000171823 001__ 171823 000171823 005__ 20230310131401.0 000171823 020__ $$a978-3-319-05788-0 (print) 000171823 020__ $$a978-3-319-05789-7 (electronic) 000171823 0247_ $$2doi$$a10.1007/978-3-319-05789-7_61 000171823 0247_ $$2WOS$$aWOS:000347877900061 000171823 037__ $$aFZJ-2014-05382 000171823 1001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b0$$eCorresponding Author$$ufzj 000171823 1112_ $$aDomain Decomposition Methods in Science and Engineering XXI$$cRennes$$d2012-06-25 - 2012-06-29$$gDD21$$wFrance 000171823 245__ $$aIntegrating an N-Body Problem with SDC and PFASST 000171823 260__ $$bSpringer International Publishing$$c2014 000171823 300__ $$a637 - 645 000171823 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1414497442_8209 000171823 3367_ $$033$$2EndNote$$aConference Paper 000171823 3367_ $$2ORCID$$aCONFERENCE_PAPER 000171823 3367_ $$2DataCite$$aOutput Types/Conference Paper 000171823 3367_ $$2DRIVER$$aconferenceObject 000171823 3367_ $$2BibTeX$$aINPROCEEDINGS 000171823 4900_ $$aLecture Notes in Computational Science and Engineering$$v98 000171823 520__ $$aVortex methods for the Navier–Stokes equations are based on a Lagrangian particle discretization, which reduces the governing equations to a first-order initial value system of ordinary differential equations for the position and vorticity of N particles. In this paper, the accuracy of solving this system by time-serial spectral deferred corrections (SDC) as well as by the time-parallel Parallel Full Approximation Scheme in Space and Time (PFASST) is investigated. PFASST is based on intertwining SDC iterations with differing resolution in a manner similar to the Parareal algorithm and uses a Full Approximation Scheme (FAS) correction to improve the accuracy of coarser SDC iterations. It is demonstrated that SDC and PFASST can generate highly accurate solutions, and the performance in terms of function evaluations required for a certain accuracy is analyzed and compared to a standard Runge–Kutta method. 000171823 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0 000171823 536__ $$0G:(GEPRIS)450829162$$aDFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)$$c450829162$$x1 000171823 588__ $$aDataset connected to CrossRef Book, juser.fz-juelich.de 000171823 7001_ $$0P:(DE-HGF)0$$aRuprecht, Daniel$$b1 000171823 7001_ $$0P:(DE-HGF)0$$aKrause, Rolf$$b2 000171823 7001_ $$0P:(DE-HGF)0$$aEmmett, Matthew$$b3 000171823 7001_ $$0P:(DE-HGF)0$$aMinion, Michael$$b4 000171823 7001_ $$0P:(DE-Juel1)140128$$aWinkel, Mathias$$b5 000171823 7001_ $$0P:(DE-Juel1)132115$$aGibbon, Paul$$b6$$ufzj 000171823 773__ $$a10.1007/978-3-319-05789-7_61 000171823 909CO $$ooai:juser.fz-juelich.de:171823$$pVDB 000171823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000171823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000171823 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vSupercomputing & Big Data $$x0 000171823 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0 000171823 9141_ $$y2014 000171823 920__ $$lyes 000171823 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000171823 980__ $$acontrib 000171823 980__ $$aVDB 000171823 980__ $$aI:(DE-Juel1)JSC-20090406 000171823 980__ $$aUNRESTRICTED