000017059 001__ 17059
000017059 005__ 20240712101006.0
000017059 0247_ $$2DOI$$a10.5194/acp-10-10435-2010
000017059 0247_ $$2WOS$$aWOS:000284210400018
000017059 0247_ $$2Handle$$a2128/9959
000017059 037__ $$aPreJuSER-17059
000017059 041__ $$aeng
000017059 082__ $$a550
000017059 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000017059 1001_ $$0P:(DE-HGF)0$$aSchroedter-Homscheidt, M.$$b0
000017059 245__ $$aObservation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model
000017059 260__ $$aKatlenburg-Lindau$$bEGU$$c2010
000017059 300__ $$a10435 - 10452
000017059 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000017059 3367_ $$2DataCite$$aOutput Types/Journal article
000017059 3367_ $$00$$2EndNote$$aJournal Article
000017059 3367_ $$2BibTeX$$aARTICLE
000017059 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000017059 3367_ $$2DRIVER$$aarticle
000017059 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v10$$x1680-7316$$y21
000017059 500__ $$aRecord converted from VDB: 12.11.2012
000017059 520__ $$aModelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions cannot be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1) through validation against AERONET especially in Saharan dust outbreak situations, (2) through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3) through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme) network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the analysis for a test period from July to November 2003. Additionally, examples of an improved analysis during wildfire and dust outbreak situations are shown.
000017059 536__ $$0G:(DE-Juel1)FUEK491$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP23$$x0
000017059 588__ $$aDataset connected to Web of Science
000017059 650_7 $$2WoSType$$aJ
000017059 7001_ $$0P:(DE-Juel1)129194$$aElbern, H.$$b1$$uFZJ
000017059 7001_ $$0P:(DE-HGF)0$$aHolzer-Popp, T.$$b2
000017059 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-10-10435-2010$$gVol. 10, p. 10435 - 10452$$p10435 - 10452$$q10<10435 - 10452$$tAtmospheric chemistry and physics$$v10$$x1680-7316$$y2010
000017059 8567_ $$uhttp://dx.doi.org/10.5194/acp-10-10435-2010
000017059 8564_ $$uhttps://juser.fz-juelich.de/record/17059/files/acp-10-10435-2010.pdf$$yOpenAccess
000017059 8564_ $$uhttps://juser.fz-juelich.de/record/17059/files/acp-10-10435-2010.gif?subformat=icon$$xicon$$yOpenAccess
000017059 8564_ $$uhttps://juser.fz-juelich.de/record/17059/files/acp-10-10435-2010.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000017059 8564_ $$uhttps://juser.fz-juelich.de/record/17059/files/acp-10-10435-2010.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000017059 8564_ $$uhttps://juser.fz-juelich.de/record/17059/files/acp-10-10435-2010.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000017059 909CO $$ooai:juser.fz-juelich.de:17059$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000017059 9131_ $$0G:(DE-Juel1)FUEK491$$bErde und Umwelt$$kP23$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zvormals P22
000017059 9141_ $$aNachtrag$$y2010
000017059 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000017059 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000017059 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000017059 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$gIEK$$kIEK-8$$lTroposphäre$$x0
000017059 970__ $$aVDB:(DE-Juel1)131438
000017059 9801_ $$aUNRESTRICTED
000017059 9801_ $$aFullTexts
000017059 980__ $$aVDB
000017059 980__ $$aConvertedRecord
000017059 980__ $$ajournal
000017059 980__ $$aI:(DE-Juel1)IEK-8-20101013
000017059 980__ $$aUNRESTRICTED
000017059 981__ $$aI:(DE-Juel1)ICE-3-20101013