001 | 171823 | ||
005 | 20230310131401.0 | ||
020 | _ | _ | |a 978-3-319-05788-0 (print) |
020 | _ | _ | |a 978-3-319-05789-7 (electronic) |
024 | 7 | _ | |a 10.1007/978-3-319-05789-7_61 |2 doi |
024 | 7 | _ | |a WOS:000347877900061 |2 WOS |
037 | _ | _ | |a FZJ-2014-05382 |
100 | 1 | _ | |a Speck, Robert |0 P:(DE-Juel1)132268 |b 0 |e Corresponding Author |u fzj |
111 | 2 | _ | |a Domain Decomposition Methods in Science and Engineering XXI |g DD21 |c Rennes |d 2012-06-25 - 2012-06-29 |w France |
245 | _ | _ | |a Integrating an N-Body Problem with SDC and PFASST |
260 | _ | _ | |c 2014 |b Springer International Publishing |
300 | _ | _ | |a 637 - 645 |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1414497442_8209 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
490 | 0 | _ | |a Lecture Notes in Computational Science and Engineering |v 98 |
520 | _ | _ | |a Vortex methods for the Navier–Stokes equations are based on a Lagrangian particle discretization, which reduces the governing equations to a first-order initial value system of ordinary differential equations for the position and vorticity of N particles. In this paper, the accuracy of solving this system by time-serial spectral deferred corrections (SDC) as well as by the time-parallel Parallel Full Approximation Scheme in Space and Time (PFASST) is investigated. PFASST is based on intertwining SDC iterations with differing resolution in a manner similar to the Parareal algorithm and uses a Full Approximation Scheme (FAS) correction to improve the accuracy of coarser SDC iterations. It is demonstrated that SDC and PFASST can generate highly accurate solutions, and the performance in terms of function evaluations required for a certain accuracy is analyzed and compared to a standard Runge–Kutta method. |
536 | _ | _ | |a 411 - Computational Science and Mathematical Methods (POF2-411) |0 G:(DE-HGF)POF2-411 |c POF2-411 |x 0 |f POF II |
536 | _ | _ | |a DFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162) |0 G:(GEPRIS)450829162 |c 450829162 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef Book, juser.fz-juelich.de |
700 | 1 | _ | |a Ruprecht, Daniel |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Krause, Rolf |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Emmett, Matthew |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Minion, Michael |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Winkel, Mathias |0 P:(DE-Juel1)140128 |b 5 |
700 | 1 | _ | |a Gibbon, Paul |0 P:(DE-Juel1)132115 |b 6 |u fzj |
773 | _ | _ | |a 10.1007/978-3-319-05789-7_61 |
909 | C | O | |o oai:juser.fz-juelich.de:171823 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)132268 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)132115 |
913 | 2 | _ | |a DE-HGF |b POF III |l Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Supercomputing & Big Data |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |l Supercomputing |1 G:(DE-HGF)POF2-410 |0 G:(DE-HGF)POF2-411 |2 G:(DE-HGF)POF2-400 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2014 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|