001     171695
005     20240711085655.0
024 7 _ |a 10.1149/2.0601414jes
|2 doi
024 7 _ |a 2128/8029
|2 Handle
024 7 _ |a WOS:000345975500092
|2 WOS
024 7 _ |a altmetric:2769668
|2 altmetric
037 _ _ |a FZJ-2014-05265
082 _ _ |a 540
100 1 _ |a Häffelin, A.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Three-Dimensional Performance Model for Oxygen Transport Membranes
260 _ _ |a Pennington, NJ
|c 2014
|b Electrochemical Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 171695
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a A three-dimensional finite element method (FEM) model that enables the performance simulation of mixed ionic-electronic conducting (MIEC) oxygen transport membranes (OTM) has been developed. In order to evaluate the influence of a porous functional layer on the membrane performance a numerical geometry generator was implemented that allows to create arbitrary porous microstructures. The 3D OTM model includes the spatially coupled physicochemical processes i) gas diffusion in the porous functional layer, ii) oxygen exchange at the feed-side between gas phase and MIEC material, iii) oxygen ion diffusion across the membrane, iv) oxygen excorporation at the permeate-side. The performed simulation carried out for the state-of-the-art MIEC composition La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) was validated with the help of oxygen permeation measurements carried out on an asymmetric LSCF thin-film OTM in the temperature range of 750…1000°C. The simulation results identified a surface exchange dominated regime for membrane thicknesses below 50 μm. While the application of a porous functional layer on the feed side could only increase the permeation flux by around 26%, the model demonstrates the significant improvement by a factor of two (for the given conditions) that can be achieved with a functional layer on the permeate side in case of a 20 μm thin-film membrane.
536 _ _ |a 122 - Power Plants (POF2-122)
|0 G:(DE-HGF)POF2-122
|c POF2-122
|f POF II
|x 0
700 1 _ |a Niedrig, C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wagner, S. F.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 3
700 1 _ |a Meulenberg, Wilhelm Albert
|0 P:(DE-Juel1)129637
|b 4
|u fzj
700 1 _ |a Ivers-Tiffée, E.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1149/2.0601414jes
|0 PERI:(DE-600)2002179-3
|n 14
|p F1409-F1415
|t Journal of the Electrochemical Society
|v 161
|y 2014
|x 0013-4651
856 4 _ |u https://juser.fz-juelich.de/record/171695/files/FZJ-2014-05265.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/171695/files/FZJ-2014-05265.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/171695/files/FZJ-2014-05265.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/171695/files/FZJ-2014-05265.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:171695
|p openaire
|p driver
|p open_access
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129637
913 2 _ |a DE-HGF
|b POF III
|l Forschungsbereich Energie
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Energieeffizienz, Materialien und Ressourcen
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-122
|2 G:(DE-HGF)POF2-100
|v Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21