001     171826
005     20210129214319.0
024 7 _ |a 10.1104/pp.114.249276
|2 doi
024 7 _ |a 0032-0889
|2 ISSN
024 7 _ |a 1532-2548
|2 ISSN
024 7 _ |a WOS:000346016400038
|2 WOS
024 7 _ |a altmetric:2801845
|2 altmetric
024 7 _ |a pmid:25332505
|2 pmid
037 _ _ |a FZJ-2014-05385
041 _ _ |a english
082 _ _ |a 580
100 1 _ |a Dey, S.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Bacteria-triggered systemic immunity in barley appears to be associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid
260 _ _ |a Rockville, Md.
|c 2014
|b Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1420460970_23889
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity.
536 _ _ |0 G:(DE-HGF)POF2-89582
|f POF II T
|x 0
|c POF2-89582
|a 89582 - Plant Science (POF2-89582)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Wenig, M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Langen, G.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sharma, S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kugler, K.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Knappe, C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hause, B.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bichlmeier, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Babaeizad, V.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Imani, J.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Janzik, I.
|0 P:(DE-Juel1)129338
|b 10
700 1 _ |a Stempfl, T.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Hueckelhoven, R.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kogel, K.-H.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Mayer, K. F.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Vlot, C.
|0 P:(DE-HGF)0
|b 15
|e Corresponding Author
773 _ _ |a 10.1104/pp.114.249276
|g p. pp.114.249276
|0 PERI:(DE-600)2004346-6
|n 4
|p 2133-2151
|t Plant physiology
|v 166
|y 2014
|x 1532-2548
856 4 _ |u https://juser.fz-juelich.de/record/171826/files/FZJ-2014-05385.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:171826
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)129338
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89582
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21