000171756 001__ 171756
000171756 005__ 20240610120501.0
000171756 0247_ $$2doi$$a10.1039/C4NR04083J
000171756 0247_ $$2ISSN$$a2040-3364
000171756 0247_ $$2ISSN$$a2040-3372
000171756 0247_ $$2WOS$$aWOS:000344997500080
000171756 0247_ $$2altmetric$$aaltmetric:3922893
000171756 0247_ $$2pmid$$apmid:25263456
000171756 037__ $$aFZJ-2014-05322
000171756 082__ $$a600
000171756 1001_ $$0P:(DE-HGF)0$$aMetlenko, Veronika$$b0$$eCorresponding Author
000171756 245__ $$aDo dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO$_{3}$?
000171756 260__ $$aCambridge$$bRSC Publ.$$c2014
000171756 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1413955635_8750
000171756 3367_ $$2DataCite$$aOutput Types/Journal article
000171756 3367_ $$00$$2EndNote$$aJournal Article
000171756 3367_ $$2BibTeX$$aARTICLE
000171756 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000171756 3367_ $$2DRIVER$$aarticle
000171756 520__ $$aThe transport properties of edge dislocations comprising a symmetrical 6° [001] tilt grain boundary in weakly acceptor-doped SrTiO3 were investigated by means of various experimental and computational techniques. Oxygen transport along the dislocation array was probed by means of 18O/16O exchange experiments under (standard) oxidising conditions (pO2 = 5 × 10−1 bar) and also under reducing conditions (pO2 = 7 × 10−22 bar) at T = 973 K. In both cases, isotope profiles obtained by Secondary Ion Mass Spectrometry (SIMS) indicated no evidence of fast diffusion along the dislocation array. Charge transport across the dislocation array was probed in equilibrium electrical conductivity measurements as a function of oxygen partial pressure, 10−23 ≤ pO2/bar ≤ 1 at temperatures of T/K = 950, 1050, 1100. A significant decrease in the conductivity of the bicrystal (relative to that of a single crystal) was observed under oxidising conditions, but not under reducing conditions. These studies were complemented by static lattice simulations employing empirical pair-potentials. The simulations predict, that the tilt boundary comprises two types of dislocation cores, that the formation of oxygen vacancies is energetically preferred at both cores relative to the bulk, and that the migration of oxygen ions along both cores is hindered relative to the bulk. Combining all results and literature reports, we present a comprehensive and consistent picture of the transport properties of dislocations in SrTiO3.
000171756 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000171756 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000171756 7001_ $$0P:(DE-HGF)0$$aRamadan, Amr H. H.$$b1
000171756 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b2$$ufzj
000171756 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b3$$ufzj
000171756 7001_ $$0P:(DE-HGF)0$$aSchraknepper, Henning$$b4
000171756 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b5$$ufzj
000171756 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b6$$ufzj
000171756 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b7
000171756 7001_ $$0P:(DE-HGF)0$$aDe Souza, Roger A.$$b8
000171756 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C4NR04083J$$gVol. 6, no. 21, p. 12864 - 12876$$n21$$p12864 - 12876$$tNanoscale$$v6$$x2040-3372$$y2014
000171756 8564_ $$uhttps://juser.fz-juelich.de/record/171756/files/FZJ-2014-05322.pdf$$yRestricted
000171756 909CO $$ooai:juser.fz-juelich.de:171756$$pVDB
000171756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000171756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000171756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000171756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000171756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000171756 9132_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0
000171756 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000171756 9141_ $$y2014
000171756 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000171756 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000171756 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000171756 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000171756 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000171756 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000171756 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000171756 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000171756 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000171756 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000171756 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000171756 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000171756 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000171756 980__ $$ajournal
000171756 980__ $$aVDB
000171756 980__ $$aI:(DE-Juel1)PGI-7-20110106
000171756 980__ $$aI:(DE-Juel1)PGI-5-20110106
000171756 980__ $$aI:(DE-82)080009_20140620
000171756 980__ $$aUNRESTRICTED
000171756 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000171756 981__ $$aI:(DE-Juel1)PGI-5-20110106