001     171846
005     20240711085700.0
024 7 _ |a 2128/8059
|2 Handle
037 _ _ |a FZJ-2014-05403
041 _ _ |a English
100 1 _ |a Krott, Manuel
|0 P:(DE-Juel1)157800
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a 65th Annual Meeting of the International Society of Electrochemistry
|c Lausanne
|d 2014-08-31 - 2014-09-05
|w Switzerland
245 _ _ |a Deposition of Corrosion Preventing Coatings for Dual-Ion Batteries
260 _ _ |c 2014
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 171846
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Commercial lithium ion batteries (LIB) are built with liquid electrolytes containing organic carbonates and lithium hexafluorophosphate (LiPF6). The flammability of these carbonates implies safety risks which could be avoided by replacing the electrolyte mixtures by ionic liquids (ILs), e.g. based on anions like bis(trifluoromethylsulfonyl)imide (TFSI). Additionally, LiPF6 (which also tends to thermal decomposition) can be substituted by appropriate conducting salts, e.g. LiTFSI. Since these components show negligible vapor pressure and high thermal stability, the danger of thermal runaway is minimized, but some problems are still to be solved. In this context, anodic dissolution of the aluminum current collector is a very important issue. To overcome this drawback, innovative protection coatings are deposited on aluminum foils by magnetron sputtering.
536 _ _ |a 435 - Energy Storage (POF2-435)
|0 G:(DE-HGF)POF2-435
|c POF2-435
|f POF II
|x 0
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 1
|u fzj
700 1 _ |a Buchkremer, Hans Peter
|0 P:(DE-Juel1)129594
|b 2
|u fzj
700 1 _ |a Meister, Paul
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Winter, Martin
|0 P:(DE-HGF)0
|b 4
773 _ _ |y 2014
856 4 _ |u https://juser.fz-juelich.de/record/171846/files/FZJ-2014-05403.pptx
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:171846
|p openaire
|p VDB
|p driver
|p open_access
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157800
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129594
913 2 _ |a DE-HGF
|b POF III
|l Forschungsbereich Energie
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Speicher und vernetzte Infrastrukturen
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-430
|0 G:(DE-HGF)POF2-435
|2 G:(DE-HGF)POF2-400
|v Energy Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l NANOMIKRO
914 1 _ |y 2014
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21