000171695 001__ 171695
000171695 005__ 20240711085655.0
000171695 0247_ $$2doi$$a10.1149/2.0601414jes
000171695 0247_ $$2Handle$$a2128/8029
000171695 0247_ $$2WOS$$aWOS:000345975500092
000171695 0247_ $$2altmetric$$aaltmetric:2769668
000171695 037__ $$aFZJ-2014-05265
000171695 082__ $$a540
000171695 1001_ $$0P:(DE-HGF)0$$aHäffelin, A.$$b0
000171695 245__ $$aThree-Dimensional Performance Model for Oxygen Transport Membranes
000171695 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2014
000171695 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s171695
000171695 3367_ $$2DataCite$$aOutput Types/Journal article
000171695 3367_ $$00$$2EndNote$$aJournal Article
000171695 3367_ $$2BibTeX$$aARTICLE
000171695 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000171695 3367_ $$2DRIVER$$aarticle
000171695 520__ $$aA three-dimensional finite element method (FEM) model that enables the performance simulation of mixed ionic-electronic conducting (MIEC) oxygen transport membranes (OTM) has been developed. In order to evaluate the influence of a porous functional layer on the membrane performance a numerical geometry generator was implemented that allows to create arbitrary porous microstructures. The 3D OTM model includes the spatially coupled physicochemical processes i) gas diffusion in the porous functional layer, ii) oxygen exchange at the feed-side between gas phase and MIEC material, iii) oxygen ion diffusion across the membrane, iv) oxygen excorporation at the permeate-side. The performed simulation carried out for the state-of-the-art MIEC composition La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) was validated with the help of oxygen permeation measurements carried out on an asymmetric LSCF thin-film OTM in the temperature range of 750…1000°C. The simulation results identified a surface exchange dominated regime for membrane thicknesses below 50 μm. While the application of a porous functional layer on the feed side could only increase the permeation flux by around 26%, the model demonstrates the significant improvement by a factor of two (for the given conditions) that can be achieved with a functional layer on the permeate side in case of a 20 μm thin-film membrane.
000171695 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0
000171695 7001_ $$0P:(DE-HGF)0$$aNiedrig, C.$$b1
000171695 7001_ $$0P:(DE-HGF)0$$aWagner, S. F.$$b2
000171695 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b3
000171695 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b4$$ufzj
000171695 7001_ $$0P:(DE-HGF)0$$aIvers-Tiffée, E.$$b5
000171695 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.0601414jes$$n14$$pF1409-F1415$$tJournal of the Electrochemical Society$$v161$$x0013-4651$$y2014
000171695 8564_ $$uhttps://juser.fz-juelich.de/record/171695/files/FZJ-2014-05265.pdf$$yOpenAccess
000171695 8564_ $$uhttps://juser.fz-juelich.de/record/171695/files/FZJ-2014-05265.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000171695 8564_ $$uhttps://juser.fz-juelich.de/record/171695/files/FZJ-2014-05265.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000171695 8564_ $$uhttps://juser.fz-juelich.de/record/171695/files/FZJ-2014-05265.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000171695 909CO $$ooai:juser.fz-juelich.de:171695$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000171695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000171695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000171695 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vEnergieeffizienz, Materialien und Ressourcen$$x0
000171695 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000171695 9141_ $$y2014
000171695 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000171695 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000171695 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000171695 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000171695 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000171695 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000171695 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000171695 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000171695 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000171695 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000171695 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000171695 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000171695 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000171695 9801_ $$aFullTexts
000171695 980__ $$ajournal
000171695 980__ $$aVDB
000171695 980__ $$aUNRESTRICTED
000171695 980__ $$aFullTexts
000171695 980__ $$aI:(DE-Juel1)IEK-1-20101013
000171695 981__ $$aI:(DE-Juel1)IMD-2-20101013