001     171786
005     20210129214314.0
037 _ _ |a FZJ-2014-05350
041 _ _ |a English
100 1 _ |a Metzner, Ralf
|0 P:(DE-Juel1)129360
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a PLANT PHENOTYPING: CONCEPTS, SENSORS AND APPLICATIONS
|c Bonn
|d 2014-09-29 - 2014-10-01
|w Germany
245 _ _ |a Following development of belowground sugar beet traits with MagneticResonance Imaging (MRI) and Positron Emission Tomography (PET)
260 _ _ |c 2014
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1414477620_26051
|2 PUB:(DE-HGF)
|x Other
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Both structural and functional properties of belowground organs are critical for development and yield of plants, but compared to the shoot, these are much more difficult to observe due to soil opacity. With the yield relevant organ situated belowground sugar beet is even more affected by this difficulty than other crops. The beet shows a complex tissue structure with several cambia active in parallel that are tightly linked with its function in storing photoassimilates in the form of sucrose. Additionally the development of traits during the growth period such as morphology, anatomy, sugar content and photoassimilate allocation within the beet cannot be addressed with destructive sampling techniques. Nevertheless, these are key factors for sugar yield. Here, we show application of Magnetic Resonance imaging (MRI) to investigate on a routine basis the development of structural traits such as beet diameter, biomass and width of cambia rings in plants potted in an agricultural soil mixed with sand. Functional traits such as sugar content and petiole xylem flow velocity were investigated regularly during the same time periods of up to four months. Individual tissues could be identified using MRI T2-maps with the aid of light microscopy at final harvest allowing the study of the development of tissues such as cambia, phloem or storage parenchyma in the cambial rings. Different Genotypes, commercial varieties as well as such of contrasting sugar content from KWS material were compared. For studying photoassimilate allocation we applied Positron Emission Tomography (PET) using carbon isotope 11C as a tracer. We show 3D PET maps of Radioactivity in the beet tracing the routes of photoassimilate translocation from the leaves into the beet. This revealed translocation pattern and their dynamics during three month of growth. These data are further used for fitting simple transport models, to estimate assimilate transport velocity and assimilate storage along the transport pathway in specific sections of the beet. Together these approaches have the potential to yield unique insights into sugar beet belowground development. Thereby they will shed new light on processes like sugar storage or stress responses in the beet.
536 _ _ |a 242 - Sustainable Bioproduction (POF2-242)
|0 G:(DE-HGF)POF2-242
|c POF2-242
|f POF II
|x 0
536 _ _ |a BMBF-0315532A - CROP.SENSe.net (BMBF-0315532A)
|0 G:(DE-Juel1)BMBF-0315532A
|c BMBF-0315532A
|x 1
536 _ _ |a DPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)
|0 G:(DE-Juel1)BMBF-031A053A
|c BMBF-031A053A
|f Deutsches Pflanzen Phänotypisierungsnetzwerk
|x 2
700 1 _ |a Bühler, Jonas
|0 P:(DE-Juel1)5963
|b 1
|u fzj
700 1 _ |a Breuer, Esther
|0 P:(DE-Juel1)129292
|b 2
|u fzj
700 1 _ |a Dautzenberg, Marco
|0 P:(DE-Juel1)129307
|b 3
|u fzj
700 1 _ |a Jahnke, Siegfried
|0 P:(DE-Juel1)129336
|b 4
|u fzj
700 1 _ |a Schurr, Ulrich
|0 P:(DE-Juel1)129402
|b 5
|u fzj
700 1 _ |a Roeb, Gerhard
|0 P:(DE-Juel1)129390
|b 6
|u fzj
700 1 _ |a van Dusschoten, Dagmar
|0 P:(DE-Juel1)129425
|b 7
|u fzj
773 _ _ |y 2014
909 C O |o oai:juser.fz-juelich.de:171786
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129360
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)5963
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129292
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129307
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129336
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129402
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129390
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129425
913 2 _ |a DE-HGF
|b POF III
|l Key Technologies
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Key Technologies for the Bioeconomy
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-242
|2 G:(DE-HGF)POF2-200
|v Sustainable Bioproduction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21