000171838 001__ 171838
000171838 005__ 20240711085641.0
000171838 0247_ $$2doi$$a10.1016/j.jpowsour.2014.09.137
000171838 0247_ $$2ISSN$$a0378-7753
000171838 0247_ $$2ISSN$$a1873-2755
000171838 0247_ $$2WOS$$aWOS:000345725700132
000171838 037__ $$aFZJ-2014-05395
000171838 082__ $$a620
000171838 1001_ $$0P:(DE-Juel1)158083$$aGuin, M.$$b0$$eCorresponding Author$$ufzj
000171838 245__ $$aSurvey of the transport properties of sodium superionic conductor materials for use in sodium batteries
000171838 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015
000171838 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1415695419_4054
000171838 3367_ $$2DataCite$$aOutput Types/Journal article
000171838 3367_ $$00$$2EndNote$$aJournal Article
000171838 3367_ $$2BibTeX$$aARTICLE
000171838 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000171838 3367_ $$2DRIVER$$aarticle
000171838 520__ $$aOne important issue in future scenarios predominantly using renewable energy sources is the electrochemical storage of electricity in batteries. Among all rechargeable battery technologies, Li-ion cells have the largest energy density and output voltage today, but they have yet to be optimized in terms of capacity, safety and cost for use as stationary systems. Recently, sodium batteries have been attracting attention again because of the abundant availability of Na. However, much work is still required in the field of sodium batteries in order to mature this technology.Sodium superionic conductor (NASICON) materials are a thoroughly studied class of solid electrolytes. In this study, their crystal structure, compositional diversity and ionic conductivity are surveyed and analysed in order to correlate the lattice parameters and specific crystal structure data with sodium conductivity and activation energy using as much data sets as possible. Approximately 110 compositions with the general formula Na1+2w+x−y+zMw(II)Mx(III)My(V)M2−w−x−y(IV)(SiO4)z(PO4)3−z were included in the data collection to determine an optimal size for the M cations. In addition, the impact of the amount of Na per formula unit on the conductivity and the substitution of P with Si are discussed. An extensive study of the size of the structural bottleneck for sodium conduction (formed by triangles of oxygen ions) was carried out to validate the influence of this geometrical parameter on sodium conductivity.
000171838 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000171838 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000171838 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000171838 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b1$$ufzj
000171838 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2014.09.137$$gVol. 273, p. 1056 - 1064$$p1056 - 1064$$tJournal of power sources$$v273$$x0378-7753$$y2015
000171838 8564_ $$uhttps://juser.fz-juelich.de/record/171838/files/FZJ-2014-05395.pdf$$yRestricted
000171838 8767_ $$92014-10-16$$d2014-11-04$$eColour charges$$jZahlung erfolgt
000171838 909CO $$ooai:juser.fz-juelich.de:171838$$popenCost$$pOpenAPC$$pVDB
000171838 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158083$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000171838 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000171838 9130_ $$0G:(DE-HGF)POF2-435$$1G:(DE-HGF)POF2-430$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lNANOMIKRO: Wissenschaft, Technologie und Systeme$$vEnergy Storage$$x0
000171838 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000171838 9141_ $$y2015
000171838 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000171838 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000171838 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000171838 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000171838 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000171838 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000171838 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000171838 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000171838 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000171838 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000171838 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000171838 920__ $$lyes
000171838 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000171838 980__ $$ajournal
000171838 980__ $$aVDB
000171838 980__ $$aI:(DE-Juel1)IEK-1-20101013
000171838 980__ $$aUNRESTRICTED
000171838 980__ $$aAPC
000171838 981__ $$aI:(DE-Juel1)IMD-2-20101013