000171826 001__ 171826
000171826 005__ 20210129214319.0
000171826 0247_ $$2doi$$a10.1104/pp.114.249276
000171826 0247_ $$2ISSN$$a0032-0889
000171826 0247_ $$2ISSN$$a1532-2548
000171826 0247_ $$2WOS$$aWOS:000346016400038
000171826 0247_ $$2altmetric$$aaltmetric:2801845
000171826 0247_ $$2pmid$$apmid:25332505
000171826 037__ $$aFZJ-2014-05385
000171826 041__ $$aenglish
000171826 082__ $$a580
000171826 1001_ $$0P:(DE-HGF)0$$aDey, S.$$b0
000171826 245__ $$aBacteria-triggered systemic immunity in barley appears to be associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid
000171826 260__ $$aRockville, Md.$$bSoc.$$c2014
000171826 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1420460970_23889
000171826 3367_ $$2DataCite$$aOutput Types/Journal article
000171826 3367_ $$00$$2EndNote$$aJournal Article
000171826 3367_ $$2BibTeX$$aARTICLE
000171826 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000171826 3367_ $$2DRIVER$$aarticle
000171826 520__ $$aLeaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity.
000171826 536__ $$0G:(DE-HGF)POF2-89582$$a89582 - Plant Science (POF2-89582)$$cPOF2-89582$$fPOF II T$$x0
000171826 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000171826 7001_ $$0P:(DE-HGF)0$$aWenig, M.$$b1
000171826 7001_ $$0P:(DE-HGF)0$$aLangen, G.$$b2
000171826 7001_ $$0P:(DE-HGF)0$$aSharma, S.$$b3
000171826 7001_ $$0P:(DE-HGF)0$$aKugler, K.$$b4
000171826 7001_ $$0P:(DE-HGF)0$$aKnappe, C.$$b5
000171826 7001_ $$0P:(DE-HGF)0$$aHause, B.$$b6
000171826 7001_ $$0P:(DE-HGF)0$$aBichlmeier, M.$$b7
000171826 7001_ $$0P:(DE-HGF)0$$aBabaeizad, V.$$b8
000171826 7001_ $$0P:(DE-HGF)0$$aImani, J.$$b9
000171826 7001_ $$0P:(DE-Juel1)129338$$aJanzik, I.$$b10
000171826 7001_ $$0P:(DE-HGF)0$$aStempfl, T.$$b11
000171826 7001_ $$0P:(DE-HGF)0$$aHueckelhoven, R.$$b12
000171826 7001_ $$0P:(DE-HGF)0$$aKogel, K.-H.$$b13
000171826 7001_ $$0P:(DE-HGF)0$$aMayer, K. F.$$b14
000171826 7001_ $$0P:(DE-HGF)0$$aVlot, C.$$b15$$eCorresponding Author
000171826 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.114.249276$$gp. pp.114.249276$$n4$$p2133-2151$$tPlant physiology$$v166$$x1532-2548$$y2014
000171826 8564_ $$uhttps://juser.fz-juelich.de/record/171826/files/FZJ-2014-05385.pdf$$yRestricted
000171826 909CO $$ooai:juser.fz-juelich.de:171826$$pVDB
000171826 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129338$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000171826 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000171826 9131_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vPlant Science$$x0
000171826 9141_ $$y2014
000171826 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000171826 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000171826 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000171826 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000171826 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000171826 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000171826 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000171826 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000171826 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000171826 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000171826 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000171826 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000171826 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000171826 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000171826 980__ $$ajournal
000171826 980__ $$aVDB
000171826 980__ $$aI:(DE-Juel1)IBG-2-20101118
000171826 980__ $$aUNRESTRICTED