001     17106
005     20210129210652.0
024 7 _ |2 DOI
|a 10.1002/cav.1420
024 7 _ |2 WOS
|a WOS:000300675800003
037 _ _ |a PreJuSER-17106
041 _ _ |a eng
082 _ _ |a 004
084 _ _ |2 WoS
|a Computer Science, Software Engineering
100 1 _ |0 P:(DE-Juel1)132158
|a Kemloh Wagoum, A.U.
|b 0
|u FZJ
245 _ _ |a Efficient and Validated Real-time Simulation of Crowds within an Evacuation Assistant
260 _ _ |a Hoboken, NJ [u.a.]
|b Wiley
|c 2012
300 _ _ |a 3 - 15
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 25543
|a Computer Animation and Virtual Worlds
|v 23
|y 1
500 _ _ |a This work has been performed within the program "Research for Civil Security" in the field "Protecting and Saving Human Life" funded by the German Government, Federal Ministry of Education and Research. The project is supported under the grant nos. 13N9952 and 13N9960.
520 _ _ |a To improve safety at mass events, an evacuation assistant that supports security services in case of emergencies is developed. One central aspect is forecasting the emergency egress of large crowds in complex buildings. This requires realistic models of pedestrian dynamics that can be simulated faster than real-time by using methods applied in high performance computing. We give an overview of the project and present the actual results. We also describe the modeling approaches used thereby focusing on the runtime optimization and parallelization concepts. Copyright (c) 2012 John Wiley & Sons, Ltd.
536 _ _ |0 G:(DE-Juel1)FUEK411
|2 G:(DE-HGF)
|x 0
|c FUEK411
|a Scientific Computing (FUEK411)
536 _ _ |0 G:(DE-HGF)POF2-411
|a 411 - Computational Science and Mathematical Methods (POF2-411)
|c POF2-411
|f POF II
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a pedestrian dynamics
653 2 0 |2 Author
|a real-time simulation
653 2 0 |2 Author
|a evacuation
653 2 0 |2 Author
|a cellular automata
653 2 0 |2 Author
|a continuous models
700 1 _ |0 P:(DE-Juel1)132077
|a Chraibi, M.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Mehlich, J.
|b 2
700 1 _ |0 P:(DE-Juel1)132266
|a Seyfried, A.
|b 3
|u FZJ
773 _ _ |0 PERI:(DE-600)2139568-8
|a 10.1002/cav.1420
|g Vol. 23, p. 3 - 15
|p 3 - 15
|q 23<3 - 15
|t Computer animation and virtual worlds
|v 23
|x 1546-427X
|y 2012
856 7 _ |u http://dx.doi.org/10.1002/cav.1420
909 C O |o oai:juser.fz-juelich.de:17106
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0040
|2 StatID
|a Peer review unknown
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|g JSC
|k JSC
|l Jülich Supercomputing Centre
|x 0
970 _ _ |a VDB:(DE-Juel1)131493
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21