| Hauptseite > Publikationsdatenbank > Three-Dimensional Performance Model for Oxygen Transport Membranes > print |
| 001 | 171695 | ||
| 005 | 20240711085655.0 | ||
| 024 | 7 | _ | |a 10.1149/2.0601414jes |2 doi |
| 024 | 7 | _ | |a 2128/8029 |2 Handle |
| 024 | 7 | _ | |a WOS:000345975500092 |2 WOS |
| 024 | 7 | _ | |a altmetric:2769668 |2 altmetric |
| 037 | _ | _ | |a FZJ-2014-05265 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Häffelin, A. |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Three-Dimensional Performance Model for Oxygen Transport Membranes |
| 260 | _ | _ | |a Pennington, NJ |c 2014 |b Electrochemical Soc. |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 171695 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 520 | _ | _ | |a A three-dimensional finite element method (FEM) model that enables the performance simulation of mixed ionic-electronic conducting (MIEC) oxygen transport membranes (OTM) has been developed. In order to evaluate the influence of a porous functional layer on the membrane performance a numerical geometry generator was implemented that allows to create arbitrary porous microstructures. The 3D OTM model includes the spatially coupled physicochemical processes i) gas diffusion in the porous functional layer, ii) oxygen exchange at the feed-side between gas phase and MIEC material, iii) oxygen ion diffusion across the membrane, iv) oxygen excorporation at the permeate-side. The performed simulation carried out for the state-of-the-art MIEC composition La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) was validated with the help of oxygen permeation measurements carried out on an asymmetric LSCF thin-film OTM in the temperature range of 750…1000°C. The simulation results identified a surface exchange dominated regime for membrane thicknesses below 50 μm. While the application of a porous functional layer on the feed side could only increase the permeation flux by around 26%, the model demonstrates the significant improvement by a factor of two (for the given conditions) that can be achieved with a functional layer on the permeate side in case of a 20 μm thin-film membrane. |
| 536 | _ | _ | |a 122 - Power Plants (POF2-122) |0 G:(DE-HGF)POF2-122 |c POF2-122 |f POF II |x 0 |
| 700 | 1 | _ | |a Niedrig, C. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Wagner, S. F. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Baumann, Stefan |0 P:(DE-Juel1)129587 |b 3 |
| 700 | 1 | _ | |a Meulenberg, Wilhelm Albert |0 P:(DE-Juel1)129637 |b 4 |u fzj |
| 700 | 1 | _ | |a Ivers-Tiffée, E. |0 P:(DE-HGF)0 |b 5 |
| 773 | _ | _ | |a 10.1149/2.0601414jes |0 PERI:(DE-600)2002179-3 |n 14 |p F1409-F1415 |t Journal of the Electrochemical Society |v 161 |y 2014 |x 0013-4651 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/171695/files/FZJ-2014-05265.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/171695/files/FZJ-2014-05265.jpg?subformat=icon-144 |x icon-144 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/171695/files/FZJ-2014-05265.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/171695/files/FZJ-2014-05265.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:171695 |p openaire |p driver |p open_access |p VDB |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129587 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129637 |
| 913 | 2 | _ | |a DE-HGF |b POF III |l Forschungsbereich Energie |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-113 |2 G:(DE-HGF)POF3-100 |v Energieeffizienz, Materialien und Ressourcen |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Energie |l Rationelle Energieumwandlung und -nutzung |1 G:(DE-HGF)POF2-120 |0 G:(DE-HGF)POF2-122 |2 G:(DE-HGF)POF2-100 |v Power Plants |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
| 914 | 1 | _ | |y 2014 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a FullTexts |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|