macrodispersion
DL(t!1) were compared with analytical solutions [Marle
et al., 1967]. The only differences to the simulations of
Salamon et al. [2006] is that we extended the domain in the
x-direction from 1000 to 10,000 m and that we calculated
the longitudinal macrodispersion for t ¼ 200 d. The reason
for these modifications is that the spatial and time dimen-
sions used by Salamon et al. [2006] were not sufficient to
assume DL(t ! 1) for the most extreme scenario with the
velocity ratio ux2/ux1 ¼ 1000.
4.1.2. Results and Discussion

[62] Existing reflection schemes can lead to deviations
between numerical results and analytical solutions in well-
defined test scenarios [Salamon et al., 2006]. Our results
for test scenario S1 demonstrate that the corrected time
splitting already corrects for part of these deviations (Fig-
ure 5a). We reproduced similar deviations as observed in
Salamon et al. [2006] by applying the wrong time splitting
and the two-sided reflection scheme which shifted the cen-
ter of mass in the y-direction to the low dispersion layer.

[63] The application of the corrected time splitting TS2
is sufficient to predict the center of mass in the y-direction
correctly; however, the spreading in the x-direction, i.e.,
the longitudinal macrodispersion, is not accurately simu-
lated for higher �t when applying TS2 in combination
with the two-sided reflection scheme R1. Redundant reflec-
tions in the two-sided reflection scheme cause two errors :
(1) they decrease the exchange between the two layers and
(2) cause a retarded transversal spreading of the particles
entered in layer 1 or 2. Both biases affect the accuracy of
the longitudinal dispersion (Figure 5b). Our improved one-
sided reflection scheme R2 also provided very accurate
results for large time steps as the error related to the reflec-
tion barrier method was then limited to a reduced number
of particle reflections at the single material contrast
between layer 1 and 2 (Figure 5b). The results that are
obtained even with large time steps when using the cor-
rected time splitting TS2 and the one-sided reflection
scheme R2 are fully consistent with the analytical solution
and more accurate than all results presented in the compar-
ative study of Salamon et al. [2006] for this test scenario
with the interpolation, the GSDE, the reflection, and the
total variation diminishing (TVD) scheme.

4.2. Test Scenarios S2–1 and S2–2
4.2.1. Problem Description

[64] The scenarios S2–1 and S2–2 were chosen to demon-
strate the general applicability of the improved reflection
barrier method to more complex three-dimensional transport

Table 1. Overview of Options of the Reflection Barrier Method
Applied to the Scenarios S1 and S2

Option Abbreviation

Reflection Coefficient
Lim [2006] Two-sided R1
This study One-sided R2

Time Splitting
Hoteit et al. [2002] �t ¼ �t1 þ�t2 TS1
This study

ffiffiffiffiffiffi
�t
p

¼
ffiffiffiffiffiffiffiffi
�t1
p

þ
ffiffiffiffiffiffiffiffi
�t2
p

TS2

Transformation of Dispersive Displacement
Hoteit et al. [2002] No transformation applied DT0
This study Transformation applied,

equations (15)–(24)
DT1
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problems. In these scenarios, the RWPT algorithm has to
deal with complexities such as: (1) a heterogeneous flow
field, (2) a continuously and discontinuously spatially
changing anisotropic dispersion tensor, (3) eigenvectors of
D oriented oblique to the interface, (4) spatially varying
water content, and (5) multiple reflections during a single
time step �t. To analyze whether our proposed improve-
ments to the reflection barrier method, i.e., the corrected
time splitting TS2 and the one-sided reflection scheme R2,
also lead to improvements in complex problems, the trans-
port of a tracer pulse was considered (scenario S2–1). In
the scenarios S2–1 and S2–2, we further analyzed how the
transformation of the dispersive displacement improves the
accuracy of the results.

[65] The water flow and the water content were simu-
lated for a constant flux boundary condition of 10�3 m d�1

at the top surface of a three-dimensional heterogeneous un-
saturated porous medium. The porous medium corresponds
to an experimental setup at the Agrosphere Institute in
Jülich that consists of a 0.875 m � 0.875 m � 0.8317 m
heterogeneously filled sank tank. The tank was filled with
rectangular blocks (15 � 15 � 14 blocks, see Figure 4) of
three different sandy materials (here called fine-, medium-,
and coarse-grained; the hydraulic properties are given in
Table 2). To analyze how the efficiency of the algorithm
depends on the variance of the hydraulic parameter field,
we created two additional hydraulic parameter sets for the
scenarios S2–1 and S2–2 with a lower and a higher variability
applying the concept of Miller-similarity scaling [Miller

and Miller, 1956]. The hydraulic parameters with the lower
variability were obtained by dividing the saturated conduc-
tivity Ks and the van Genuchten-Mualem parameter � of
the coarse material by 3 and

ffiffiffi
3
p

, respectively, and multi-
plying Ks and � of the fine material by 3 and

ffiffiffi
3
p

, respec-
tively. The hydraulic parameters with the higher variability
were obtained by multiplying Ks and � of the coarse mate-
rial by 3 and

ffiffiffi
3
p

, respectively, and dividing Ks and � of the
fine material by 3 and

ffiffiffi
3
p

, respectively. The variances of
ln(Ks) of the three resulting parameter fields are 0.88, 4.2,
and 21.2 and the variances of the water content � are
0.0018, 0.006, and 0.013. We will further refer to them as
low, intermediate, and high parameter variability.

[66] The arrangement of the blocks was generated using
an indicator random field generator SISIM, which is part of
the Geostatistical Software Library (GSLIB) [Deutsch and
Journel, 1998]. The 1.5 cm bottom layer is composed of
the fine material only. The lower boundary condition was a
constant pressure of �2.5 hPa. No-flow boundary condi-
tions were used at the sides of the tank. The flow field was
simulated using Richards’ equation. The equation was
solved using a cell-centered finite-volume (FV) scheme on
rectilinear grids with full-upwinding of relative permeability
in space for stabilization. An implicit Euler scheme was
used for the time discretization. Linearization of the nonlin-
ear equations is done by an inexact Newton method with
line search. The linear equations are solved with an algebraic
multigrid solver. The time step is automatically adapted by
the time solver. The flow field was interpolated using RT0
Raviart Thomas elements [Brezzi and Fortin, 1991; Rav-
iart and Thomas, 1975]. The numerical code was tested
with analytical solutions and successfully applied in several
studies [Bechtold et al., 2011; Haber-Pohlmeier et al.,
2010; Ippisch et al., 2006; Rossi et al., 2008; Samouelian
et al., 2007].

[67] Differences between the hydraulic properties of the
sand blocks led to a highly heterogeneous flow field and
large water content variations in the soil profile ranging

Figure 5. Scenario S1. (a) Location of the center of mass in the y-direction (m) versus time (d) for ux2/
ux1 ¼ 1000. (b) Longitudinal macrodispersion DL(t!1) as a function of increasing heterogeneity ux2/
ux1. Reflection coefficients R1: [Lim, 2006] and R2: one-sided reflection scheme; time splitting TS1:
�t ¼ �t1 þ�t2 and TS2:

ffiffiffiffiffiffi
�t
p

¼
ffiffiffiffiffiffiffiffi
�t1
p

þ
ffiffiffiffiffiffiffiffi
�t2
p

.

Table 2. Van Genuchten-Mualem Parameters of Materials in S2a

�r (m3 m�3) �s (m3 m�3) � (cm�1) n (�) Ks (cm d�1) � (�)

Coarse 0.05 0.41 0.0177 10.8 2496 0.73
Medium 0.06 0.36 0.0121 5.3 408 �0.01
Fine 0.07 0.35 0.0055 3.5 48 0.66

a�r ¼ residual water content; �s ¼ saturated water content; Ks ¼ satu-
rated conductivity; �, n and � ¼ shape parameters.
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from 0.06 to 0.41. In both scenarios S2–1 and S2–2, an ani-
sotropic dispersion tensor was defined. The longitudinal
and transversal dispersivities were set to 0.1 and 0.02 m,
respectively, for all three materials and the molecular diffu-
sion coefficient was assumed to be zero.

[68] In scenario S2–1 a Dirac pulse (1 � 106 particles)
was injected at t ¼ 0 d at the soil surface into the simulated
steady state flow field. Both the concentration of the irri-
gated water and the initial concentration of pore water
before the injection were 0 kg m�3. In S2–1, we compared
the spatial moments of the concentration distributions
(Figure 4, equations (25)–(29)) obtained with the different
particle-tracking methods.

[69] Scenario S2–2 served as a test whether the improved
reflection barrier method is able to maintain constant con-
centration in such a transport problem when the system is
continuously flushed with the same concentration. The ini-
tial concentration was set to C0 ¼ 1 kg m�3, i.e., particles
were heterogeneously injected depending on the water con-
tent (in total 7.5 � 106 particles, each having a mass of
�2.7 � 10�8 kg). The concentration of the irrigated water
also had a concentration of C ¼ 1 kg m�3, to maintain the
amount of particles necessary to preserve a constant and
homogeneous concentration of C(X,t) ¼ 1 kg m�3. As a
performance measure, we compared the simulated concentra-
tions of the 15 � 15� 15 elements each representing a mate-
rial block with the true, constant concentration of 1 kg m�3

by calculating the RMSE of all elements,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

CiðX; tÞ � C0ð Þ2

nelements

vuut
: ð30Þ

[70] The RMSE error was calculated at t ¼ 10 d when the
RMSE error reached a steady state in all cases. As a refer-
ence, we calculated the RMSE that can be expected from a
RWPT simulation with the applied number of particles. In
this calculation, we assumed that the particles were ran-
domly distributed over the domain elements so that the con-
centration is uniform. Thereby, the probability that a particle
is placed in a specific element depends on the volume and
water content of this element (for details see Appendix A).

[71] The interpolation method was implemented using
the ‘‘hybrid’’ scheme described above [LaBolle et al.,
1996]. The improved reflection barrier method was com-
pared with the interpolation method by performing a spatial
and temporal convergence analysis. As stated above,
RWPT is principally a grid-free method; however, grids are
needed to represent the spatial variation of the variables
governing the particle motion (here velocity, dispersion ten-
sor, and water content) and calculate these variables at the
particle location by interpolation. The input to all RWPT
simulations was the steady state flow field computed on the
coarsest grid (15 � 15 � 15 elements). Different grids
were then applied in the RWPT algorithm to interpolate the
variables. The coarsest grid we used for the RWPT simula-
tions was equal to the one of the flow solution and con-
sisted of 15 � 15 � 15 elements (3375 elements), each
element representing one material cube (including the
homogeneous bottom layer). For the spatial convergence
analysis, the grid was gradually refined by doubling the
number of elements in each direction during one refinement

step. In the following, we refer to the different refined grids
with the refinement factor k, which is the number of subdi-
visions along each axis of the element of the coarsest grid.
The finest grid consisted of 120 � 120 � 120 elements
(1.7 � 106 elements, grid refinement factor, k ¼ 8). The
particle positions obtained from the RWPT simulations
were always used to map the solute concentration to the
coarsest grid, so that all results were compared at the same
resolution. For the temporal convergence analysis, we
applied time step sizes ranging from �t ¼ 0:001 to 1.0 d.
To focus on the accuracy of the dispersive displacements in
the temporal convergence analysis, we minimized the
effect of different time step sizes on the calculation of the
advective term of equation (3) by implementing the analyti-
cal velocity integration after Pollock [1988] and Schafer-
Perini and Wilson [1991], which is exact for a linearly
varying velocity field as provided by the FV solution. Here
for simplicity only written for the x-direction:

x� x0 ¼
aþ b x1 � x0ð Þ

b
exp b�tð Þ � a

b
ð31Þ

using the velocity interpolator within one element from the
FV solution,

ux;1 ¼ aþ b x1 � x0ð Þ; ð32Þ

where x is the new particle location after time �t, x1 is the
initial particle location, x0 is the coordinate of the left side of
the element, a and b are variables of the velocity interpola-
tion using RT0 Raviart Thomas elements, and ux,1 is the ve-
locity at the initial particle coordinates x1. The velocity of a
particle that leaves the element during �t was updated at
the interception point, the time was split linearly �t ¼
�t1 þ�t2, and the second displacement was performed
with the updated velocity and the remaining time �t2.
4.2.2. Results and Discussion

[72] Simulations from applying different combinations
of options for the reflection barrier method were compared
for S2–1 and the intermediate parameter variability (Figure
6). The results indicate that all methods converge to similar
calculated first and second moments with decreasing time
step size. The use of a two-sided reflection scheme R1
leads to a higher apparent average velocity and a smaller
longitudinal macrodispersion compared to the one-sided
reflection scheme R2, especially for larger time steps. The
linear time splitting scheme TS1 results in a lower apparent
average velocity and a higher longitudinal macrodispersion
than the nonlinear time splitting scheme TS2, also more
pronounced for larger time steps. The largest initial devia-
tions occurred when applying both R1 and TS1. When the
two-sided reflection scheme R1 was used with the correct
time splitting TS2, the trend is the same, the observed
errors were a bit lower but the effects did not completely
compensate. The best results with large time steps and the
fastest convergence were obtained when both improve-
ments, R2 and TS2 were applied. The application of the
transformation of the dispersive displacement, in the fol-
lowing called DT1, shifted the apparent average velocity to
higher values compared to the combination of R2 and TS2,
the apparent longitudinal macrodispersion was almost iden-
tical, and convergence was even faster.
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[73] To evaluate the accuracy of these results, a compari-
son with a reference numerical method, the interpolation
method was performed. There is general agreement that the
interpolation method converges to the true solution when
refining the grid and the time step size simultaneously. The
comparison between the improved reflection barrier and the
interpolation method served to evaluate whether the results
of the improved reflection barrier method are also reliable
for complex three-dimensional transport problems. This
comparison was performed for all three parameter fields.

[74] Figure 7 shows that the results of the apparent aver-
age velocity and the apparent longitudinal macrodispersion
obtained from the interpolation method converged for the
low and intermediate parameter variability when simulta-
neously decreasing the grid size and time step. In these
cases, the interpolation method converged to a solution that
is consistent with the solution to which the reflection bar-
rier method was converging when applying R2 and DT1.
By neglecting the transformation of the dispersive displace-
ment (option DT0), the reflection barrier method did not
converge to the same solution. This demonstrates the
improvement achieved by the transformation of the disper-
sive displacement. The improved reflection barrier method
was practically independent of the grid size (Figure 7). For
the highest parameter variability, the interpolation method
apparently did not converge with the finest grid and small-
est time step size, in contrast to the reflection barrier
method. The results of the interpolation method indicate
that a further grid refinement and time step size reduction
probably provides results that approach the ones of the
reflection barrier method. However, because of memory
issues, a further grid refinement could not be performed.

[75] In the last scenario S2–2, it was tested how the
improved reflection and interpolation method can maintain
a homogenous concentration in a steady state flux field
with advective and dispersive transport. S2–2 represents a
classical scenario for which an accumulation of solute in

low dispersive regions occurs when a standard RWPT
scheme is applied, which neglects discontinuities of D and
� are not accounted for [Hoteit et al., 2002]. We first focus
on the results of the intermediate parameter variability. Fig-
ure 8 (left) illustrates the high error when neglecting the
effect of discontinuous dispersion tensors and applying nei-
ther the interpolation nor the improved reflection barrier
method (‘‘standard RWPT’’). The calculated root-mean-
square error (RMSE, see equation (30)) between the simulated
concentration and the uniform background concentration
(C ¼ 1 kg m�3) was 0.77 for the smallest time step. The
interpolation method applied on the coarse grid partly cor-
rected these errors (compare Figure 9b), however, espe-
cially in the zone where high abrupt water content changes
occur, the method has severe problems to maintain the
homogenous concentration (RMSE ¼ 0.29 for �t ¼ 0:001,
Figure 8). For the finest grid, the interpolation method pro-
vided acceptable results (RMSE ¼ 0.06 for �t ¼ 0:001).
The improved reflection barrier provided good results for
the coarsest and finest grid (RMSE ¼ 0.03 for
�t ¼ 0:001), even for the highest time step �t ¼ 1:0
(RMSE ¼ 0.06). Only the improved reflection barrier
method including DT1 converged to the reference RMSE
that could be expected from the applied number of particles
(see Appendix A). Both scenarios S2–1 and S2–2 demon-
strated that the transformation of the dispersive displace-
ment is required for a proper convergence of the reflection
barrier method.

[76] The results of the lower and higher parameter vari-
ability (Figures 9a and 9c) show that the RMSE error of
both the interpolation and reflection barrier method gener-
ally increase with increasing parameter variability. However,
the reflection barrier method is much less affected by higher
parameter variability than the interpolation method. For the
highest parameter variability, both the grid refinement and
the time step reduction are far from sufficient for the interpo-
lation method to converge to a final solution. In contrast, for

Figure 6. (a) Scenario S2–1, apparent average velocity U, and (b) apparent longitudinal dispersion DL,
as a function of applied time step size for the coarsest grid (no grid refinement, refinement factor k ¼ 1)
at time t ¼ 17 d. Reflection coefficients R1: [Lim, 2006] and R2: one-sided reflection scheme; time
splitting TS1: �t ¼ �t1 þ�t2 and TS2:

ffiffiffiffiffiffi
�t
p

¼
ffiffiffiffiffiffiffiffi
�t1
p

þ
ffiffiffiffiffiffiffiffi
�t2
p

; transformation of dispersive displace-
ment DT0: not applied, DT1: applied, no time splitting necessary.
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the lowest parameter variability, the interpolation method
almost converged exactly to the reference RMSE.

[77] The dependency of the solution on the number of
particles was evaluated for scenario S2–1 with the interme-
diate parameter variability, for which both the interpolation
and the reflection barrier method converged to the same so-
lution for �t ¼ 0:001. Ten model runs (nruns ¼ 10) were
performed for each of three different numbers of particles
(n ¼ 106, 105, 104). We then calculated the normalized
RMSE of the bulk concentration (mass per unit volume) Cb

for the same time at which the apparent velocity and mac-
rodispersion was evaluated before (t ¼ 17 d),

RMSEnormalized ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nelements

X
i

1
nruns

X
j

Cbði;jÞðX; tÞ
�CbðiÞðX; tÞ

� 1

 !2
vuut ;

ð33Þ

where �CbðiÞ is the mean concentration of the solution at ele-
ment i. Figure 10 shows the RMSEnormalized as a function of
the number of applied particles npar for three different bulk
concentration ranges. Within a concentration range, the
fluctuations of the results of the interpolation and the reflec-
tion barrier method depend linearly on the inverse of the
square root of the number of particles. Figure 10 further
shows that for a specific number of particles, the magnitude
of the fluctuations depends on the local concentration, with
higher fluctuations where the concentrations are lower.
This is the expected behavior for random walk particle
tracking algorithms [Kinzelbach and Uffink, 1991].

[78] We also tested if a random vector Z with a uniform
distribution between �1 and 1 can be used instead of the
normally distributed random vector n. However, we found
that the transformation of the dispersive displacement is
only consistently applicable when using the normally dis-
tributed random vector n. The results from the application

Figure 7. Scenario S2–1, (top) apparent average velocity U, and (bottom) apparent longitudinal disper-
sion DL, as a function of applied time step size for different grid refinements (refinement factor k ¼ 1–8,
k is the number of subdivisions along each axis of the element of the coarsest grid) and different parame-
ter variabilities (low: (a and d), intermediate: (b and e), high: (c and f)) at time t ¼17 d. R2: one-sided
reflection scheme, and I: interpolation method; time splitting for reflection barrier method TS2:ffiffiffiffiffiffi

�t
p

¼
ffiffiffiffiffiffiffiffi
�t1
p

þ
ffiffiffiffiffiffiffiffi
�t2
p

; transformation of dispersive displacement DT0: not applied, DT1: applied, no
time splitting necessary.
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of the uniformly distributed and from the normally distrib-
uted random vector differ in terms of their mean direction
of the dispersive displacements that reach the interface
(E[�X1] of Figure 2). Particularly, when using Z a mean dis-
persive displacement direction was obtained that differs from
the expected correlated part of the dispersive displacement,
which is in contrast to the theory of the proposed transforma-
tion of the dispersive displacement. Although the observed
errors were very small in practical applications, we suggest
the use of the normally distributed random vector n when
applying the transformation of the dispersive displacement.

[79] Finally, the effect of neglecting water content varia-
tions were analyzed. For scenario S2–1 with intermediate

parameter variability, simulations were performed using
the reflection coefficient of Hoteit et al. [2002] which does
not account for water content variations. Based on the
results above, we used the proposed improved reflection
scheme (R2, DT1) and the interpolation method with the
finest grid size (I, k ¼ 8) as reference for the true solution.
Figure 11 shows the large deviations that occur when
water content variations are not considered in the reflection
coefficient.

[80] This test demonstrates the important improvement
proposed by Lim [2006] when applying the reflection bar-
rier method to porous media with varying porosity or water
contents.

Figure 8. Scenario S2–2, constant concentration test. Shown are the solute concentrations at t ¼ 10 d.
In this scenario, C is ideally supposed to be homogenously and constantly 1 kg m�3. RMSE error from
left to right: 0.79, 0.29, 0.06, 0.03. All scenarios were calculated with the smallest time step size
�t ¼ 0:001. Refinement factor k ¼ 1, 2, 4 and 8, k is the number of subdivisions along each axis of the
element of the coarsest grid. The reflection barrier method was applied using the corrected time splitting
TS2, the one-sided reflection scheme R2, and the transformation of the dispersive displacement DT1.

Figure 9. Scenario S2–2, RMSE at time t ¼ 10 d of modeled and theoretical concentration C ¼ 1 kg m�3

calculated from all elements as a function of applied time step size for different grid refinements (refinement
factor k ¼ 1, 2, 4 and 8, k is the number of subdivisions along each axis of the element of the coarsest grid)
and different parameter variability ((a) low, (b) intermediate, (c) high). R2: one-sided reflection scheme,
and I: interpolation method; time splitting for reflection barrier method TS2:

ffiffiffiffiffiffi
�t
p

¼
ffiffiffiffiffiffiffiffi
�t1
p

þ
ffiffiffiffiffiffiffiffi
�t2
p

;
transformation of dispersive displacement DT0: not applied, DT1: applied, no time splitting necessary.
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5. Discussion
5.1. Convergence to the True Solution

[81] In general, RWPT converges with the number of par-
ticles, the time step size, and in case of the interpolation

method also with the resolution of the interpolation grid. The
reflection barrier method is independent of the interpolation
grid size. Velocity and water content are directly obtained by
linear interpolation from the numerical flow solution. The
interpolation method introduces an additional error by the
interpolation of discontinuities as described in section 2.1.
Convergence to the true solution is obtained by a simultane-
ous refinement of the interpolation grid and a reduction of
the time step [LaBolle et al., 1996; Salamon et al., 2006].

[82] The results of both S2–1 and S2–2 are completely
consistent with this general behavior. For example, in S2–2
(at intermediate parameter variability) the interpolation
method apparently performs poorly because the grid is still
not fine enough. Even for the finest grid, a further decrease
of the time step size would not lead to any improvement, as
the solution already converged to the best solution for this
level of refinement. Because of memory limits, a further
refinement of the interpolation grid was not possible in this
demanding three-dimensional scenario. For the reflection
barrier method there is no change with grid refinement and
the convergence to the correct solution with time step reduc-
tion is much faster when a transformation of the dispersive
displacements and a one-sided reflection scheme were used.

5.2. Efficiency Considerations
[83] When comparing the results from the improved and

the original reflection barrier method, the higher efficiency
of the improved scheme is apparent in the more accurate
results for the same time step �t (see Figures 5–9). As the
computation costs for the reflection barrier method and the
interpolation method differ, the time step �t cannot be
taken directly as an indicator for the computational effi-
ciency. We therefore evaluated the numerical error as a
function of CPU time. For scenarios S2–1 and S2–2 with
the intermediate parameter field variance we calculated a

Figure 10. Convergence with the number of particles for
scenario S2–1 and intermediate parameter variability. Nor-
malized RMSE as a function of the inverse of the root of
the number of particles for three different bulk concentra-
tion ranges, where Cb,max is the maximum bulk concentra-
tion of the spatial concentration distribution of the true
solution. I : Interpolation method, R2: one-sided reflection;
DT1: transformation of dispersive displacement applied,
no time splitting necessary; k : number of subdivisions
along each axis of the element of the coarsest grid.

Figure 11. (a) Scenario S2–1, apparent average velocity U, and (b) apparent longitudinal dispersion
DL, at time t ¼ 17 d as a function of applied time step size. Reflection coefficient R1: [Lim, 2006], here
with the neglecting of water content variations which corresponds to the reflection coefficient of Hoteit
et al. [2002], R2: one-sided reflection scheme (this study), and I: interpolation method; transformation
of dispersive displacement applied (DT1), k : number of subdivisions along each axis of the element of
the coarsest grid.
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relative error which characterizes each result, #i, with
respect to the ‘‘best,’’ #t, and worst, #w, solution,

relative error ¼ #i � #t

#t � #w
: ð34Þ

[84] In S2–1, #t was the average of the obtained U and
DL values of the interpolation method (�t ¼ 0:001 and k ¼
8) and the reflection barrier method (�t ¼ 0:001 and k ¼
1). This is justified because both methods converged to the
same solution. In S2–2 we used the calculated reference
RMSE (see the appendix) as the true solution. Figure 12
demonstrates that for each result (apparent average velocity
U, apparent longitudinal macrodisperion DL, RMSE with
respect to homogeneous concentration) the improved
reflection barrier method represents the method with the
highest computational efficiency (the best result for any
given CPU time). The higher computational cost of the
interpolation method is based on: (1) the expensive bilinear
interpolation of u and � in each time step for every particle
and (2) the calculation of a refined velocity matrix when
grid refinement is applied. In scenarios S2–1 and S2–2, the
latter step is performed only once as we assumed a steady
state velocity field. We stress that the steady state scenario
used here is advantageous for the interpolation method. In
particular, when dealing with the commonly highly tran-
sient flow in soils, in which the velocity field is frequently
updated, the calculation of the refined velocity matrix can
become a considerable time-consuming factor for the inter-
polation method. The improved reflection barrier method
requires no grid refinement and its computational efficiency
is therefore not affected by new velocity fields occurring
under transient conditions.

[85] The results of S2–1 and S2–2 (Figures 7 and 9) indi-
cate that a lower parameter variability, and thus a less
demanding scenario, reduces the efficiency differences

between the reflection barrier and interpolation method. In
contrast, a higher variability does not influence the fast con-
vergence of the improved reflection barrier method while the
interpolation method has convergence problems even with
the finest grid and smallest time step size. Based on these
results, we conclude that the reflection barrier method is best
suited for hydraulic parameter fields with high contrasts,
while it has no disadvantages if the contrasts are lower.

5.3. Practical Application Aspects of the Improved
Reflection Barrier Method

[86] The proposed three algorithmic improvements to
the reflection barrier method can easily be implemented in
a standard RWPT code, as they only need small modifica-
tions of the core module responsible for the dispersive dis-
placement of a particle.

[87] The proposed RWPT algorithm is superior to other
RWPT algorithms in situations where either the water con-
tent or the dispersion tensor are discontinuous. This can be
the case when the flow velocity field is obtained from a dis-
cretization scheme where the water content is element-wise
constant (as, e.g., in cell-centered finite-volume schemes)
resulting in abrupt changes of the dispersion tensor (as the
pore water velocity is unsteady) and water content at ele-
ment interfaces. However, even for finite element solutions
where the solution is much smoother, discontinuities can
occur at material interfaces. Our results showed that the ef-
ficiency gain of the reflection barrier method is increasing
with the heterogeneity of the system, while the interpolation
method has severe problems approaching the true solution.

[88] To obtain convergence with the reflection barrier
method, in principle, reflecting barriers have to be applied
at all element interfaces with a discontinuity of the disper-
sion tensor or water content. To reduce the computation
time, it might be possible to define a threshold depending
on the size of the jump indicating whether or not an

Figure 12. Relative error (equation (34)) as a function of CPU time (s). (a) Scenario S2–1, relative
error given for apparent average velocity U and apparent longitudinal macrodispersion DL. (b) Scenario
S2–2, relative error given with respect to best possible RMSE. k : Grid refinement factor, k is the number
of subdivisions along each axis of the element of the coarsest grid: R2: one-sided reflection scheme, and
I: interpolation method; DT1: transformation of dispersive displacement was applied.
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interface should act as a reflection barrier. If a large part of
the domain is characterized by negligible jumps between
two adjacent elements, this could lead to a marked acceler-
ation of the reflection barrier method. However, the error
introduced by the thresholding has to be tested with a con-
vergence analysis for the specific scenario.

6. Conclusions
[89] We presented three improvements to the reflection

barrier method used in RWPT algorithms. This method was
originally developed to account for discontinuities of the
dispersion tensor, but can also be used to account for abrupt
changes in the water content and retardation factors as
recently proposed by Lim [2006].

[90] 1. We showed that a linear time splitting for the dis-
persive displacement across an element interface with
�t ¼ �t1 þ�t2 proposed in the reflection schemes of
Hoteit et al. [2002] and Lim [2006], and applied in subse-
quent studies [Salamon et al., 2006; Zhang et al., 2009]
systematically overestimates the second dispersive dis-
placement. The erroneous linear time splitting caused devi-
ations of numerical results from analytical solutions
observed in previous studies [Salamon et al., 2006]. We
derived a corrected time splitting with

ffiffiffiffiffiffi
�t
p

¼ffiffiffiffiffiffiffiffi
�t1
p

þ
ffiffiffiffiffiffiffiffi
�t2
p

.
[91] 2. Our results demonstrate that the two-sided reflec-

tion barrier method is only valid for �t ! 0 which has
been stated differently in previous studies [Ackerer and
Mose, 2000]. Inaccuracies occur for a discrete time step
size. To reduce this error, we derived a one-sided reflection
scheme from the two-sided reflection coefficients of Lim
[2006]. The strength of our new approach is that monoto-
nicity is preserved while the portion of reflected particles is
systematically reduced at all element interfaces. Therefore,
the error introduced by the reflection barrier method in a
discrete time step size �t is reduced.

[92] 3. In complex multidimensional transport problems
with spatially abruptly varying anisotropic dispersion tensors,
the reflection barrier method can be improved by a transfor-
mation of the dispersive displacement before performing the
second dispersive displacement starting from an interface
within one time step �t. We proposed a transformation of
the dispersive displacement that is consistent with the defini-
tion of the reflection coefficient and assures a proper conver-
gence of the reflection barrier method to the true solution in
complex multidimensional transport problems.

[93] The comparison of RWPT simulations in two- and
three-dimensional space applying different reflection bar-
rier schemes demonstrated that only the improved reflec-
tion barrier method was able to converge to the true
solution of the ADE for all scenarios. The improved reflec-
tion barrier method also provided more accurate results for
a much larger time step size compared to the original
reflection barrier schemes. In two- or three-dimensional
simulations, where we usually deal with many element inter-
faces and complex flow and transport problems, significant
jumps in the dispersion tensor or water content normally
occur only at a small portion of the total number of element
interfaces. For these cases, especially the proposed one-
sided reflection scheme is very beneficial as it reduces the
number of necessary reflections tremendously. We stress

that the algorithmic issues and improvements presented
here with respect to the reflection barrier method do not
apply to the GSDE method.

[94] A comparison with the interpolation method demon-
strated that the reflection barrier method in combination
with our improvements can provide more efficiently accu-
rate results of the complex three-dimensional transport
problems presented in this study. Especially for abrupt
changes of the dispersion tensor and unsaturated conditions
characterized by highly heterogeneous water contents, the
improved reflection barrier method has important advan-
tages since, unlike the interpolation method, it does not
require grid refinements to represent discontinuities. In the
interpolation method, results improve when refining the
grid used for the bilinear interpolation of the variables gov-
erning the dispersive displacement. Our results demonstrate
that the problems resulting from the application of the
reflection barrier method to complex three-dimensional
scenarios, which have been reported before [LaBolle et al.,
1996; Salamon et al., 2006], can be alleviated effectively
using the proper improvements or corrections.

[95] The proposed RWPT algorithm may be very useful
in parameter optimization and geostatistical inversion stud-
ies for groundwater or vadose zone applications, in which
numerous forward model runs need to be performed with
acceptable accuracy in short times. We stress that the algo-
rithm combines the good performance of RWPT under
advection-dominated transport conditions with an improved
treatment of the dispersive transport. Especially for simula-
tions in the vadose zone, where advection- and dispersion-
dominated transport conditions alternate, it is important that
numerical codes work efficiently under both conditions.
However, the new algorithm also enhances the applicability
of RWPT to groundwater studies, in which dispersion from
or into low velocity zones must be simulated accurately.

Appendix A: Reference RMSE
[96] Let Ci be the concentration in the cell i with the vol-

ume �Vi and the water content �i. If we have npar,tot particles
for the entire domain, and if we distribute these particles in
the domain in such a way that the concentration Ci in each
cell is the same, we have npar,i particles in the cell i :

npar;i ¼ npar;tot
�i�ViP

i
�i�Vi

: ðA1Þ

[97] The fraction of particles in the cell i is equal to the
probability pi that a particle is in the cell i,

pi ¼
npar;i

npar;tot
¼ �i�ViP

i
�i�Vi

n�1
par;tot

: ðA2Þ

[98] The concentration in the cell i is related to the frac-
tion of particles in the cell i as,

Ci ¼
npar;iMpar

�i�Vi
¼ npar;totMpar

�i�Vi
pi: ðA3Þ

[99] Instead of distributing the npar,tot over the domain so
that the concentration is uniform, the particles can also be
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distributed according to a random process with a probabil-
ity pi that a particle is placed in the cell i. If this random
process is repeated for npar,tot particles, the expected value
of the fraction of particles in the cell i, fi, is equal to pi. The
variance of fi, �2

f ;i is

�2
f ;i ¼

pi 1� pið Þ
npar;tot

: ðA4Þ

[100] The concentration that is derived from fi is

Ĉi ¼
npar;totMpar

�i�Vi
fi; ðA5Þ

where Mpar is the mass of a single particle. Its expected
value is equal to Ĉi and its variance is equal to:

�2
Ĉi
¼ npar;totMpar

�i�Vi

� �2 pi 1� pið Þ
npar;tot

¼ npar;tot
Mpar

�i�Vi

� �2

pi 1� pið Þ:

ðA6Þ

[101] Using the equation for pi, this gives:

�2
Ĉi
¼ npar;tot

Mpar

�i�Vi

� �2 �i�ViP
i
�i�Vi

1� �i�ViP
i
�i�Vi

0
B@

1
CA: ðA7Þ

[102] If Mpar is defined so that the overall average concen-
tration is equal to 1, then Mpar is equal to:

npar;totMparP
i
�i�Vi

¼ 1) Mpar ¼

P
i
�i�Vi

npar;tot
: ðA8Þ

[103] As a consequence, the expected value of Ĉi ¼ 1 and
its variance is

�2
Ĉi
¼ 1

npar;tot

P
i
�i�Vi

�i�Vi

0
@

1
A

2

�i�ViP
i
�i�Vi

1� �i�ViP
i
�i�Vi

0
B@

1
CA: ðA9Þ

[104] Rewriting this gives:

�2
Ĉi
¼ 1

npar;tot

P
i
�i�Vi

�i�Vi
� 1

0
@

1
A: ðA10Þ

[105] The root-mean-square error (RMSE) is the root of
the average of the variances in all cells

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
�2

Ĉi

nelements

vuut
: ðA11Þ
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