001     171844
005     20210129214322.0
024 7 _ |a 10.1021/nl503221p
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a WOS:000345723800089
|2 WOS
024 7 _ |a altmetric:2731618
|2 altmetric
024 7 _ |a pmid:25268037
|2 pmid
037 _ _ |a FZJ-2014-05401
082 _ _ |a 540
100 1 _ |0 P:(DE-HGF)0
|a McDaniel, Jonathan R.
|b 0
|e Corresponding Author
245 _ _ |a Noncanonical Self-Assembly of Highly Asymmetric Genetically Encoded Polypeptide Amphiphiles into Cylindrical Micelles
260 _ _ |a Washington, DC
|b ACS Publ.
|c 2014
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1418295313_4294
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Elastin-like polypeptides (ELPs) are a class of biopolymers consisting of the pentameric repeat (VPGαG)n based on the sequence of mammalian tropoelastin that display a thermally induced soluble-to-insoluble phase transition in aqueous solution. We have discovered a remarkably simple approach to driving the spontaneous self-assembly of high molecular weight ELPs into nanostructures by genetically fusing a short 1.5 kDa (XGy)z assembly domain to one end of the ELP. Classical theories of self-assembly based on the geometric mass balance of hydrophilic and hydrophobic block copolymers suggest that these highly asymmetric polypeptides should form spherical micelles. Surprisingly, when sufficiently hydrophobic amino acids (X) are presented in a periodic sequence such as (FGG)8 or (YG)8, these highly asymmetric polypeptides self-assemble into cylindrical micelles whose length can be tuned by the sequence of the morphogenic tag. These nanostructures were characterized by light scattering, tunable resistive pulse sensing, fluorescence spectrophotometry, and thermal turbidimetry, as well as by cryogenic transmission electron microscopy (cryo-TEM) and small-angle neutron scattering (SANS). These short assembly domains provide a facile strategy to control the size, shape, and stability of stimuli responsive polypeptide nanostructures.
536 _ _ |0 G:(DE-HGF)POF2-54G24
|a 54G - JCNS (POF2-54G24)
|c POF2-54G24
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 1
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 2
650 1 7 |a Key Technologies
|0 V:(DE-MLZ)GC-150-1
|2 V:(DE-HGF)
|x 1
650 1 7 |a Soft Matter, Macromolecules, Complex fluids, Biophysics
|0 V:(DE-MLZ)GC-140
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)KWS3-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)KWS3-20140101
|6 EXP:(DE-MLZ)NL3auS-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-3: Very small angle scattering diffractometer with focusing mirror
|f NL3auS
|x 0
693 _ _ |0 EXP:(DE-MLZ)KWS1-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|x 1
693 _ _ |0 EXP:(DE-MLZ)KWS2-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)KWS2-20140101
|6 EXP:(DE-MLZ)NL3ao-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-2: Small angle scattering diffractometer
|f NL3ao
|x 2
700 1 _ |0 P:(DE-HGF)0
|a Weitzhandler, Isaac
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Prevost, Sylvain
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Vargo, Kevin B.
|b 3
700 1 _ |0 P:(DE-Juel1)130507
|a Appavou, Marie-Sousai
|b 4
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Hammer, Daniel A.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Gradzielski, Michael
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Chilkoti, Ashutosh
|b 7
773 _ _ |0 PERI:(DE-600)2048866-X
|a 10.1021/nl503221p
|g p. 141002124612004 -
|n 11
|p 6590–6598
|t Nano letters
|v 14
|x 1530-6992
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/171844/files/FZJ-2014-05401.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:171844
|p VDB:MLZ
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130507
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-621
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|9 G:(DE-HGF)POF3-6215
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v In-house research on the structure, dynamics and function of matter
|x 0
913 2 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|9 G:(DE-HGF)POF3-6G4
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v Facility topic: Neutrons for Research on Condensed Matter
|x 1
913 1 _ |0 G:(DE-HGF)POF2-54G24
|1 G:(DE-HGF)POF2-540
|2 G:(DE-HGF)POF2-500
|a DE-HGF
|b Struktur der Materie
|v JCNS
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9910
|2 StatID
|a IF >= 10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21