000171763 001__ 171763
000171763 005__ 20250129094224.0
000171763 0247_ $$2doi$$a10.1039/c3cp53749h
000171763 0247_ $$2ISSN$$a1463-9076
000171763 0247_ $$2ISSN$$a1463-9084
000171763 0247_ $$2WOS$$aWOS:000345208200005
000171763 0247_ $$2MLZ$$aC3CP53749H
000171763 0247_ $$2altmetric$$aaltmetric:21824149
000171763 0247_ $$2pmid$$apmid:24848359
000171763 037__ $$aFZJ-2014-05328
000171763 082__ $$a540
000171763 1001_ $$0P:(DE-HGF)0$$aClaudio, Tania$$b0
000171763 245__ $$aNanocrystalline silicon: lattice dynamics and enhanced thermoelectric properties
000171763 260__ $$aCambridge$$bRSC Publ.$$c2014
000171763 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1416227011_11276
000171763 3367_ $$2DataCite$$aOutput Types/Journal article
000171763 3367_ $$00$$2EndNote$$aJournal Article
000171763 3367_ $$2BibTeX$$aARTICLE
000171763 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000171763 3367_ $$2DRIVER$$aarticle
000171763 520__ $$aSilicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K−1 m−1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K−1 m−1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.
000171763 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000171763 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x1
000171763 536__ $$0G:(DE-HGF)POF2-542$$a542 - Neutrons (POF2-542)$$cPOF2-542$$fPOF II$$x2
000171763 536__ $$0G:(DE-HGF)POF2-544$$a544 - In-house Research with PNI (POF2-544)$$cPOF2-544$$fPOF II$$x3
000171763 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x4
000171763 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000171763 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000171763 693__ $$0EXP:(DE-MLZ)PGAA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PGAA-20140101$$6EXP:(DE-MLZ)NL4b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$ePGAA: Prompt gamma activation analysis$$fNL4b$$x1
000171763 7001_ $$0P:(DE-HGF)0$$aStein, Niklas$$b1
000171763 7001_ $$0P:(DE-HGF)0$$aStroppa, Daniel G.$$b2
000171763 7001_ $$0P:(DE-Juel1)144500$$aKlobes, Benedikt$$b3
000171763 7001_ $$0P:(DE-HGF)0$$aKoza, Michael Marek$$b4
000171763 7001_ $$0P:(DE-HGF)0$$aKudejova, Petra$$b5
000171763 7001_ $$0P:(DE-HGF)0$$aPetermann, Nils$$b6
000171763 7001_ $$0P:(DE-HGF)0$$aWiggers, Hartmut$$b7
000171763 7001_ $$0P:(DE-HGF)0$$aSchierning, Gabi$$b8
000171763 7001_ $$0P:(DE-Juel1)130706$$aHermann, Raphael$$b9$$eCorresponding Author
000171763 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/c3cp53749h$$gp. 10.1039.c3cp53749h$$n47$$p25701 - 25709$$tPhysical chemistry, chemical physics$$v16$$x1463-9084$$y2014
000171763 8564_ $$uhttps://juser.fz-juelich.de/record/171763/files/FZJ-2014-05328.pdf$$yRestricted
000171763 909CO $$ooai:juser.fz-juelich.de:171763$$pVDB
000171763 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000171763 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000171763 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000171763 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000171763 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000171763 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000171763 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000171763 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000171763 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000171763 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000171763 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000171763 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000171763 9141_ $$y2014
000171763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144500$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000171763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130706$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000171763 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0
000171763 9132_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x1
000171763 9132_ $$0G:(DE-HGF)POF3-6213$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bPOF III$$lForschungsbereich Materie$$vVon Materie zu Materialien und Leben$$x2
000171763 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000171763 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x1
000171763 9131_ $$0G:(DE-HGF)POF2-542$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vNeutrons$$x2
000171763 9131_ $$0G:(DE-HGF)POF2-544$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vIn-house Research with PNI$$x3
000171763 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x4
000171763 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000171763 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000171763 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000171763 980__ $$ajournal
000171763 980__ $$aVDB
000171763 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000171763 980__ $$aI:(DE-Juel1)PGI-4-20110106
000171763 980__ $$aI:(DE-82)080009_20140620
000171763 980__ $$aUNRESTRICTED
000171763 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000171763 981__ $$aI:(DE-Juel1)PGI-4-20110106