000171706 001__ 171706
000171706 005__ 20240610115911.0
000171706 0247_ $$2doi$$a10.1021/la502627h
000171706 0247_ $$2WOS$$aWOS:000343195800005
000171706 0247_ $$2altmetric$$aaltmetric:2792283
000171706 0247_ $$2pmid$$apmid:25226046
000171706 037__ $$aFZJ-2014-05275
000171706 041__ $$aEnglish
000171706 082__ $$a670
000171706 1001_ $$0P:(DE-Juel1)142341$$aDasgupta, Sabyasachi$$b0$$eCorresponding Author$$ufzj
000171706 245__ $$aCapillary Assembly of Microscale Ellipsoidal, Cuboidal, and Spherical Particles at Interfaces
000171706 260__ $$aWashington, DC$$bACS Publ.$$c2014
000171706 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1413888511_7668
000171706 3367_ $$2DataCite$$aOutput Types/Journal article
000171706 3367_ $$00$$2EndNote$$aJournal Article
000171706 3367_ $$2BibTeX$$aARTICLE
000171706 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000171706 3367_ $$2DRIVER$$aarticle
000171706 520__ $$aMicron-sized anisotropic particles with homogeneous surface properties at a fluid interface can deform the interface due to their shape. The particles thereby create excess interfacial area and interact in order to minimize this area, which lowers the total interfacial energy. We present a systematic investigation of the interface deformations around single ellipsoidal particles and cuboidal particles with rounded edges in the near field for various contact angles and particle aspect ratios. The correlation of these deformations with capillary bond energies—the interaction energies of two particles at contact—quantifies the relation between the interactions and the near-field deformations. We characterize the interactions using effective power laws and investigate how anisotropic particles self-assemble by capillary forces. Interface deformations and particle interactions for cuboidal particles are weaker compared with those for ellipsoidal particles with the same aspect ratios. For both particle shapes, the bound state in side-by-side orientation is most stable, while the interaction in tip-to-side orientation is repulsive. Furthermore, we find capillary attraction between spherical and ellipsoidal particles. Our calculations therefore suggest cluster formation of spherical and ellipsoidal particles, which elucidates the role of spherical particles as stoppers for the growth of worm-like chains of ellipsoidal particles. The interaction between spherical and ellipsoidal particles might also explain the suppression of the “coffee-ring effect” that has been observed for evaporating droplets with mixtures of spherical and ellipsoidal particles. In general, our calculations of the near-field interactions complement previous calculations in the far field and help to predict colloidal assembly and rheological properties of particle-laden interfaces.
000171706 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x0
000171706 7001_ $$0P:(DE-Juel1)145054$$aKatava, Marina$$b1
000171706 7001_ $$0P:(DE-Juel1)159134$$aFaraj, Mohammed$$b2
000171706 7001_ $$0P:(DE-Juel1)130514$$aAuth, Thorsten$$b3$$ufzj
000171706 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b4$$ufzj
000171706 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/la502627h$$n40$$p11873-11882$$tLangmuir$$v30$$x0743-7463$$y2014
000171706 8564_ $$uhttps://juser.fz-juelich.de/record/171706/files/FZJ-2014-05275.pdf$$yRestricted
000171706 909CO $$ooai:juser.fz-juelich.de:171706$$pVDB
000171706 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142341$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000171706 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130514$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000171706 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000171706 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$x0
000171706 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x0
000171706 9141_ $$y2014
000171706 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000171706 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000171706 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000171706 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000171706 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000171706 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000171706 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000171706 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000171706 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000171706 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000171706 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000171706 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000171706 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000171706 980__ $$ajournal
000171706 980__ $$aVDB
000171706 980__ $$aI:(DE-Juel1)IAS-2-20090406
000171706 980__ $$aI:(DE-Juel1)ICS-2-20110106
000171706 980__ $$aUNRESTRICTED
000171706 981__ $$aI:(DE-Juel1)IBI-5-20200312
000171706 981__ $$aI:(DE-Juel1)IAS-2-20090406
000171706 981__ $$aI:(DE-Juel1)ICS-2-20110106