001     171837
005     20220930130034.0
024 7 _ |a 10.1093/cercor/bhu250
|2 doi
024 7 _ |a pmid:25331597
|2 pmid
024 7 _ |a 1047-3211
|2 ISSN
024 7 _ |a 1460-2199
|2 ISSN
024 7 _ |a WOS:000370972500029
|2 WOS
024 7 _ |a altmetric:2796897
|2 altmetric
037 _ _ |a FZJ-2014-05394
041 _ _ |a ENG
082 _ _ |a 610
100 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Functional Segregation of the Human Dorsomedial Prefrontal Cortex.
260 _ _ |a Oxford
|c 2016
|b Oxford Univ. Press
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1451992567_26996
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The human dorsomedial prefrontal cortex (dmPFC) has been implicated in various complex cognitive processes, including social cognition. To unravel its functional organization, we assessed the dmPFC's regional heterogeneity, connectivity patterns, and functional profiles. First, the heterogeneity of a dmPFC seed, engaged during social processing, was investigated by assessing local differences in whole-brain coactivation profiles. Second, functional connectivity of the ensuing dmPFC clusters was compared by task-constrained meta-analytic coactivation mapping and task-unconstrained resting-state correlations. Third, dmPFC clusters were functionally profiled by forward/reverse inference. The dmPFC seed was thus segregated into 4 clusters (rostroventral, rostrodorsal, caudal-right, and caudal-left). Both rostral clusters were connected to the amygdala and hippocampus and associated with memory and social cognitive tasks in functional decoding. The rostroventral cluster exhibited strongest connectivity to the default mode network. Unlike the rostral segregation, the caudal dmPFC was divided by hemispheres. The caudal-right cluster was strongly connected to a frontoparietal network (dorsal attention network), whereas the caudal-left cluster was strongly connected to the anterior midcingulate cortex and bilateral anterior insula (salience network). In conclusion, we demonstrate that a dmPFC seed reflecting social processing can be divided into 4 separate functional modules that contribute to distinct facets of advanced human cognition.
536 _ _ |a 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)
|0 G:(DE-HGF)POF2-333
|c POF2-333
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de, PubMed,
700 1 _ |a Laird, Angela R
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fox, Peter T
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bzdok, Danilo
|0 P:(DE-Juel1)136848
|b 3
|u fzj
700 1 _ |a Hensel, Lukas
|0 P:(DE-Juel1)142144
|b 4
|u fzj
773 _ _ |a 10.1093/cercor/bhu250
|g p. bhu250
|0 PERI:(DE-600)1483485-6
|n 1
|p 304-321
|t Cerebral cortex
|v 26
|y 2016
|x 1460-2199
856 4 _ |u https://juser.fz-juelich.de/record/171837/files/Cereb.%20Cortex-2016-Eickhoff-304-21.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/171837/files/Cereb.%20Cortex-2016-Eickhoff-304-21.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/171837/files/Cereb.%20Cortex-2016-Eickhoff-304-21.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/171837/files/Cereb.%20Cortex-2016-Eickhoff-304-21.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/171837/files/Cereb.%20Cortex-2016-Eickhoff-304-21.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/171837/files/Cereb.%20Cortex-2016-Eickhoff-304-21.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:171837
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)136848
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)142144
913 2 _ |a DE-HGF
|b POF III
|l Key Technologies
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Decoding the Human Brain
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-333
|2 G:(DE-HGF)POF2-300
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21