000171711 001__ 171711
000171711 005__ 20250129094348.0
000171711 0247_ $$2doi$$a10.1002/pssa.201300199
000171711 0247_ $$2ISSN$$a0031-8965
000171711 0247_ $$2ISSN$$a1521-396X
000171711 0247_ $$2ISSN$$a1862-6300
000171711 0247_ $$2ISSN$$a1862-6319
000171711 0247_ $$2WOS$$aWOS:000337759000009
000171711 037__ $$aFZJ-2014-05280
000171711 082__ $$a530
000171711 1001_ $$0P:(DE-HGF)0$$aDadda, Jayaram$$b0$$eCorresponding Author
000171711 245__ $$aEvolution of phase segregation and eutectic structures in AgPb$_{18}$ SbTe$_{20}$
000171711 260__ $$aWeinheim$$bWiley-VCH$$c2014
000171711 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1413889898_7664
000171711 3367_ $$2DataCite$$aOutput Types/Journal article
000171711 3367_ $$00$$2EndNote$$aJournal Article
000171711 3367_ $$2BibTeX$$aARTICLE
000171711 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000171711 3367_ $$2DRIVER$$aarticle
000171711 520__ $$aThe evolution of phase segregation in stoichiometric quenched AgPbmSbTe2+m (m = 18, Lead–Antimony–Silver–Tellurium – LAST-18) compounds was studied starting from the known pseudo-binary diagrams among Ag2Te, PbTe, Sb2Te3 and AgSbTe2. The compositions of secondary phases indicate that liquid phase during cooling, even under quenching conditions, follows mainly the liquidus line on the 2PbTe–Ag0.45Sb0.55Te1.05 quasi-binary section of the phase diagram until it reaches a critical point (18 mol.% of 2PbTe) and then turns to Ag2Te- and Sb2Te3-rich sides of quasi-ternary system. This has led to the formation of various secondary phases at various stages during the solidification, whose microstructural features and morphology strongly depend upon their chemical composition. Moreover, during solidification the local compositional fluctuations of liquid phase in combination with the shift of liquid composition towards Sb-rich side of the phase diagram resulted in the development of eutectic microstructures in some regions of LAST-18 matrix phase. This suggests there exists a miscibility gap and eutectic point below 600 °C on the 2PbTe–Ag0.45Sb0.55Te1.05 boundary line. These eutectic lamellar structures with a cumulative composition close to LAST-3 are on the 200–500 nm length scales and possess thermal conductivity of 0.55–0.65 W/m K at room temperature. The low thermal conductivity of lamellar eutectic structures was later confirmed on bulk samples using laser flash analysis, where the samples were synthesized by quenching and annealing. The results clearly demonstrate that one can engineer the microstructures in LAST compounds by selecting the appropriate initial composition from quasi PbTe–Ag2Te–Sb2Te3 ternary phase diagram to lower the thermal conductivity further.
000171711 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000171711 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x1
000171711 536__ $$0G:(DE-HGF)POF2-542$$a542 - Neutrons (POF2-542)$$cPOF2-542$$fPOF II$$x2
000171711 536__ $$0G:(DE-HGF)POF2-544$$a544 - In-house Research with PNI (POF2-544)$$cPOF2-544$$fPOF II$$x3
000171711 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x4
000171711 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000171711 7001_ $$0P:(DE-HGF)0$$aMüller, Eckhard$$b1
000171711 7001_ $$0P:(DE-HGF)0$$aPerlt, Susanne$$b2
000171711 7001_ $$0P:(DE-HGF)0$$aHöche, Thomas$$b3
000171711 7001_ $$0P:(DE-Juel1)130706$$aHermann, Raphael$$b4$$ufzj
000171711 7001_ $$0P:(DE-HGF)0$$aNeubrand, Achim$$b5
000171711 773__ $$0PERI:(DE-600)1481091-8$$a10.1002/pssa.201300199$$gVol. 211, no. 6, p. 1276 - 1281$$n6$$p1276 - 1281$$tPhysica status solidi / A$$v211$$x1862-6300$$y2014
000171711 8564_ $$uhttps://juser.fz-juelich.de/record/171711/files/FZJ-2014-05280.pdf$$yRestricted
000171711 909CO $$ooai:juser.fz-juelich.de:171711$$pVDB
000171711 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130706$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000171711 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0
000171711 9132_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x1
000171711 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bPOF III$$lForschungsbereich Materie$$vVon Materie zu Materialien und Leben$$x2
000171711 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000171711 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x1
000171711 9131_ $$0G:(DE-HGF)POF2-542$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vNeutrons$$x2
000171711 9131_ $$0G:(DE-HGF)POF2-544$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vIn-house Research with PNI$$x3
000171711 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x4
000171711 9141_ $$y2014
000171711 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000171711 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000171711 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000171711 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000171711 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000171711 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000171711 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000171711 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000171711 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000171711 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000171711 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000171711 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000171711 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000171711 980__ $$ajournal
000171711 980__ $$aVDB
000171711 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000171711 980__ $$aI:(DE-Juel1)PGI-4-20110106
000171711 980__ $$aI:(DE-82)080009_20140620
000171711 980__ $$aUNRESTRICTED
000171711 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000171711 981__ $$aI:(DE-Juel1)PGI-4-20110106