000171786 001__ 171786
000171786 005__ 20210129214314.0
000171786 037__ $$aFZJ-2014-05350
000171786 041__ $$aEnglish
000171786 1001_ $$0P:(DE-Juel1)129360$$aMetzner, Ralf$$b0$$eCorresponding Author$$ufzj
000171786 1112_ $$aPLANT PHENOTYPING: CONCEPTS, SENSORS AND APPLICATIONS$$cBonn$$d2014-09-29 - 2014-10-01$$wGermany
000171786 245__ $$aFollowing development of belowground sugar beet traits with MagneticResonance Imaging (MRI) and Positron Emission Tomography (PET)
000171786 260__ $$c2014
000171786 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1414477620_26051$$xOther
000171786 3367_ $$033$$2EndNote$$aConference Paper
000171786 3367_ $$2DataCite$$aOutput Types/Conference Poster
000171786 3367_ $$2DRIVER$$aconferenceObject
000171786 3367_ $$2ORCID$$aCONFERENCE_POSTER
000171786 3367_ $$2BibTeX$$aINPROCEEDINGS
000171786 520__ $$aBoth structural and functional properties of belowground organs are critical for development and yield of plants, but compared to the shoot, these are much more difficult to observe due to soil opacity. With the yield relevant organ situated belowground sugar beet is even more affected by this difficulty than other crops. The beet shows a complex tissue structure with several cambia active in parallel that are tightly linked with its function in storing photoassimilates in the form of sucrose. Additionally the development of traits during the growth period such as morphology, anatomy, sugar content and photoassimilate allocation within the beet cannot be addressed with destructive sampling techniques. Nevertheless, these are key factors for sugar yield. Here, we show application of Magnetic Resonance imaging (MRI) to investigate on a routine basis the development of structural traits such as beet diameter, biomass and width of cambia rings in plants potted in an agricultural soil mixed with sand. Functional traits such as sugar content and petiole xylem flow velocity were investigated regularly during the same time periods of up to four months. Individual tissues could be identified using MRI T2-maps with the aid of light microscopy at final harvest allowing the study of the development of tissues such as cambia, phloem or storage parenchyma in the cambial rings. Different Genotypes, commercial varieties as well as such of contrasting sugar content from KWS material were compared. For studying photoassimilate allocation we applied Positron Emission Tomography (PET) using carbon isotope 11C as a tracer. We show 3D PET maps of Radioactivity in the beet tracing the routes of photoassimilate translocation from the leaves into the beet. This revealed translocation pattern and their dynamics during three month of growth. These data are further used for fitting simple transport models, to estimate assimilate transport velocity and assimilate storage along the transport pathway in specific sections of the beet. Together these approaches have the potential to yield unique insights into sugar beet belowground development. Thereby they will shed new light on processes like sugar storage or stress responses in the beet.
000171786 536__ $$0G:(DE-HGF)POF2-242$$a242 - Sustainable Bioproduction (POF2-242)$$cPOF2-242$$fPOF II$$x0
000171786 536__ $$0G:(DE-Juel1)BMBF-0315532A$$aBMBF-0315532A - CROP.SENSe.net (BMBF-0315532A)$$cBMBF-0315532A$$x1
000171786 536__ $$0G:(DE-Juel1)BMBF-031A053A$$aDPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)$$cBMBF-031A053A$$fDeutsches Pflanzen Phänotypisierungsnetzwerk$$x2
000171786 7001_ $$0P:(DE-Juel1)5963$$aBühler, Jonas$$b1$$ufzj
000171786 7001_ $$0P:(DE-Juel1)129292$$aBreuer, Esther$$b2$$ufzj
000171786 7001_ $$0P:(DE-Juel1)129307$$aDautzenberg, Marco$$b3$$ufzj
000171786 7001_ $$0P:(DE-Juel1)129336$$aJahnke, Siegfried$$b4$$ufzj
000171786 7001_ $$0P:(DE-Juel1)129402$$aSchurr, Ulrich$$b5$$ufzj
000171786 7001_ $$0P:(DE-Juel1)129390$$aRoeb, Gerhard$$b6$$ufzj
000171786 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, Dagmar$$b7$$ufzj
000171786 773__ $$y2014
000171786 909CO $$ooai:juser.fz-juelich.de:171786$$pVDB
000171786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129360$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000171786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5963$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000171786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129292$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000171786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129307$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000171786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129336$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000171786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129402$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000171786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129390$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000171786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129425$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000171786 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vKey Technologies for the Bioeconomy$$x0
000171786 9131_ $$0G:(DE-HGF)POF2-242$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vSustainable Bioproduction$$x0
000171786 9141_ $$y2014
000171786 920__ $$lyes
000171786 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000171786 980__ $$aposter
000171786 980__ $$aVDB
000171786 980__ $$aI:(DE-Juel1)IBG-2-20101118
000171786 980__ $$aUNRESTRICTED