001     171717
005     20210129214305.0
024 7 _ |a 10.1038/nnano.2014.235
|2 doi
024 7 _ |a 1748-3387
|2 ISSN
024 7 _ |a 1748-3395
|2 ISSN
024 7 _ |a WOS:000345963500020
|2 WOS
024 7 _ |a altmetric:2792663
|2 altmetric
024 7 _ |a pmid:25326693
|2 pmid
037 _ _ |a FZJ-2014-05283
082 _ _ |a 600
100 1 _ |a Brede, Jens
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Long-range magnetic coupling between nanoscale organic–metal hybrids mediated by a nanoskyrmion lattice
260 _ _ |a London [u.a.]
|c 2014
|b Nature Publishing Group
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1418306689_4289
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The design of nanoscale organic–metal hybrids with tunable magnetic properties as well as the realization of controlled magnetic coupling between them open gateways for novel molecular spintronic devices. Progress in this direction requires a combination of a clever choice of organic and thin-film materials, advanced magnetic characterization techniques with a spatial resolution down to the atomic length scale, and a thorough understanding of magnetic properties based on first-principles calculations. Here, we make use of carbon-based systems of various nanoscale size, such as single coronene molecules and islands of graphene, deposited on a skyrmion lattice of a single atomic layer of iron on an iridium substrate, in order to tune the magnetic characteristics (for example, magnetic moments, magnetic anisotropies and coercive field strengths) of the organic–metal hybrids. Moreover, we demonstrate long-range magnetic coupling between individual organic–metal hybrids via the chiral magnetic skyrmion lattice, thereby offering viable routes towards spin information transmission between magnetically stable states in nanoscale dimensions.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Atodiresei, Nicolae
|0 P:(DE-Juel1)130513
|b 1
|u fzj
700 1 _ |a Caciuc, Vasile
|0 P:(DE-Juel1)130583
|b 2
|u fzj
700 1 _ |a Bazarnik, Maciej
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Al-Zubi, Ali
|0 P:(DE-Juel1)130498
|b 4
|u fzj
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 5
|u fzj
700 1 _ |a Wiesendanger, Roland
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1038/nnano.2014.235
|0 PERI:(DE-600)2254964-X
|p 1018–1023
|t Nature nanotechnology
|v 9
|y 2014
|x 1748-3395
856 4 _ |u https://juser.fz-juelich.de/record/171717/files/FZJ-2014-05283.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:171717
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130513
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130583
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130498
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130548
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21